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Abstract
We consider the problem of incentivization and optimal control of autonomous vehicles for
improving traffic congestion. In our scenario, autonomous vehicles must be incentivized in
order to participate in traffic improvement. Using the theory and methods of optimal trans-
port, we propose a constrained optimization framework over dynamics governed by partial
differential equations, so that we can optimally select a portion of vehicles to be incentivized
and controlled. The goal of the optimization is to obtain a uniform distribution of vehicles
over the spatial domain. To achieve this, we consider two types of penalties on vehicle density,
one is the L2 cost and the other is a multiscale-norm cost, commonly used in fluid-mixing
problems. To solve this nonconvex optimization problem, we introduce a novel algorithm,
which iterates between solving a convex optimization problem and propagating the flow of
uncontrolled vehicles according to the Lighthill-Whitham-Richards model. We perform nu-
merical simulations, which suggest that the optimization of the L2 cost is ineffective while
optimization of the multiscale norm is effective. The results also suggest the use of a dedicated
lane for this type of control in practice.
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Optimization-based incentivization and control scheme for autonomous
traffic

Uroš Kalabić Piyush Grover Shuchin Aeron

Abstract— We consider the problem of incentivization and
optimal control of autonomous vehicles for improving traffic
congestion. In our scenario, autonomous vehicles must be
incentivized in order to participate in traffic improvement.
Using the theory and methods of optimal transport, we propose
a constrained optimization framework over dynamics governed
by partial differential equations, so that we can optimally select
a portion of vehicles to be incentivized and controlled.

The goal of the optimization is to obtain a uniform dis-
tribution of vehicles over the spatial domain. To achieve
this, we consider two types of penalties on vehicle density,
one is the L2 cost and the other is a multiscale-norm cost,
commonly used in fluid-mixing problems. To solve this non-
convex optimization problem, we introduce a novel algorithm,
which iterates between solving a convex optimization problem
and propagating the flow of uncontrolled vehicles according to
the Lighthill-Whitham-Richards model. We perform numerical
simulations, which suggest that the optimization of the L2 cost is
ineffective while optimization of the multiscale norm is effective.
The results also suggest the use of a dedicated lane for this type
of control in practice.

I. INTRODUCTION

Recent results show that the price of anarchy in vehicle
traffic is essentially unbounded, i.e., traffic congestion can be
arbitrarily worse as compared to the case when all vehicles
on the road are routed by a central controller that aims to
minimize congestion or average travel time [1], [2]. The
development of autonomous vehicles (AVs) is creating new
possibilities for traffic management and control [3] and can
be utilized for reducing the cost of anarchy. Keeping in mind
that, in the autonomous future, vehicles will retain their
primary function of transportation of individuals, we must
consider that the desire of AV passengers may sometimes
be antagonistic to the goals of traffic improvement. For
example, given a choice of whether or not to let their vehicle
participate in traffic improvement, passengers would likely
consider the cost of their own time or comfort and, for this
reason, would likely require some sort of incentive in order
to participate.

In this work, we present an incentive and control scheme
for the use of AVs to control traffic on a single road segment.
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U. Kalabić is with Mitsubishi Electric Research Laboratories, Cambridge,
MA 02139, USA kalabic@merl.com

P. Grover is with the Department of Mechanical & Materials Engineering,
University of Nebraska, Lincoln, NE 68588, USA piyush.grover
@unl.edu

S. Aeron is with the Department of Electrical and Computer En-
gineering, Tufts University, Medford, MA 02155, USA shuchin
@ece.tufts.edu

We contrast this to most previous works that have considered
incentivization for traffic management by improved routing
on multiple road segments, e.g., [4], [5], [6]; we instead focus
on dynamic control of vehicles. Specifically, we model traffic
as a flow and assume that a certain part of this flow can
be incentivized to switch and cooperate in order to control
traffic. This turns the problem of controlling traffic into both
an incentivization and control problem. AV passengers must
first be incentivized to cooperate, and then their vehicles
must be controlled. We note that a related mixed traffic
model using mean-field ideas was recently introduced in [7],
however the focus in that work is on stability and not on
incentivization.

The problem of computing appropriate incentives falls
under the umbrella of mechanism design [8]. We are in-
terested in developing an incentivization framework in the
context of mixed-traffic control, where both cooperative
and non-cooperative vehicles are present. As a first step
towards this goal, in this work we consider the problem of
selecting a subset of vehicles, periodically updated, that can
be potentially incentivized, and hence optimally controlled
to drive the overall vehicle density to be close to uniform.
As part of the solution, the corresponding optimal controls
for this subset are also computed. This problem is generally
motivated by recent results [9], [10] showing that intelligent
control of a small fraction of vehicles can significantly reduce
congestion and attenuate traffic waves.

We propose a periodically updated, receding-horizon con-
trol scheme. During each period, we determine the distri-
bution of incentive, i.e., which subset of the vehicles to
control, as well as the control inputs to these vehicles over
the fixed time-period. The receding horizon approach is used
to address undesirable edge effects that typically appear at
the end of the control time-horizon. The control history is
determined according to the assumption that controlled AV
flow can be directly controlled and that uncontrolled flow
follows the conventional Lighthill-Whitham-Richards (LWR)
model. The resulting problem is a variation of the mean-field
optimal control problem [11] with congestion, where only a
subset of the agents are controlled.

We consider two types of cost on vehicle density. The
first is an L2 cost, which penalizes the distance to the
uniform density, and the second is an Ḣ−1 cost, which is
a type of multiscale norm and used in fluid mixing to ensure
uniformity. To show how one can implement our scheme,
we perform a numerical simulation on a single, circular road
scenario and use the optimization software cvx to solve the
optimization problem. Our results show that the penalization



of L2 cost does not effectively achieve convergence to a
uniform distribution while penalization of Ḣ−1 cost does.
For this reason, we suggest that approaches from fluid mixing
can be helpful in solving traffic optimization. Notably, we
find that the scheme requires flow rates that are too high
to achieve in a single lane; we therefore suggest that the
practical implementation of our approach may require use
of a dedicated lane.

The rest of the paper is organized as follows. In Section
II, we present a detailed problem formulation and introduce
the optimization framework. In Section III, we present a
computationally feasible algorithm for solving the proposed
optimization problem. In Section IV, we present detailed
simulation results and provide a discussion on how one may
implement the resulting scheme in practice. Section V is the
conclusion.

II. PROBLEM FORMULATION

We consider a two-population traffic scenario, consisting
of heteronomous (non-cooperative) vehicles (HVs) and au-
tonomous (cooperative) vehicles (AVs). The densities of HVs
and AVs are given by ρ1(x, t), ρ2(x, t) ∈ R, respectively,
where (x, t) ∈ Ω × [0, T ] is the position x of a vehicle at
time t, and Ω and [0, T ] are the spatial and time domains,
respectively. The vehicular dynamics of HVs are governed
by the Lighthill-Whitham-Richards (LWR) model,1 with the
dynamics given by,

∂tρ1 +∇ · (ρ1v1(ρ1, ρ2)) = 0, (1)

where,

v1(ρ1, ρ2) = u0

(
1− ρ1 + ρ2

ρ∗

)
, (2)

is the HV velocity field and the parameters u0 and ρ∗ are
the free-flow speed and the maximum density, respectively.
The density evolution of AVs is governed by the continuity
equation,

∂tρ2 +∇ ·m2(ρ2, v2) = 0, (3)

where m2(x, t) ∈ R is the controlled flux, given by,

m2(ρ2, v2) = ρ2v2,

where v2(x, t) ∈ R is the controlled, AV velocity field. Note
that the HV dynamics are affected by the AV dynamics but
not vice versa.

Apart from being able to control the AV velocity field,
we are able to assign the initial densities of AVs ρ2(x, 0)
over Ω. We do this by assuming that a certain distribution of
vehicles can be either an HV or AV, but must be incentivized
to turn on AV capability. We assume that the total amount
available for incentivization is fixed and an offer can be made
only once over a time period [0, T ]. As a consequence of
optimality, there is no reason to not make an offer after the
initial time t = 0 since, if v2(x, t) = v1(x, t) is optimal over

1While in this paper we only report results for the LWR model, we
note that it is straightforward to extend our algorithm to other models of
uncontrolled traffic flow such as the Payne-Whitham and Aw-Rascle-Zhang
(ARZ) models.

t ∈ [0, a] but not over t ∈ [a, T ], it will be equivalent to
make an offer at any time t ≤ a. In this work, we assume
that each vehicle operator’s cost preference β(x) is equal,
i.e., β(x) is constant over x.

We assume the initial density distribution ρ0 = ρ1(·, 0) +
ρ2(·, 0) is given and its average is ρ̄, i.e.,

∫
Ω
ρ0(x)dx = ρ̄. We

also assume that the initial density distribution of potential
AVs ρ̂0 ≤ ρ0, with average ˆ̄ρ, is given and therefore the
initial distribution of AVs ρ2,0 = ρ2(·, 0) must satisfy the
incentivization condition,∫

Ω

ρ2(x, 0)dx ≤
∫

Ω

β(x)ρ̂0(x)dx = β ˆ̄ρ. (4)

A. Optimization

Given an initial density distribution ρ0(x), we wish to
determine the initial AV distribution ρ2,0 : Ω→ R satisfying
(4) and a controlled velocity profile v2 : Ω × [0, T ] → R
to transport the density from ρ0 to a density that is close to
uniform over Ω.

We consider two approaches in order to achieve this end.
Both minimize a cost function of the form,∫∫

ρ2(x, t)v2(x, t)2dxdt+ cV (ρ1, ρ2), (5)

so that the first term in the weighted sum is a cost on control
and the second term is a cost on the state, and c > 0 is a
scalar weight.

In the first case, the cost function is chosen with the aim
of minimizing the L2 cost of the density over Ω× [0, T ],

V (ρ1, ρ2) =

∫∫
(ρ1(x, t) + ρ2(x, t))2dxdt.

which is equivalent to minimizing the distance to the uniform
density at all times. By performing the Benamou-Brenier
change of variables [12] (ρ2, v2) 7→ (ρ2,m2), the optimiza-
tion problem can be written as,

min
ρ2,0,m2

∫∫
m2

2

ρ2
dxdt+ c

∫∫
(ρ1 + ρ2)2dxdt, (6)

subject to the constraints,

ρ1(x, t), ρ2(x, t), m2(x, t) ≥ 0, (7a)
ρ1(x, t) + ρ2(x, t) ≤ ρ∗, (7b)∫

Ω

ρ2,0(x)dx ≤ β ˆ̄ρ, (7c)

ρ1(x, 0) + ρ2,0(x) = ρ0(x), (7d)

for all (x, t) ∈ Ω× [0, T ], and dynamics (1)-(3).
In the second case, the cost function is chosen with the

aim of minimizing the square of the Ḣ−1 seminorm [13] of
the density over Ω×[0, T ]. This cost function is used in fluid
mixing problems [13] to optimize mixing. Setting a penalty
on the deviation from the mean, the cost is given by,

V (ρ1, ρ2)

=
1

ρ̄T

∫∫ ∣∣∣(−∆)−
1
2 (ρ1(x, t) + ρ2(x, t))

∣∣∣2 dxdt− 1.



The cost can be reformulated in terms of Fourier coefficients
to obtain the full optimization problem,

min
ρ2,0,m2

∫∫
m2

2

ρ2
dxdt+

c

ρ̄

∫ ∞∑
k=2

(ρ̂1,k + ρ̂2,k)2

k2
dt, (8)

subject to the constraints (7), where ρ̂1,k and ρ̂2,k are the
k-th Fourier coefficients of ρ1(·, t) and ρ2(·, t), respectively.
Hence, this cost weighs the spatial low-frequency compo-
nents of fluctuations in the density higher than the high-
frequency components. It has been shown to have good
numerical properties in practical optimization problems [14].

The optimization problem can be considered as a variation
of a mean-field optimal control problem [11] with conges-
tion, where only a subset of the agents are directly controlled.
Since the problem is non-convex due to the LWR dynamics
in (2), the conventional approaches to solving convex mean-
field control problems do not apply, and we must design a
new algorithm.

III. ALGORITHM

In both cases above, the nonlinear dynamics (1)-(3) result
in non-convex problems. This is because the flux expression
obtained by multiplying (2) by the density ρ1 cannot be
converted to a linear PDE. We can see this when we
discretize the dynamics using a conservative scheme, like
that of Godunov, where the flux term becomes dependent on
logical conditions.

The problem can be somewhat alleviated by using a
discretization of the PDEs that is dissipative, such as that
of Lax-Friedrichs. In this way, the map from the state
(ρ1(·, tk), ρ2(·, tk)) at one time instant tk to the next time
instant tk+1 becomes linear. The drawback, however, is that
the use of a dissipative discretization does not lead to a
physically correct solution [15].

We propose to use a two step iterated approach in solving
the optimization problem.

• Step 1: Fix the density ρ1 of the HVs (in space
and time), and use the Lax-Friedrichs discretization to
obtain an optimized control v2 and AV density ρ2.

• Step 2: Propagate the HV dynamics using a first-order
Godunov scheme to determine a new value for HV
density, using the AV density obtained in step 1.

In this way, by keeping ρ1 static in step 1, the corresponding
optimization problem becomes convex and the dissipative
components of Lax-Friedrichs can be compensated through
vehicle actuation.

At the beginning of the algorithm, we set initial conditions
ρ

(0)
1 and ρ

(0)
2 that satisfy the constraints (7). Then, during

each iteration i ≥ 1, we perform the two steps.
In the first step, we solve the optimization problem,

min
ρ2,0,m2

∫∫
m2(x, t)2

ρ2(x, t)
dxdt+ cV

(
ρ

(i−1)
1 , ρ2

)
, (9)

TABLE I
SIMULATION PARAMETERS

Parameter Value Units
|Ω| 2 mi
T 8 min
u0 1 mi/min
ρ∗ 10 50 veh/mi
c 0.1

subject to the constraints,

ρ2(x, t), m2(x, t) ≥ 0, (10a)

ρ2(x, t) ≤ ρ̄− ρ(i−1)
1 (x, t), (10b)∫

Ω

ρ2,0(x)dx ≤ β ˆ̄ρ, (10c)

ρ2,0(x) = ρ0(x)− ρ(i−1)
1 (x, 0), (10d)

for all (x, t) ∈ Ω×[0, T ], and dynamics (3). Upon discretiza-
tion, the dynamics (3) are linear, of the form,

ρ2(xk, tk+1) = DLF

[
ρ2(·, tk)
m2(·, tk)

]
, (11)

where DLF is the fixed, spatial discretization matrix obtained
using the Lax-Friedrichs method and tk is the k-th time step.

In the second step, we use a first-order Godunov method
to solve the dynamic equation,

∂tρ1 + u0∇ · ρ1

(
1− ρ1 + ρ

(i)
2

ρ∗

)
= 0, (12)

with initial condition ρ1(x, 0) = ρ0(x)−ρ(i)
2,0(x), alternating

between steps until either a stopping criterion or the maxi-
mum number of iterations have been reached.

1) Convergence: The problem (9)-(10) is convex and the
solution to the dynamics (12) is unique due to continuity
[16]. These are desirable properties, but do not guarantee
convergence. The constraints prevent the algorithm from
blowing up but do not prevent limit cycles from occuring.
For this reason, we terminate the algorithm after a number
of prescribed iterations.

A. Receding-Horizon Approach

To ensure that the control scheme operates as seamlessly
as possible, and because optimizing over a finite time-horizon
can often result in undesirable effects as the time reaches the
end of the optimization, we consider the use of a receding-
horizon approach.

Specifically, we solve the problem (9)-(12) over the time-
interval [0, T ] but only implement the control over [0, T/N ]
where N is a design parameter. We then solve the same
problem over the time-interval [T/N, T + T/N ] with initial
conditions set to the values obtained at time T/N and
implement the control over [T/N, 2T/N ]. We repeat this
procedure for times 2T/N, 3T/N, . . . until we obtain a
solution over the entire time-interval [0, T ].
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Fig. 1. Initial distribution of vehicles ρ0 (solid) and average (dotted)
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Fig. 2. Total vehicle density at t = 0 (solid, light), t = T/4 (solid),
t = T/2 (dot-dashed), and t = T (dotted) corresponding to optimization
of L2 cost with N = 1

IV. NUMERICAL SIMULATIONS

We perform numerical simulations to test and exhibit the
properties of the algorithm just presented. In all simulations,
the simulation parameters are set to the values given in Table
I and the optimization problems are solved using the software
package cvx. We begin with the initial distribution ρ0 over
Ω = S1 given in Fig. 1 as,

ρ0(x) = 3.5 + 2 sin(πx).

For comparison, the figure also shows the evolution of
vehicle density without control, i.e., v2 = v1(ρ1, ρ2). We
begin by considering the optimization of the L2 cost on
density and then the Ḣ−1 cost.

A. Optimization of L2 cost

In the first simulation, we determine the control input
according to the solution of the optimization problem (6)-
(7), which penalizes density according to the L2 cost. We set
the incentivization parameter β = 0.2 so that 0.2 of vehicles
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Fig. 3. Total vehicle density at t = 0 (solid, light), t = T/4 (solid),
t = T/2 (dot-dashed), and t = T (dotted) corresponding to optimization
of L2 cost with N = 2
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Fig. 4. L2 cost density component corresponding to uncontrolled (solid,
light), N = 1 (solid), N = 2 (dot-dashed), N = 4 (dashed), and N = 8
(dotted)

can be AVs and we set N = 1 so that we only solve the
optimization once before implementing the control.

The time history is shown in Fig. 2 and a qualitative
evaluation suggests that we have not achieved a substantial
improvement over the baseline. In particular, the density
distribution at the final time is very close to the density
distribution in the uncontrolled case. Shortening the control
horizon by setting N > 1 achieves an even worse result; this
is shown in Fig. 3, for which we set N = 2. Investigating
this further, we ran simulations for N = 1, 2, 4, 8, 16 for
which we plot in Fig. 4 the normalized time history of the
density component of the cost (6),

1

3.52|Ω|

∫
Ω

(ρ1(x, t) + ρ2(x, t))2dx.

The plot shows that the we are able to initially, greatly reduce
the density component of the cost in all cases but that this
does not imply that we evenly distribute traffic in the steady
state. In fact, for N > 1, we have worsened performance.
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Fig. 5. Total vehicle density at t = 0 (solid, light), t = T/4 (solid),
t = T/2 (dot-dashed), and t = T (dotted) corresponding to optimization
of Ḣ−1 cost with N = 2
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Fig. 6. Ḣ−1 cost density component corresponding to uncontrolled (solid,
light), N = 1 (solid), and N = 2 (dot-dashed)

For this reason, we consider the minimization of Ḣ−1.

B. Optimization of Ḣ−1 cost

The reason we believe that the L2 cost optimization was
not able to achieve good steady-state convergence is that
being near to the optimal in terms of L2 does not mean that
the distribution is near uniform; due to the equivalence of
norms, we expected that another choice of Lp cost would
have similar performance and this has been confirmed by
simulations that are not reported here. An alternative is to
consider the family of multiscale norms, typically used in
fluid mixing.

In the first simulation, we determine the control input
according to the solution of the optimization problem (8),
(7), which penalizes density according to the Ḣ−1 cost. We
keep the incentivization parameter at β = 0.2 and set N = 1.

In the results, not shown here, the density reaches close-
to-uniform convergence at time T/2 but, by the end of the
simulation, it drifts away from uniform. We suspect that the
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Fig. 7. AV density at t = 0 (solid, light), t = T/4 (solid), t = T/2
(dot-dashed), and t = T (dotted) corresponding to optimization of Ḣ−1

cost with N = 2
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Fig. 8. AV flow at t = 0 (solid, light), t = T/4 (solid), t = T/2 (dot-
dashed), and t = T (dotted) corresponding to optimization of Ḣ−1 cost
with N = 2

drift away from uniform is due to the fact that we optimize
over a finite time-horizon, and so do not sufficiently penalize
steady state. This is supported by the results of Figs. 5-
6, for which we have set N = 2 and obtained sustained
convergence to uniform. Fig. 5 shows sustained convergence
to the uniform and Fig. 6 shows that the drift away from
uniform in the case of N = 1 occurs toward the end of the
simulation.

C. Discussion

Having obtained a satisfactory numerical results, we now
discuss the practicality and implementability of this ap-
proach. In Fig. 7, we show the AV density, and in Fig. 8, we
show the AV flow. The AV density shows that the optimal
approach is to choose 0.2 of the slower vehicles and switch
these into autonomous mode, recomputing the distribution
again halfway through the time-period.

From the plot of AV flow, we see that the required flow
to obtain the desired result is higher than the maximum
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Fig. 9. Total vehicle density at t = 0 (solid, light), t = T/4 (solid),
t = T/2 (dot-dashed), and t = T (dotted) corresponding to optimization
of Ḣ−1 cost with N = 2 and an upper limit on AV flow
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Fig. 10. AV flow at t = 0 (solid, light), t = T/4 (solid), t = T/2
(dot-dashed), and t = T (dotted) corresponding to optimization of Ḣ−1

cost with N = 2 and an upper limit at 2.5 (dotted, light)

achievable in a single lane; to achieve it, it would require
AVs to drive at the maximum rate in four separate lanes.
This suggests the use of at least one dedicated lane for AVs
in order to implement the scheme, along with a limit on the
flow m2. We perform an additional simulation, setting the
limit at the maximum rate according to the LWR model (2),

u0ρ
∗

4
= 2.5, (13)

which corresponds to the use of at most one additional
dedicated AV lane. The results are plotted in Figs. 9-10.
Fig. 10 shows a plot of the AV flow at different times,
exhibiting adherence to the prescribed limit. In Fig. 9, the
plot of total vehicle flow is not much qualitatively differ-
ent than that of the unconstrained case, plotted in Fig. 5,
validating our results. Note that we did not consider lane-
change interactions between vehicles and assumed a bulk
fluid model.

Before concluding, we note that the general scheme pre-

sented in this work is broadly applicable to most traffic
scenarios and not limited to the single, circular road example
on which we performed the numerical simulation. Neverthe-
less, this requires more future work as different scenarios
will exhibit different topologies Ω and likely require a more
specialized approach towards optimization.

V. CONCLUSION

In this work, we presented an optimization-based control
scheme for stabilizing traffic to a uniform state by incen-
tivizing and controlling a group of autonomous vehicles. We
considered two approaches, the first optimizing an L2 cost
and the second optimizing an Ḣ−1 cost.

We performed numerical simulations to determine the effi-
cacy of the approach. The results showed that, by optimizing
the Ḣ−1 cost, we are able to stabilize traffic to the uniform in
finite time while, by optimizing the L2 cost, we are not. We
discussed the practicality of this approach and recommend
the addition of a dedicated lane for implementability.
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