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Abstract
We propose a new concept of rateless auto-encoders (RL-AEs) that enable a flexible latent
dimensionality, which can be seamlessly adjusted for varying distortion. In the proposed
RL-AEs, instead of a deterministic bottleneck architecture, we use an over-complete repre-
sentation that is stochastically regularized with weighted dropouts. Our RL-AEs employ
monotonically increasing dropout rates across the latent representation nodes such that the
latent variables become sorted by importance like in principal component analysis (PCA).
This is motivated by the rateless property of conventional PCA, where the least important
principal components can be discarded to realize variable rate dimensionality reduction that
gracefully degrades the distortion. Our proposed stochastic bottleneck framework enables
seamless rate adaptation with high reconstruction performance, without requiring predeter-
mined latent dimensionality at training. We experimentally demonstrate that the proposed
RL-AEs can achieve variable dimensionality reduction while retaining nearly optimal distor-
tion compared to conventional AEs.
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Abstract—We propose a new concept of rateless auto-encoders
(RL-AEs) that enable a flexible latent dimensionality, which can
be seamlessly adjusted for varying distortion. In the proposed
RL-AEs, instead of a deterministic bottleneck architecture, we
use an over-complete representation that is stochastically regular-
ized with weighted dropouts. Our RL-AEs employ monotonically
increasing dropout rates across the latent representation nodes
such that the latent variables become sorted by importance like
in principal component analysis (PCA). This is motivated by the
rateless property of conventional PCA, where the least important
principal components can be discarded to realize variable rate
dimensionality reduction that gracefully degrades the distortion.
Our proposed stochastic bottleneck framework enables seamless
rate adaptation with high reconstruction performance, without
requiring predetermined latent dimensionality at training. We ex-
perimentally demonstrate that the proposed RL-AEs can achieve
variable dimensionality reduction while retaining nearly optimal
distortion compared to conventional AEs.

I. INTRODUCTION

In many real-world applications, the raw data measurements
(e.g., audio/speech, images, video, biological signals) often
have very high dimensionality. Adequately handling high-
dimensionality often requires the application of dimensionality
reduction techniques [1] that transform the original data into
meaningful feature representations of reduced dimensionality.
Such feature representations should reduce the dimensionality
to the minimum number required to capture the salient prop-
erties of the data. Dimensionality reduction is vital in many
machine learning applications, since one needs to mitigate
the so-called “curse of dimensionality” [2]. In the past few
decades, latent representation learning based on auto-encoders
(AEs) [3]–[10] has been widely used for dimensionality reduc-
tion, since this nonlinear technique has shown superior real-
world performance compared to classical linear counterparts,
such as principal component analysis (PCA).

One of the challenges in dimensionality reduction is to de-
termine the optimal latent dimensionality that can sufficiently
capture the data features required for particular applications.
Although some regularization techniques, such as sparse AE
(SAE) [7] and rate-distortion AE [11], may be useful to
self-adjust the effective dimensionality, there are no existing
methods that provide a rateless property [26] that allows for
seamlessly adjustment of the latent dimensionality depending
on varying distortion requirements for different downstream
applications, without modification of the trained AE model.
However, realizing a rateless AE is not straightforward, since
traditional AEs typically learn nonlinear manifolds where

the latent variables are equally important, unlike the linear
manifold models used for PCA.

In this paper, we introduce a novel AE framework which
can universally achieve flexible dimensionality reduction while
retaining excellent distortion performance. Motivated by the
fact that the traditional PCA is readily adaptable to any
dimension by just appending or dropping sorted principal
components, we propose a stochastic bottleneck architecture to
associate upper latent variables with higher-principal nonlinear
features so that the user can freely discard the least-principal
latent variables if desired. Our contributions are summarized:
• We introduce a new concept of rateless AEs designed for

flexible dimensionality reduction.
• A stochastic bottleneck framework is proposed to priori-

tize the latent space non-uniformly.
• An extended regularization technique called TailDrop is

considered to realize rateless AEs.
• We discuss dropout distribution optimization under the

principle of multi-objective learning.
• We demonstrate that the proposed AEs achieve excellent

distortion performance over the variable range of dimen-
sionality in the standard MNIST and CIFAR-10 image
datasets.

• We evaluate AE models trained for a perceptual distortion
measure based on structural similarity (SSIM) [25] as
well as the traditional mean-square error (MSE) metric.

II. RATELESS AUTO-ENCODER (RL-AE)

A. Dimensionality reduction

Due to the curse of dimensionality, representation learning
to reduce the dimensionality is often of great importance
to handle high-dimensional datasets in machine learning. To
date, there have existed many algorithms for dimensionality
reduction [1], e.g., PCA, Isomap, diffusion maps, locally
linear embedding, Laplacian eigenmaps, Sammon mapping,
and manifold charting along with AE. Among all, AE [3]–[10]
has shown its high potential to learn lower-dimensional latent
variables required in the nonlinear manifold underlying the
datasets. AE is an artificial neural network having a bottleneck
architecture as illustrated in Fig. 1(a), where N -dimensional
data is transformed to M -dimensional latent representation
(for M ≤ N ) via an encoder network. The latent variables
should contain sufficient feature capable of reconstructing the
original data through a decoder network.
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Fig. 1: Auto-encoder architectures: (a) conventional bottle-
neck network, (b) sparse AE regularized by dropout, having
probabilistically lower-dimension representation, (c) stochastic
bottleneck, having two-dimensional regularization with non-
identical dropout rates in both depth and width directions to
realize rateless property by ordered-principal latent variables.

From the original data x ∈ RN , the corresponding latent
representation z ∈ RM , with a reduced dimensionality M is
generated by the encoder network as z = fθ(x), where θ
denotes the encoder network parameters. The latent variables
should adequately capture the statistical geometry of the data
manifold, such that the decoder network can reconstruct the
data as x′ = gφ(z), where φ denotes the decoder network
parameters and x′ ∈ RN . The encoder and decoder pair
(fθ, gφ) are jointly trained to minimize the reconstruction loss
(i.e., distortion), as given by:

min
θ,φ

E
x∼Pr(x)

[
L
(
x, gφ(fθ(x))

)]
, (1)

where the loss function L(x,x′) is chosen to quantify the
distortion (e.g., MSE) between x and x′.

B. Motivation: rateless property

AEs are also known as nonlinear PCA (NLPCA) [4]–[6].
If we consider a simplified case where there is no nonlinear
activation in the AE model, then the encoder and decoder
functions will reduce to simple affine transformations. Specif-
ically, the encoder becomes fθ(x) = Wx+b where trainable
parameters θ are the linear weight W ∈ RM×N and the bias
b ∈ RM . Likewise, the decoder becomes gφ(z) = W′z + b′

with φ = {W′,b′} ∈ {RN×M ,RN}. If the distortion
measure is MSE, the optimal linear AE coincides with the
classical PCA when the data follows the multivariate Gaussian
distribution according to the Karhunen–Loève theorem.

To illustrate, assume Gaussian data x ∼ N (m,C) with
mean m ∈ RN and covariance C ∈ RN×N , which has the
eigen-decomposition: C = ΦΛΦT, where Φ ∈ RN×N is the
unitary eigenvectors matrix and Λ = diag[λ1, λ2, . . . , λN ] ∈
RN×N is the diagonal matrix of ordered eigenvalues λ1 ≥
λ2 ≥ · · · ≥ λN ≥ 0. For PCA, the encoder uses M
principal eigenvectors ΦIN,M to project the data onto an
M -dimensional latent subspace with W = IM,NΦT and
b = −Wm, where IM,N ∈ RM×N denotes the incomplete
identity matrix with diagonal elements equal to one and zero

elsewhere. The decoder uses the transposed projection with
W′ = ΦIN,M and b′ = m. The MSE distortion is given by

L̄M = Ex

[∥∥W′(Wx + b) + b′ − x
∥∥2] =

N∑
n=M+1

λn. (2)

Since the eigenvalues are sorted, the distortion gracefully
degrades as principal components are removed in the corre-
sponding order. Of course, the MSE would be considerably
worse if an improper ordering (e.g., reversed) is used.

One of the benefits of classical PCA is its graceful rateless
property due to the ordering of principal components. Similar
to rateless channel coding such as fountain codes [26], PCA
does not require a pre-determined compression ratio M/N for
dimensionality reduction, and the latent dimensionality can be
later freely adjusted depending on the downstream application.
More specifically, the PCA encoder and decoder learned for a
dimensionality of M can be universally used for any lower-
dimensional PCA of latent size L ≤M without any modifica-
tion of the PCA model but simply dropping the least-principal
D components (D = M − L) in z = [z1, z2, . . . , zM ]T, i.e.,
nullifying variables as zm = 0 for all m ∈ {L+ 1, . . . ,M}.

The rateless property is greatly beneficial in practical ap-
plications since the optimal latent dimensionality is often not
known beforehand. Instead of training multiple encoder and
decoder pairs for different compression rates, one common
PCA model can cover all rates L/N for 1 ≤ L ≤M by simply
dropping trailing components, while still attaining the optimal
distortion as given by L̄L. Nevertheless, traditional PCA
often underperforms in comparison to nonlinear dimension-
ality reduction techniques on real-world datasets. Exploiting
nonlinear activation functions such as rectified linear unit
(ReLU), AEs can better learn inherent nonlinearities of the
latent representations underlying the data. However, existing
AEs do not readily achieve the rateless property, because the
latent variables are generally learned to be equally important.
This drawback still holds for the progressive dimensionality
reduction approaches employed by stacked AEs [3] and hierar-
chical AEs [4], those of which require multiple training and re-
tuning for different dimensionality. In this paper, we propose
an effective technique employing a stochastic bottleneck to
realize rateless AEs that are adaptable to any rates.

C. StochasticWidth bottleneck

Several variants of AE have been proposed, e.g., sparse
AE (SAE) [7], variational AE (VAE) [8]–[10], rate-distortion
AE [11], and compressive AE [12]. We introduce a new AE
family which has no fixed bottleneck architecture to realize
the rateless property for seamless dimensionality reduction.
Our method can be viewed as an extended version of SAE,
similar in its over-complete architecture, but also employing a
varying dropout distribution across the width of the network.
This aspect is a key for achieving excellent distortion while
allowing a flexible dimensionality reduction.

Unlike a conventional AE with a deterministic bottleneck
architecture, as shown in Fig. 1(a), the SAE employs a
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Fig. 2: Non-uniform dropout regularization: (a) Stochas-
ticDepth [17] to control depth by prioritizing shallower layers,
(b) StochasticWidth to control width by prioritizing head
neurons with independent and increasing dropout, (c) Stochas-
ticWidth to nullify consecutive burst neurons by TailDrop, (d)
example of tail drop distributions.

probabilistic bottleneck with an effective dimensionality that is
stochastically reduced by dropout, as depicted in Fig. 1(b). For
example, the SAE encoder generates M -dimensional variables
z which are randomly dropped out at a probability of p,
resulting in an effective latent dimensionality of L̄ = (1−p)M .
Although the SAE has better adaptability than deterministic
AE to further dimensionality reduction by dropping latent
variables, the latent variables are still trained to be equally
important for reconstruction of the data, and thus it is limited
in achieving flexible ratelessness.

Our AE employs a stochastic bottleneck that imposes a spe-
cific dropout rate distribution that varies across both the width
and depth of the network, as shown in Fig. 1(c). In particu-
lar, our StochasticWidth technique employs a monotonically
increasing dropout rate from the head (upper) latent variable
nodes to the tail (lower) nodes in order to encourage the latent
variables to be ordered by importance, in a manner analogous
to PCA. By concentrating more important features in the head
nodes, we hope to enable adequate data reconstruction even
when some of the least important dimensions (analogous to
least-principal components) are later discarded.

D. TailDrop regularization

Dropout [13], [14] has been widely used to regularize over-
parameterized deep neural networks. The role of dropout is to
improve generalization performance by preventing activations
from becoming strongly correlated, which in turn leads to
over-training. A recent theory [24] provides a viable inter-
pretation of dropout as a Bayesian inference approximation.

There are many related regularization methods proposed
in literature; e.g., [15]–[23]. In order to facilitate the rate-
less property for stochastic bottleneck AE architectures, we
introduce an additional regularization mechanism referred to
as TailDrop, as one realization of StochasticWidth.

The stochastic bottleneck uses non-uniform dropout to
adjust the importance of each neuron as explained in
Fig. 1(c). This regularization technique is related to Stochas-
ticDepth [17] used in deep residual networks. As illustrated in
Fig. 2(a), StochasticDepth drops out entire layers at a higher
chance when dropping deeper layers so that an effective net-
work depth is constrained and shallower layers are dominantly
trained. Analogously, non-uniform dropouts are carried out

across the width direction for StochasticWidth as shown in
Fig. 2(b), where independent dropouts at increasing rates are
used for each neuron. The monotonically increasing dropout
rates can be also realized by dropping consecutive nodes
at the tail as shown in Fig. 2(c), which we call TailDrop.
For TailDrop, the desired dropout rates can be achieved by
adjusting the probability distribution of the tail drop length as
depicted in Fig. 2(d). We focus on the use of this TailDrop
regularization for rateless AE in this paper.

E. Multi-objective learning
Finding an appropriate dropout probability distribution is a

key consideration in the design of high-performance rateless
AEs. We now offer insights on how to do so. The objective
function in (1) should be re-formulated to realize the rateless
property. Our ultimate goal is to find AE model parameters θ
and φ that simultaneously minimize distortion across multiple
rates. Specifically, this problem is an M -ary multi-objective
optimization as follows:

min
θ,φ

[
L̄(θ, φ; 1), L̄(θ, φ; 2), . . . , L̄(θ, φ;M)

]
, (3)

where L̄(θ, φ;L) denotes the expected distortion for the can-
didate AE model parameterized by θ and φ, given that the
M -dimensional latent variables z are further reduced to L-
dimensional variables by dropping the last D = M − L
variables. In this multi-objective problem, a rateless AE model
must account for the best balance across multiple dimension-
alities in order to approach the Pareto-front solutions.

One commonly used naïve method in multi-objective opti-
mization is a weighted sum optimization to reduce the problem
to a single objective function as follows:

min
θ,φ

M∑
L=1

ωLL̄(θ, φ;L), (4)

with some weights ωL ≥ 0. One may choose the weights
to scale the distortion to a similar amplitude as ωL '
1/L̄?(θ, φ;L) for positive distortions where L̄?(θ, φ;L) de-
notes the ground solution. As the expected distortion may
depend on the eigenvalues as shown in (2), understanding the
nonlinear eigenspectrum can facilitate in optimizing the weight
distributions. The stochastic TailDrop regularization at training
phase can be interpreted as a weight ωL since the conventional
single-objective optimization in (1) will effectively become the
weighted sum optimization in (4). Accordingly, the weights
will be the survivor length probability, i.e., the TailDrop
distribution is Pr(D = M − L) = ωL.

In this paper, we consider parametric eigenspectrum as-
sumptions for simplicity. Under a model-based approach of
nonlinear eigenspectrum assumptions, we evaluated several
parametric distributions for TailDrop probability, e.g., Lapla-
cian, and Wigner distributions, some of which are depicted in
Fig. 2(d). Through a preliminary experiment, it was found that
the power cumulative distribution function Pr(D < τM) =
τβ for an order of β ' 1 (τ denotes a compression rate)
performed well for most cases. Accordingly, we focus on the
power distribution for TailDrop in the following experiments.
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Fig. 3: MSE performance of SAE and RL-AE as a function
of survivor latent dimensionality L.

III. EXPERIMENTS

To demonstrate the principle-of-concept benefits of our
rateless AEs, we use standard image datasets of MNIST
and CIFAR-10 [27]. MNIST contains handwritten 10-class
gray-scale images of size 28-by-28, and thus the raw data
dimensionality is N = 282 = 784. The dataset has 60,000 and
10,000 images for training and testing, respectively. CIFAR-10
is a dataset of 32-by-32 color images, representing 10 classes
of natural scene objects. The raw data dimensionality is thus
N = 322 × 3 = 3072. The training set and test set contain
50,000 and 10,000 images, respectively.

For simplicity, we use fully-connected three-layer percep-
tron with ReLU activation functions for both encoder and de-
coder networks. Note that the concept of StochasticWidth reg-
ularization to realize ordered-principal feature can be applied
to recurrent and convolutional networks in a straightforward
manner. The number of nodes in the hidden layers is 1024 for
MNIST and 2048 for CIFAR-10. For conventional SAE, we
used 90% sparsity as a baseline to evaluate the robustness of
flexible latent dimensionality. Model training was performed
using the adaptive momentum (Adam) stochastic gradient
descent method [28] with a learning rate of 0.001, and a mini-
batch size of 100. The maximum number of epochs is 500
while early stopping with a patience of 20 was applied.

A. MSE measure

Figs. 3(a) and (b) show the MSE performance of the con-
ventional SAE and proposed RL-AE for MNIST and CIFAR-
10 datasets, respectively. For conventional SAE, multiple AE
models are trained at the intended latent dimensionality of
M = 2m for m ∈ {2, 3, 4, 5, 6}. The rateless AE is op-
timized at the dimensionality of M = 64 using TailDrop
with a power distribution (with β = 0.67 for MNIST, and
β = 2.1 for CIFAR-10). The latent dimensionality L used
for image reconstruction is varied during testing evaluation by
deterministically dropping tail variables.

As shown in Fig. 3(a), the conventional AE does not adapt
well to variable dimensionality, with the MSE performance
drastically degrading when the testing dimensionality L is
reduced from the intended dimensionality M . For the SAE
model trained for M = 64, dropping 50% of the latent
variables to yield a reduced dimensionality of L = 32,
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Fig. 4: SSIM performance of SAE and RL-AE as a function
of survivor latent dimensionality L.

the MSE degrades to 3.5 dB from the −6 dB obtained at
L = 64, which is significantly worse than an SAE model
trained for M = 32 that obtains an MSE of −3.5 dB. This
shows that the existing SAEs cannot be universally reused
for flexible dimensionality reduction, and hence adaptive
switching between multiple trained SAE models would be
required depending on the desired dimensionality. However,
our proposed RL-AE, which is trained once for dimensionality
M = 64, flexibly operates over the wide range of further
reduced dimensionalities L ≤ 64, while achieving low MSE
distortion close to the ideal MSEs obtained by SAE models
trained for the specific dimensionality L.

Similar observations can be made in the results for the
CIFAR-10 dataset, as shown in Fig. 3(b). It confirms that
the nearly optimal distortion can be achieved by a single AE
model for different compression rates by using the stochas-
tic bottleneck regularization. This benefit comes from non-
uniform dropout rates across neurons to concentrate the most-
principal feature in upper nodes. Conventional uniform-rate
dropout, as used in existing SAEs, still requires the target
dimensionality to be known during training.

It should be noted that the linear PCA dimensionality reduc-
tion performs surprisingly well, competitive to the proposed
nonlinear AE for CIFAR-10 datasets in Fig. 3(b). Because
MNIST images are nearly binary bitmaps whose statistics are
far from the Gaussian distribution, PCA did not work well
as shown in Fig. 3(a). However, most natural images such
as CIFAR-10 are often well-modeled by the Gauss–Markov
process. This may be the primary reason why PCA works
sufficiently well in particular for the MSE metric. Although it
was unexpected that the nonlinear AEs could not improve the
MSE performance over the linear PCA for CIFAR-10 datasets,
the MSE curve of our AE perfectly agreed that of PCA for
L ≤ 32, which implies that our stochastic bottleneck approach
could learn the ordered-principal components as intended.

B. SSIM measure

Since the classical MSE metric is known to be inconsistent
with perceptual image quality, the structural similarity (SSIM)
index [25] has been recently used as an alternative measure
of perceptual distortion. The SSIM index ranges from −1 to
1, indicating perceptual similarity between the original and
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Fig. 5: Reconstructed snapshots varying the latent dimensionality L using AE model designed at dimensionality of M = 64. The
top row is original, and subsequent rows are reconstructed images for a reduced dimensionality of L = {64, 54, 44, 34, 24, 14, 4}.

distorted images, from the worst to best quality, respectively.
We use a negative SSIM index as a new loss function to fine-
tune the AE models, which were pre-trained for the MSE
metric, so as to improve the perceptual image quality.

Figs. 4(a) and (b) plot the negative SSIM index of the
reconstructed images by the conventional SAE and proposed
RL-AE for MNIST and CIFAR-10 datasets, respectively. It is
confirmed in those figures that the conventional SAE cannot
be universally used for flexibly varying dimensionality in
the SSIM distortion metric. Although the proposed RL-AE
may perform worse than the conventional SAEs at some
dimensionalities, for which the SAE models were dedicatedly
optimized, our RL-AE flexibly achieves SSIM performance
closely comparable to the best SSIMs obtained by the ensem-
ble of SAEs over the wide range of dimensionalities L ≤ 64.

We can also see that the traditional PCA has a higher loss
in the perceptual SSIM metric compared to the MSE metric.
In particular for MNIST in Fig. 4(a), the SSIM degradation of
the PCA over our RL-AE is noticeable over the whole range
of dimensionalities, while the PCA worked well for lower
dimensionality for the MSE metric, as seen in Fig. 3(a). More
importantly, our AE can offer a perceptual performance benefit
in the SSIM metric over PCA even for CIFAR-10 datasets,
for which the AEs could not outperform the PCA in the MSE
metric as discussed in Fig. 3(b). This makes sense because the
PCA does not consider any perceptual quality.

C. Reconstructed images

Figs. 5 show visual samples randomly chosen from test
datasets, respectively for SAE and RL-AE reconstructions.
The top row displays the original images, and the subsequent
rows are reconstructed images for a reduced dimensionality
of L = {64, 54, 44, 34, 24, 14, 4}. Both types of models are
trained at a latent dimensionality of M = 64 under the
MSE measure. Our proposed RL-AE clearly exhibits improved
visual quality for flexible dimensionality reduction versus
the conventional SAE, without requiring retraining for each
reduced dimensionality.

D. Latent representation

Finally we show a latent space geometry in Figs. 6(a) and
(b), where the first two latent variables of all MNIST test
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Fig. 6: The first two latent variables of MNIST test images
encoded by SAE and RL-AE, which are trained at a latent
dimensionality of M = 64 in terms of MSE measure.

images are plotted for the traditional SAE and proposed RL-
AE, respectively. One can clearly see that the label-dependent
distribution in our RL-AE is more clearly observable than the
conventional AE, since the most-principal latent components
are properly associated with the upper latent variables via the
proposed stochastic bottleneck technique.

IV. CONCLUSIONS

We proposed new a type of auto-encoders employing a form
of stochastic bottlenecking with non-uniform dropout rates for
flexible dimensionality reduction. The proposed auto-encoders
are rateless, i.e., the compression rate in dimensionality re-
duction is not pre-determined at the training phase and the
user can freely change the dimensionality at testing phase
without severely degrading quality. To realize rateless AEs, a
simple regularization method called TailDrop was introduced
to impose higher priority at upper neurons for learning the
most-principal nonlinear features. This paper showed proof-
of-concept results based on the standard MNIST and CIFAR-
10 image datasets. Nearly optimal distortion performance
was obtained with a single AE model irrespective of the
flexible dimensionality reduction rate, which was obtained by
simply dropping the least-principal latent dimensions. More
rigorous analysis and theoretical optimization of dropout rate
distributions for real-world data are left for future work.
Multi-objective learning to account for various downstream
applications is also an important open question to pursue.
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