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Abstract
Modern face alignment methods have become quite accurate at predicting the locations of fa-
cial landmarks, but they do not typically estimate the uncertainty of their predicted locations
nor predict whether landmarks are visible. In this paper, we present a novel framework for
jointly predicting landmark locations, associated uncertainties of these predicted locations,
and landmark visibilities. We model these as mixed random variables and estimate them
using a deep network trained with our proposed Location, Uncertainty, and Visibility Likeli-
hood (LUVLi) loss. In addition, we release an entirely new labeling of a large face alignment
dataset with over 19,000 face images in a full range of head poses. Each face is manually
labeled with the ground-truth locations of 68 landmarks, with the additional information of
whether each landmark is unoccluded, self-occluded (due to extreme head poses), or exter-
nally occluded. Not only does our joint estimation yield accurate estimates of the uncertainty
of predicted landmark locations, but it also yields state-of-the-art estimates for the landmark
locations themselves on multiple standard face alignment datasets. Our method’s estimates
of the uncertainty of predicted landmark locations could be used to automatically identify
input images on which face alignment fails, which can be critical for downstream tasks.
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Abstract

Modern face alignment methods have become quite ac-
curate at predicting the locations of facial landmarks, but
they do not typically estimate the uncertainty of their pre-
dicted locations nor predict whether landmarks are visi-
ble. In this paper, we present a novel framework for jointly
predicting landmark locations, associated uncertainties of
these predicted locations, and landmark visibilities. We
model these as mixed random variables and estimate them
using a deep network trained with our proposed Location,
Uncertainty, and Visibility Likelihood (LUVLi) loss. In ad-
dition, we release an entirely new labeling of a large face
alignment dataset with over 19,000 face images in a full
range of head poses. Each face is manually labeled with
the ground-truth locations of 68 landmarks, with the addi-
tional information of whether each landmark is unoccluded,
self-occluded (due to extreme head poses), or externally oc-
cluded. Not only does our joint estimation yield accurate es-
timates of the uncertainty of predicted landmark locations,
but it also yields state-of-the-art estimates for the landmark
locations themselves on multiple standard face alignment
datasets. Our method’s estimates of the uncertainty of pre-
dicted landmark locations could be used to automatically
identify input images on which face alignment fails, which
can be critical for downstream tasks.

1. Introduction
Modern methods for face alignment (facial landmark lo-

calization) perform quite well most of the time, but all of
them fail some percentage of the time. Unfortunately, al-
most all of the state-of-the-art (SOTA) methods simply out-
put predicted landmark locations, with no assessment of
whether (or how much) downstream tasks should trust these
landmark locations. This is concerning, as face alignment
is a key pre-processing step in numerous safety-critical ap-
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Figure 1: Results of our joint face alignment and uncer-
tainty estimation on three test images. Ground-truth (green)
and predicted (yellow) landmark locations are shown. The
estimated uncertainty of the predicted location of each land-
mark is shown in blue (Error ellipse for Mahalanobis dis-
tance 1). Landmarks that are occluded (e.g., by the hand in
center image) tend to have larger uncertainty.

plications, including advanced driver assistance systems
(ADAS), driver monitoring, and remote measurement of vi-
tal signs [57]. As deep neural networks are notorious for
producing overconfident predictions [33], similar concerns
have been raised for other neural network technologies [46],
and they become even more acute in the era of adversar-
ial machine learning where adversarial images may pose a
great threat to a system [14]. However, previous work in
face alignment (and landmark localization in general) has
largely ignored the area of uncertainty estimation.

To address this need, we propose a method to jointly esti-
mate facial landmark locations and a parametric probability
distribution representing the uncertainty of each estimated
location. Our model also jointly estimates the visibility of
landmarks, which predicts whether each landmark is oc-
cluded due to extreme head pose.

We find that the choice of methods for calculating mean
and covariance is crucial. Landmark locations are best ob-
tained using heatmaps, rather than by direct regression. To
estimate landmark locations in a differentiable manner us-
ing heatmaps, we do not select the location of the maximum
(argmax) of each landmark’s heatmap, but instead propose
to use the spatial mean of the positive elements of each
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heatmap. Unlike landmark locations, uncertainty distribu-
tion parameters are best obtained by direct regression rather
than from heatmaps. To estimate the uncertainty of the
predicted locations, we add a Cholesky Estimator Network
(CEN) branch to estimate the covariance matrix of a mul-
tivariate Gaussian or Laplacian probability distribution. To
estimate visibility of each landmark, we add a Visibility Es-
timator Network (VEN). We combine these estimates using
a joint loss function that we call the Location, Uncertainty
and Visibility Likelihood (LUVLi) loss. Our primary goal
in designing this model was to estimate uncertainty in land-
mark localization. In the process, not only does our method
yields accurate uncertainty estimation, but it also produces
SOTA landmark localization results on several face align-
ment datasets.

Uncertainty can be broadly classified into two cate-
gories [41]: epistemic uncertainty is related to a lack of
knowledge about the model that generated the observed
data, and aleatoric uncertainty is related to the noise inher-
ent in the observations, e.g., sensor or labelling noise. The
ground-truth landmark locations marked on an image by hu-
man labelers would vary across multiple labelings of an im-
age by different human labelers (or even by the same human
labeler). Furthermore, this variation will itself vary across
different images and landmarks (e.g., it will vary more for
occluded landmarks and poorly lit images). The goal of our
method is to estimate this aleatoric uncertainty.

The fact that each image only has one ground-truth la-
beled location per landmark makes estimating this uncer-
tainty distribution difficult, but not impossible. To do so,
we use a parametric model for the uncertainty distribution.
We train a neural network to estimate the parameters of the
model for each landmark of each input face image so as
to maximize the likelihood under the model of the ground-
truth location of that landmark (summed across all land-
marks of all training faces).

The main contributions of this work are as follows:

• This is the first work to introduce the concept of para-
metric uncertainty estimation for face alignment.
• We propose an end-to-end trainable model for the joint

estimation of landmark location, uncertainty, and visi-
bility likelihood (LUVLi), modeled as a mixed random
variable.
• We compare our model using multivariate Gaussian

and multivariate Laplacian probability distributions.
• Our algorithm yields accurate uncertainty estimation

and state-of-the-art landmark localization results on
several face alignment datasets.
• We are releasing a new dataset with manual labels of

the locations of 68 landmarks on over 19,000 face im-
ages in a wide variety of poses, where each landmark
is also labeled with one of three visibility categories.

2. Related Work

2.1. Face Alignment
Early methods for face alignment were based on Ac-

tive Shape Models (ASM) and Active Appearance Models
(AAM) [16, 18, 66, 69, 78] as well as their variations [1, 19,
36, 49, 50, 62]. Subsequently, direct regression methods be-
came popular due to their excellent performance. Of these,
tree-based regression methods [9,17,40,60,76] proved par-
ticularly fast, and the subsequent cascaded regression meth-
ods [2, 22, 75, 77, 83] improved accuracy.

Recent approaches [7, 72, 73, 79, 81, 84, 87, 88] are all
based on deep learning and can be classified into two sub-
categories: direct regression [10, 73] and heatmap-based
approaches. The SOTA deep methods, e.g., stacked hour-
glass networks [7, 84] and densely connected U-nets (DU-
Net) [72], use a cascade of deep networks, originally de-
veloped for human body 2D pose estimation [55]. These
models [7, 55, 71, 72] are trained using the `2 distance be-
tween the predicted heatmap for each landmark and a proxy
ground-truth heatmap that is generated by placing a sym-
metric Gaussian distribution with small fixed variance at the
ground-truth landmark location. [48] uses a larger variance
for early hourglasses and a smaller variance for later hour-
glasses. [79] employs different variations of MSE for dif-
ferent pixels of the proxy ground-truth heatmap. Recent
works also infer facial boundary maps to improve align-
ment [79, 81]. In heatmap-based methods, landmarks are
estimated by the argmax of each predicted heatmap. Indi-
rect inference through a predicted heatmap offers several
advantages over direct prediction [4].

Disadvantages of Heatmap-Based Approaches. These
heatmap-based methods have at least two disadvantages.
First, since the goal of training is to mimic a proxy ground-
truth heatmap containing a fixed symmetric Gaussian, the
predicted heatmaps are poorly suited to uncertainty predic-
tion [13, 14]. Second, they suffer from quantization errors
since the heatmap’s argmax is only determined to the near-
est pixel [51, 56, 70]. To achieve sub-pixel localization for
body pose estimation, [51] replaces the argmax with a spa-
tial mean over the softmax. Alternatively, for sub-pixel lo-
calization in videos, [70] samples two additional points ad-
jacent to the max of the heatmap to estimate a local peak.

Landmark Regression with Uncertainty. We have
only found two other methods that estimate uncertainty of
landmark regression, both developed concurrently with our
approach. The first method [13, 14] estimates face align-
ment uncertainty using a non-parametric approach: a ker-
nel density network obtained by convolving the heatmaps
with a fixed symmetric Gaussian kernel. The second [32]
performs body pose estimation with uncertainty using di-
rect regression method (no heatmaps) to directly predict the
mean and precision matrix of a Gaussian distribution.



2.2. Uncertainty Estimation in Neural Networks
Uncertainty estimation broadly uses two types of

approaches [46]: sampling-based and sampling-free.
Sampling-based methods include Bayesian neural net-
works [67], Monte Carlo dropout [29], and bootstrap en-
sembles [45]. They rely on multiple evaluations of the input
to estimate uncertainty [46], and bootstrap ensembles also
need to store several sets of weights [37]. Thus, sampling-
based methods work for small 1D regression problems but
might not be feasible for higher-dimensional problems [37].

Sampling-free methods produce two outputs, one for the
estimate and the other for the uncertainty, and optimize
Gaussian log-likelihood (GLL) instead of classification and
regression losses [41, 45, 46]. [45] combines the benefits of
sampling-free and sampling-based methods.

Recent object detection methods have used uncertainty
estimation [3, 34, 35, 38, 46, 47, 53]. Sampling-free meth-
ods [35, 46, 47] jointly estimate the four parameters of the
bounding box using Gaussian log-likelihood [47], Lapla-
cian log-likelihood [46], or both [35]. However, these
methods assume the four parameters of the bounding box
are independent (assume a diagonal covariance matrix).
Sampling-based approaches use Monte Carlo dropout [53]
and network ensembles [45] for object detection. Un-
certainty estimation has also been applied to pixelwise
depth regression [41], optical flow [37], pedestrian detec-
tion [5, 6, 54] and 3D vehicle detection [26].

3. Proposed Method
Figure 2 shows an overview of our LUVLi Face Align-

ment. The input RGB face image is passed through a
DU-Net [72] architecture, to which we add three additional
components branching from each U-net. The first new com-
ponent is a mean estimator, which computes the estimated
location of each landmark as the weighted spatial mean of
the positive elements of the corresponding heatmap. The
second and the third new component, the Cholesky Estima-
tor Network (CEN) and the Visibility Estimator Network
(VEN), emerge from the bottleneck layer of each U-net.
CEN and VEN weights are shared across all U-nets. The
CEN estimates the Cholesky coefficients of the covariance
matrix for each landmark location. The VEN estimates the
probability of visibility of each landmark in the image, 1
meaning visible and 0 meaning not visible. For each U-net i
and each landmark j, the landmark’s location estimate µij ,
estimated covariance matrix Σij , and estimated visibility
v̂ij are tied together by the LUVLi loss function Lij , which
enables end-to-end optimization of the entire framework.

Rather than the argmax of the heatmap, we choose a
mean estimator for the heatmap that is differentiable and
enables sub-pixel accuracy: the weighted spatial mean of
the heatmap’s positive elements. Unlike the non-parametric
model of [13,14], our uncertainty prediction method is para-
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Figure 2: Overview of our LUVLi method. From each U-
net of a DU-Net, we append a shared Cholesky Estimator
Network (CEN) and Visibility Estimator Network (VEN)
to the bottleneck layer and apply a mean estimator to the
heatmap. The figure shows the joint estimation of location,
uncertainty, and visibility of the landmarks performed for
each U-net i and landmark j. The landmark has ground-
truth (labeled) location pj and visibility vj ∈ {0, 1}.

metric: we directly estimate the parameters of a single mul-
tivariate Laplacian or Gaussian distribution. Furthermore,
our method does not constrain the Laplacian or Gaussian
covariance matrix to be diagonal.

3.1. Mean Estimator
LetHij(x, y) denote the value at pixel location (x, y) of

the jth landmark’s heatmap from the ith U-net. The land-
mark’s location estimate µij = [µijx, µijy]T is given by
first post-processing the pixels of the heatmap Hij with a
function σ, then taking the weighted spatial mean of the
result (See (16) in the supplementary material). We con-
sidered three different functions for σ: the ReLU func-
tion (eliminates the negative values), the softmax func-
tion (makes the mean estimator a soft-argmax of the
heatmap [12,25,51,85]), and a temperature-controlled soft-
max function (which, depending on the temperature setting,
provides a continuum of softmax functions that range from
a “hard” argmax to the uniform distribution). The ablation
studies (Section 5.5) show that choosing σ to be the ReLU
function yields the simplest and best mean estimator.

3.2. LUVLi Loss
Occluded landmarks, e.g., landmarks on the far side of

a profile-pose face, are common in real data. To explic-
itly represent visibility, we model the probability distri-
butions of landmark locations using mixed random vari-



ables. For each landmark j in an image, we denote the
ground-truth (labeled) visibility by the binary variable vj ∈
{0, 1}, where 1 denotes visible, and the ground-truth lo-
cation by pj . By convention, if the landmark is not vis-
ible (vj = 0), then pj = ∅, a special symbol indicating
non-existence. Together, these variables are distributed ac-
cording to an unknown distribution p(vj ,pj). The marginal
Bernoulli distribution p(vj) captures the probability of visi-
bility, p(pj |vj=1) denotes the distribution of the landmark
location when it is visible, and p(pj |vj = 0) = 1∅(pj),
where 1∅ denotes the PMF that assigns probability one to
the symbol ∅.

After each U-net i, we estimate the joint distribution of
the visibility v and location z of each landmark j via

q(v, z) = qv(v)qz(z|v), (1)
where qv(v) is a Bernoulli distribution with

qv(v = 1) = v̂ij , qv(v = 0) = 1− v̂ij , (2)
where v̂ij is the predicted probability of visibility, and

qz(z|v = 1) = P(z|µij ,Σij), (3)
qz(z|v = 0) = ∅, (4)

where P denotes the likelihood of the landmark being at lo-
cation z given the estimated mean µij and covariance Σij .

The LUVLi loss is the negative log-likelihood with re-
spect to q(v, z), as given by

Lij =− ln q(vj ,pj)

=− ln qv(vj)− ln qz(pj |vj)
=− (1− vj) ln(1− v̂ij)− vj ln(v̂ij)

− vj ln
(
P(pj |µij ,Σij)

)
, (5)

and thus minimizing the loss is equivalent to maximum like-
lihood estimation.

The terms of (5) are a binary cross entropy plus vj times
the negative log-likelihood of pj with respect to P . This
can be seen as an instance of multi-task learning [11], since
we are predicting three things about each landmark: its lo-
cation, uncertainty, and visibility. The first two terms on
the right hand side of (5) can be seen as a classification loss
for visibility, while the last term corresponds to a regression
loss of location estimation. The sum of classification and re-
gression losses is also widely used in object detection [39].

Minimization of negative log-likelihood also corre-
sponds to minimizing KL-divergence, since

E[− ln q(vj ,pj)] = E
[
ln
p(vj ,pj)

q(vj ,pj)
− ln p(vj ,pj)

]
(6)

= DKL(p(vj ,pj)‖q(vj ,pj)) + E[− ln p(vj ,pj)], (7)
where expectations are with respect to (vj ,pj) ∼ p(vj ,pj),
and the entropy term E[− ln p(vj ,pj)] is constant with re-
spect to the estimate q(vj ,pj). Further, since

E[− ln q(vj ,pj)] = Evj∼p(vj)[− ln q(vj)]

+ pvEpj∼p(pj |vj=1)[− lnP(pj |µij ,Σij)], (8)

where pv := p(vj = 1) for brevity, minimizing the negative
log-likelihood (LUVLi loss) is also equivalent to minimiz-
ing the combination of KL-divergences given by
DKL

(
p(vj)‖q(v)

)
+pvDKL

(
p(pj |vj=1)‖P(z|µij ,Σij)

)
(9)

3.2.1 Models for Location Likelihood
For the multivariate location distribution P , we consider
two different models: Gaussian and Laplacian.

Gaussian Likelihood. The 2D Gaussian likelihood is:

P(z|µij ,Σij)=
exp
(
− 1

2 (z−µij)TΣ−1ij (z−µij)
)

2π
√
|Σij |

. (10)

Substituting (10) into (5), we have

Lij = −(1−vj) ln(1−v̂ij)− vj ln(v̂ij) +vj
1

2
log |Σij |︸ ︷︷ ︸
T1+ vj

1

2
(pj− µij)TΣ−1ij (pj −µij)︸ ︷︷ ︸

T2

. (11)

In (11), T2 is the squared Mahalanobis distance, while T1
serves as a regularization or prior term that ensures that the
Gaussian uncertainty distribution does not get too large.

Laplacian Likelihood. We use a 2D Laplacian likeli-
hood [43] given by:

P (z|µij ,Σij)=
e
−
√

3(z−µij)T Σ−1
ij (z−µij)

2π
3

√
|Σij |

. (12)

Substituting (12) in (5), we have

Lij = −(1−vj) ln(1−v̂ij)− vj ln(v̂ij) + vj
1

2
log |Σij |︸ ︷︷ ︸
T1+ vj

√
3(pj−µij)TΣ−1ij (pj−µij)︸ ︷︷ ︸

T2

. (13)

In (13), T2 is the Mahalanobis distance, while T1 serves as
a regularization or prior term that ensures that the Laplacian
uncertainty distribution does not get too large.

Note that if Σij is the identity matrix and if all landmarks
are assumed to be visible, then (11) simply reduces to the
squared `2 distance, and (13) reduces to the `2 distance.

3.3. Uncertainty and Visibility Estimation
Our proposed method uses heatmaps for estimating land-

marks’ locations, but not for estimating their uncertainty
and visibility. We experimented with several methods for
computing a covariance matrix directly from a heatmap, but
none were accurate enough. We discuss this in Section 5.1.

Cholesky Estimator Network (CEN). We represent the
uncertainty of each landmark location using a 2× 2 co-
variance matrix Σij , which is symmetric positive defi-
nite. The three degrees of freedom of Σij are captured
by its Cholesky decomposition: a lower-triangular matrix
Lij such that Σij = LijL

T
ij . To estimate the elements

of Lij , we append a Cholesky Estimator Network (CEN)
to the bottleneck of each U-net. The CEN is a fully con-
nected linear layer whose input is the bottleneck of the U-



net (128×4×4=2,048 dimensions) and output is anNp×3-
dimensional vector, where Np is the number of landmarks
(e.g., 68). As the Cholesky decomposition Lij of a covari-
ance matrix must have positive diagonal elements, we pass
the corresponding entries of the output through an ELU ac-
tivation function [15], to which we add a constant to ensure
the output is always positive (asymptote is negative x-axis).

Visibility Estimator Network (VEN). To estimate the
visibility of the landmark ve, we add another fully con-
nected linear layer whose input is the bottleneck of the U-
net (128×4×4 = 2,048 dimensions) and output is an Np-
dimensional vector. This is passed through a sigmoid acti-
vation so the predicted visibility v̂ij is between 0 and 1.

The addition of these two fully connected layers only
slightly increases the size of the original model. The loss for
a single U-net is the averaged Lij across all the landmarks
j = 1, ..., Np , and the total loss L for each input image is a
weighted sum of the losses of all K of the U-nets:

L =

K∑
i=1

λiLi , where Li =
1

Np

Np∑
j=1

Lij . (14)

At test time, each landmark’s mean and Cholesky coeffi-
cients are derived from the Kth (final) U-net. The covari-
ance matrix is calculated from the Cholesky coefficients.

4. New Dataset: MERL-RAV
To promote future research in face alignment with un-

certainty, we now introduce a new dataset with entirely
new, manual labels of over 19,000 face images from the
AFLW [42] dataset. In addition to landmark locations, ev-
ery landmark is labeled with one of three visibility classes.
We call the new dataset MERL Reannotation of AFLW with
Visibility (MERL-RAV).

Visibility Classification. Each landmark of every face is
classified as either unoccluded, self-occluded, or externally
occluded, as illustrated in Figure 3. Unoccluded denotes
landmarks that can be seen directly in the image, with no
obstructions. Self-occluded denotes landmarks that are oc-
cluded because of extreme head pose—they are occluded by
another part of the face (e.g., landmarks on the far side of a
profile-view face). Externally occluded denotes landmarks
that are occluded by hair or an intervening object such as
a cap, hand, microphone, or goggles. Human labelers are
generally very bad at localizing self-occluded landmarks,
so we do not provide ground-truth locations for these. We
do provide ground-truth (labeled) locations for both unoc-
cluded and externally occluded landmarks.

Relationship to Visibility in LUVLi. In Section 3, vis-
ible landmarks (vj = 1) are landmarks for which ground-
truth location information is available, while invisible land-
marks (vj = 0) are landmarks for which no ground-truth
location information is available (pj = ∅). Thus, invisible
(vj = 0) in the model is equivalent to the self-occluded

Table 1: Overview of face alignment datasets. [Key:
Self Occ= Self-Occlusions, Ext Occ= External Occlusions]

Dataset #train #test #marks Profile Self Ext
Images Occ Occ

COFW [8] 1,345 507 29 5 5 X
COFW-68 [30] - 507 68 5 5 X
300-W [63–65] 3,837 600 68 5 5 5
Menpo 2D [21, 74, 86] 7,564 7,281 68/39 X F/P 5
300W-LP-2D [90] 61,225 - 68 X T 5
WFLW [81] 7,500 2,500 98 X 5 5
AFLW [42] 20,000 4,386 21 X X 5
AFLW-19 [89] 20,000 4,386 19 X 5 5
AFLW-68 [59] 20,000 4,386 68 X 5 5

MERL-RAV (Ours) 15,449 3,865 68 X X X

landmarks in our dataset. In contrast, both unoccluded
and externally occluded landmarks are considered visible
(vj = 1) in our model. We choose this because human
labelers are generally good at estimating the locations of
externally occluded landmarks but poor at estimating the
locations of self-occluded landmarks.

Existing Datasets. The most commonly used publicly
available datasets for evaluation of 2D face alignment are
summarized in Table 1. The 300-W dataset [63–65] uses
a 68-landmark system that was originally used for Multi-
PIE [31]. Menpo 2D [21, 74, 86] makes a hard distinction
(denoted F/P) between nearly frontal faces (F) and profile
faces (P). Menpo 2D uses the same landmarks as 300-W for
frontal faces, but for profile faces it uses a different set of
39 landmarks that do not all correspond to the 68 landmarks
in the frontal images. 300W-LP-2D [7, 90] is a synthetic
dataset created by automatically reposing 300-W faces, so
it has a large number of labels, but they are noisy. The 3D
model locations of self-occluded landmarks are projected
onto the visible part of the face as if the face were trans-
parent (denoted by T). The WFLW [81] and AFLW-68 [59]
datasets do not identify which landmarks are self-occluded,
but instead label self-occluded landmarks as if they were
located on the visible boundary of the noseless face.

Differences from Existing Datasets. Our MERL-
RAV dataset is the only one that labels every landmark us-
ing both types of occlusion (self-occlusion and external oc-
clusion). Only one other dataset, AFLW, indicates which
individual landmarks are self-occluded, but it has far fewer
landmarks and does not label external occlusions. COFW
and COFW-68 indicate which landmarks are externally oc-
cluded but do not have self-occlusions. Menpo 2D catego-
rizes faces as frontal or profile, but landmarks of the two
classes are incompatible. Unlike Menpo 2D, our dataset
smoothly transitions from frontal to profile, with gradually
more and more landmarks labeled as self-occluded.

Our dataset uses the widely adopted 68 landmarks used
by 300-W, to allow for evaluation and cross-dataset com-
parison. Since it uses images from AFLW, our dataset has
pose variation up to ±120◦ yaw and ±90◦ pitch. Focusing
on yaw, we group the images into five pose classes: frontal,



Pose Side #Train #Test
Frontal - 8,778 2,195
Half- Left half 1,180 295

Profile Right half 1,221 306

Profile Left 2,080 521
Right 2,190 548

Total - 15,449 3,865

Table 2: Statistics of our new
dataset for face alignment.

Figure 3: Unoccluded,
externally occluded, and
self-occluded landmarks.

left and right half-profile, and left and right profile. The
train/test split is in the ratio of 4 : 1. Table 2 provides the
statistics of our MERL-RAV dataset. A sample image from
the dataset is shown in Figure 3. In the figure, unoccluded
landmarks are green, externally occluded landmarks are red,
and self-occluded landmarks are indicated by black circles
in the face schematic on the right.

5. Experiments
Our experiments use the datasets 300-W [63–65], 300W-

LP-2D [90], Menpo 2D [21, 74, 86], COFW-68 [8, 30],
AFLW-19 [42], WFLW [81], and our MERL-RAV dataset.
Training and testing protocols are described in the supple-
mentary material. On a 12 GB GeForce GTX Titan-X GPU,
the inference time per image is 17 ms.

Evaluation Metrics. We use the standard metrics NME,
AUC, and FR [14, 72, 79]. In each table, we report results
using the same metric adopted in respective baselines.

Normalized Mean Error (NME). The NME is defined as:

NME (%) =
1

Np

Np∑
j=1

vj
‖pj − µKj‖2

d
× 100, (15)

where vj , pj and µKj respectively denote the visibility,
ground-truth and predicted location of landmark j from the
Kth (final) U-net. The factor of vj is there because we can-
not compute an error value for points without ground-truth
location labels. Several variations of the normalizing term
d are used. NMEbox [7,14,86] sets d to the geometric mean
of the width and height of the ground-truth bounding box(√
wbbox · hbbox

)
, while NMEinter-ocular [44, 64, 72] sets d to

the distance between the outer corners of the two eyes. If a
ground-truth box is not provided, the tight bounding box of
the landmarks is used [7,14]. NMEdiag [68,81] sets d as the
diagonal of the bounding box.

Area Under the Curve (AUC). To compute the AUC, the
cumulative distribution of the fraction of test images whose
NME (%) is less than or equal to the value on the horizontal
axis is first plotted. The AUC for a test set is then computed
as the area under that curve, up to the cutoff NME value.

Failure Rate (FR). FR refers to the percentage of images
in the test set whose NME is larger than a certain threshold.

5.1. 300-W Face Alignment
We train on the 300-W [63–65], and test on 300-W,

Menpo 2D [21, 74, 86], and COFW-68 [8, 30]. Some of the

Table 3: NMEinter-ocular on 300-W Common, Challenge, and
Full datasets (Split 1). [Key: Best, Second best]

NMEinter-ocular (%)(↓)
Common Challenge Full

SAN [23] 3.34 6.60 3.98
AVS [59] 3.21 6.49 3.86
DAN [44] 3.19 5.24 3.59

LAB (w/B) [81] 2.98 5.19 3.49
Teacher [24] 2.91 5.91 3.49

DU-Net (Public code) [72] 2.97 5.53 3.47
DeCaFa (More data) [20] 2.93 5.26 3.39

HR-Net [68] 2.87 5.15 3.32
HG-HSLE [91] 2.85 5.03 3.28

AWing [79] 2.72 4.52 3.07
LUVLi (Ours) 2.76 5.16 3.23

Table 4: NMEbox and AUC7
box comparisons on 300-W Test

(Split 2), Menpo 2D and COFW-68 datasets.
[Key: Best, Second best, * = Pretrained on 300W-LP-2D]

NMEbox (%) (↓) AUC7
box (%) (↑)

300-W Menpo COFW 300-W Menpo COFW
SAN* [23] in [14] 2.86 2.95 3.50 59.7 61.9 51.9
2D-FAN* [7] 2.32 2.16 2.95 66.5 69.0 57.5
KDN [13] 2.49 2.26 - 67.3 68.2 -
Softlabel* [14] 2.32 2.27 2.92 66.6 67.4 57.9
KDN* [14] 2.21 2.01 2.73 68.3 71.1 60.1
LUVLi (Ours) 2.24 2.18 2.75 68.3 70.1 60.8
LUVLi* (Ours) 2.10 2.04 2.57 70.2 71.9 63.4

models are pre-trained on the 300W-LP-2D [90].
Data Splits and Evaluation Metrics. There are two

commonly used train/test splits for 300-W; we evaluate our
method on both. Split 1: The train set contains 3,148 im-
ages and full test set has 689 images [72]. Split 2: The train
set includes 3,837 images and test set has 600 images [14].
The model trained on Split 2 is additionally evaluated on
the 6,679 near-frontal training images of Menpo 2D and
507 test images of COFW-68 [14]. For Split 1, we use
NMEinter-ocular [68,72,79]. For Split 2, we use NMEbox and
AUCbox with 7% cutoff [7, 14].

Results: Localization and Cross-Dataset Evaluation.
The face alignment results for 300-W Split 1 and Split 2
are summarized in Table 3 and 4, respectively. Table 4 also
shows the results of our model (trained on Split 2) on the
Menpo and COFW-68 datasets, as in [7, 14]. The results in
Table 3 show that our LUVLi landmark localization is com-
petitive with the SOTA methods on Split 1, usually one of
the best two. Table 4 shows that LUVLi significantly out-
performs the SOTA on Split 2, performing best on 5 out of
the 6 cases (3 datasets× 2 metrics). This is particularly im-
pressive on 300-W Split 2, because even though most of the
other methods are pre-trained on the 300W-LP-2D dataset
(as was our best method, LUVLi*), our method without pre-
training still outperforms the SOTA in 2 of 6 cases. Our
method performs particularly well in the cross-dataset eval-
uation on the more challenging COFW-68 dataset, which
has multiple externally occluded landmarks.
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Figure 4: Mean squared residual error vs. predicted covari-
ance matrix for all landmarks in 300-W Test (Split 2).

Accuracy of Predicted Uncertainty. To evaluate the
accuracy of the predicted uncertainty covariance matrix,
ΣKj =

[
ΣKjxx ΣKjxy
ΣKjxy ΣKjyy

]
, we compare all three unique terms of

this prediction with the statistics of the residuals (2D error
between the ground-truth location pj and the predicted lo-
cation µKj) of all landmarks in the test set. We explain
how we do this for ΣKjxx in Figure 4a. First, we bin ev-
ery landmark of every test image according to the value of
the predicted variance in the x-direction

(
ΣKjxx

)
. Each

bin is represented by one point in the scatter plot. The
ΣKjxx of landmarks within the bin is averaged to obtain
a single estimate for the horizontal axis. We next compute
the residuals in the x-direction of all landmarks in the bin,
and calculate the average of the squared residuals to ob-
tain Σxx = E(pjx−µKjx)2 for the bin. This mean squared
residual error, Σxx, is plotted on the vertical axis. If our pre-
dicted uncertainties are accurate, this residual error, Σxx,
should be roughly equal to the predicted uncertainty vari-
ance in the x-direction (plotted on the horizontal axis).

Figure 4 shows that all three terms of our method’s pre-
dicted covariance matrices are highly predictive of the ac-
tual uncertainty: the mean squared residuals (error) are
strongly proportional to the predicted covariance values, as
evidenced by the Pearson correlation coefficients of 0.98
and 0.99. Even better, the predicted and residual covariance
values are roughly equal (fairly close to the line y = x),
especially for smaller residuals.

Uncertainty is Larger for Occluded Landmarks. The
COFW-68 [30] test set annotates which landmarks are ex-
ternally occluded. Similar to [14], we use this to test uncer-
tainty predictions of our model, where the square root of the
determinant of the uncertainty covariance is a scalar mea-
sure of predicted uncertainty. We report the error, NMEbox,
and average predicted uncertainty, |ΣKj |1/2, in Table 5. We
do not use any occlusion annotation from the dataset during
training. Like [14], we find that our model’s predicted un-
certainty is much larger for externally occluded landmarks
than for unoccluded landmarks. Furthermore, our method’s
location estimates are more accurate (smaller NMEbox) than
those of [14] for both occluded and unoccluded landmarks.

Heatmaps vs. Direct Regression for Uncertainty. We
tried multiple approaches to estimate the uncertainty dis-

Table 5: NMEbox and uncertainty
(
|ΣKj |1/2

)
on un-

occluded and externally occluded landmarks of COFW-
68 dataset. [Key: Best]

Unoccluded Externally Occluded
NMEbox |Σ|1/2 NMEbox |Σ|1/2

Softlabel [14] 2.30 5.99 5.01 7.32
KDN [14] 2.34 1.63 4.03 11.62

LUVLi (Ours) 2.15 9.31 4.00 32.49

Table 6: NME and AUC on the AFLW-19 dataset (Numbers
from [14, 68]). [Key: Best, Second best]

NMEdiag NMEbox AUC7
box

Full Frontal Full Full
CFSS [88] 3.92 2.68 - -
CCL [89] 2.72 2.17 - -

DAC-CSR [28] 2.27 1.81 - -
LLL [61] 1.97 - - -
SAN [23] 1.91 1.85 4.04 54.0

DSRN [52] 1.86 - - -
LAB (w/o B) [81] 1.85 1.62 - -

HR-Net [68] 1.57 1.46 - -
Wing [27] - - 3.56 53.5
KDN [14] - - 2.80 60.3

LUVLi (Ours) 1.39 1.19 2.28 68.0

Figure 5: Histogram of the smallest eigenvalue of ΣKj .

tribution from heatmaps, but none of these worked nearly
as well as our direct regression using the CEN. We believe
this is because in current heatmap-based networks, the res-
olution of the heatmap (64 × 64) is too low for accurate
uncertainty estimation. This is demonstrated in Figure 5,
which shows a histogram over all landmarks in 300-W Test
(Split 2) of LUVLi’s predicted covariance in the narrowest
direction of the covariance ellipse (the smallest eigenvalue
of the predicted covariance matrix). The figure shows that
in most cases, the uncertainty ellipses are less wide than one
heatmap pixel, which explains why heatmap-based methods
are not able to accurately capture such small uncertainties.

5.2. AFLW-19 Face Alignment
On AFLW-19, we train on 20,000 images, and test on

two sets: the AFLW-Full set (4,386 test images) and the
AFLW-Frontal set (1,314 test images), as in [68,81,89]. Ta-
ble 6 compares our method’s localization performance with
other methods that only train on AFLW-19 (without train-
ing on any 68-landmark dataset). Our proposed method
outperforms not only the other uncertainty-based method
KDN [14], but also all previous SOTA methods, by a sig-
nificant margin on both AFLW-Full and AFLW-Frontal.



Table 7: WFLW-All dataset results for NMEinter-ocular,
AUC10

inter-ocular, and FR10
inter-ocular. [Key: Best, Second best]
NME(%) (↓) AUC10 (↑) FR10(%) (↓)

CFSS [88] 9.07 0.366 20.56
DVLN [82] 10.84 0.456 10.84

LAB (w/B) [81] 5.27 0.532 7.56
Wing [27] 5.11 0.554 6.00

DeCaFa (w/DA) [20] 4.62 0.563 4.84
AVS [59] 4.39 0.591 4.08

AWing [79] 4.36 0.572 2.84
LUVLi (Ours) 4.37 0.577 3.12

Table 8: NMEbox and AUC7
box comparisons on MERL-

RAV dataset. [Key: Best]
Metric (%) Method All Frontal Half-Profile Profile

NMEbox(↓) DU-Net [72] 1.99 1.89 2.50 1.92
LUVLi (Ours) 1.61 1.74 1.79 1.25

AUC7
box(↑) DU-Net [72] 71.80 73.25 64.78 72.79

LUVLi (Ours) 77.08 75.33 74.69 82.10

Table 9: MERL-RAV results on three types of landmarks.
Self-Occluded Unoccluded Externally Occluded

Mean v̂j 0.13 0.98 0.98
Accuracy (Visible) 0.88 0.99 0.99

NMEbox - 1.60 3.53
|Σ|0.5 - 9.28 34.41

|Σ|0.5box(×10
−4) - 1.87 7.00

5.3. WFLW Face Alignment
Landmark localization results for WFLW are shown in

Table 7. More detailed results on WFLW are in the supple-
mentary material. Compared to the SOTA methods, LUVLi
yields the second best performance on all metrics. Further-
more, while the other methods only predict landmark loca-
tions, LUVLi also estimates the prediction uncertainties.

5.4. MERL-RAV Face Alignment
Results of Landmark Localization. Results for all head

poses on our MERL-RAV dataset are shown in Table 8.
Results for All Visibility Classes. We analyze LUVLi’s

performance on all test images for all three types of land-
marks in Table 9. The first row is the mean value of the
predicted visibility, v̂j , for each type of landmark. Ac-
curacy (Visible) tests the accuracy of predicting that land-
marks are visible when v̂j > 0.5. The last two rows show
the scalar measure of uncertainty, |ΣKj |1/2, both unnor-
malized and normalized by the face box size

(
|Σ|0.5box

)
sim-

ilar to NMEbox. Similar to results on COFW-68 in Table 5,
the model predicts higher uncertainty for locations of exter-
nally occluded landmarks than for unoccluded landmarks.

5.5. Ablation Studies
Table 10 compares modifications of our approach on

Split 2. Table 10 shows that computing the loss only on
the last U-net performs worse than computing loss on all
U-nets, perhaps because of the vanishing gradient prob-
lem [80]. Moreover, LUVLi’s log-likelihood loss without
visibility outperforms using MSE loss on the landmark lo-

Table 10: Ablation studies using our method trained on
300W-LP-2D and then fine-tuned on 300-W (Split 2).

Change from LUVLi model: NMEbox (%) AUC7
box (%)

Changed From→ To 300-W Menpo 300-W Menpo
Supervision All HGs→ Last HG 2.32 2.16 67.7 70.8

Loss

LUVLi→MSE 2.25 2.10 68.0 71.0
Lap+vis→Gauss+No-vis 2.15 2.07 69.6 71.6
Lap+vis→ Gauss+vis 2.13 2.05 69.8 71.8
Lap+vis→ Lap+No-vis 2.10 2.05 70.1 71.8

Initialization LP-2D wts→300-W wts 2.24 2.18 68.3 70.1
LP-2D wts→ Scratch 2.32 2.26 67.2 69.4

Mean
Estimator

Heatmap→ Direct 4.32 3.99 41.3 47.5
ReLU→ softmax 2.37 2.19 66.4 69.8
ReLU→ τ -softmax 2.10 2.04 70.1 71.8

No of HG 8→ 4 2.14 2.07 69.5 71.5
— LUVLi (our best model) 2.10 2.04 70.2 71.9

cations (which is equivalent to setting all Σij = I). We
also find that the loss with Laplacian likelihood (13) out-
performs the one with Gaussian likelihood (11). Training
from scratch is slightly inferior to first training the base DU-
Net architecture before fine-tuning the full LUVLi network,
consistent with previous observations that the model does
not have strongly supervised pixel-wise gradients through
the heatmap during training [56]. Regarding the method for
estimating the mean, using heatmaps is more effective than
direct regression (Direct) from each U-net bottleneck, con-
sistent with previous observations that neural networks have
difficulty predicting continuous real values [4, 56]. As de-
scribed in Section 3.1, in addition to ReLU, we compared
two other functions for σ: softmax, and a temperature-
scaled softmax (τ -softmax). Results for temperature-scaled
softmax and ReLU are essentially tied, but the former is
more complicated and requires tuning a temperature param-
eter, so we chose ReLU for our LUVLi model. Finally, re-
ducing the number of U-nets from 8 to 4 increases test speed
by about 2× with minimal decrease in performance.

6. Conclusions
In this paper, we present LUVLi, a novel end-to-end

trainable framework for jointly estimating facial landmark
locations, uncertainty, and visibility. This joint estimation
not only provides accurate uncertainty predictions, but also
yields state-of-the-art estimates of the landmark locations
on several datasets. We show that the predicted uncertainty
distinguishes between unoccluded and externally occluded
landmarks without any supervision for that task. In addi-
tion, the model achieves sub-pixel accuracy by taking the
spatial mean of the ReLU’ed heatmap, rather than the arg
max. We also introduce a new dataset containing man-
ual labels of over 19,000 face images with 68 landmarks,
which also labels every landmark with one of three visibil-
ity classes. Although our implementation is based on the
DU-Net architecture, our framework is general enough to
be applied to a variety of architectures for simultaneous es-
timation of landmark location, uncertainty, and visibility.
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Asymmetric multivariate laplace distribution. In The
Laplace distribution and generalizations. 2001. 4

[44] Marek Kowalski, Jacek Naruniec, and Tomasz Trzcinski.
Deep alignment network: A convolutional neural network
for robust face alignment. In CVPR Workshops, 2017. 6

[45] Balaji Lakshminarayanan, Alexander Pritzel, and Charles
Blundell. Simple and scalable predictive uncertainty esti-
mation using deep ensembles. In NeurIPS, 2017. 3

[46] Michael Le, Frederik Diehl, Thomas Brunner, and Alois
Knol. Uncertainty estimation for deep neural object detec-
tors in safety-critical applications. In ITSC, 2018. 1, 3

[47] Dan Levi, Liran Gispan, Niv Giladi, and Ethan Fetaya. Eval-
uating and calibrating uncertainty prediction in regression
tasks. arXiv preprint arXiv:1905.11659, 2019. 3

[48] Wenbo Li, Zhicheng Wang, Binyi Yin, Qixiang Peng, Yum-
ing Du, Tianzi Xiao, Gang Yu, Hongtao Lu, Yichen Wei,
and Jian Sun. Rethinking on multi-stage networks for human
pose estimation. arXiv preprint arXiv:1901.00148, 2019. 2

[49] Xiaoming Liu. Discriminative face alignment. TPAMI, 2008.
2

[50] Xiaoming Liu. Video-based face model fitting using adap-
tive active appearance model. Image and Vision Computing,
2010. 2

[51] Diogo Luvizon, David Picard, and Hedi Tabia. 2D/3D pose
estimation and action recognition using multitask deep learn-
ing. In CVPR, 2018. 2, 3

[52] Xin Miao, Xiantong Zhen, Xianglong Liu, Cheng Deng, Vas-
silis Athitsos, and Heng Huang. Direct shape regression net-
works for end-to-end face alignment. In CVPR, 2018. 7

[53] Dimity Miller, Niko Sünderhauf, Haoyang Zhang, David
Hall, and Feras Dayoub. Benchmarking sampling-based
probabilistic object detectors. In CVPR Workshops, 2019.
3

[54] Lukas Neumann, Andrew Zisserman, and Andrea Vedaldi.
Relaxed softmax: Efficient confidence auto-calibration for
safe pedestrian detection. In NeurIPS Workshops, 2018. 3

[55] Alejandro Newell, Kaiyu Yang, and Jia Deng. Stacked hour-
glass networks for human pose estimation. In ECCV, 2016.
2

[56] Aiden Nibali, Zhen He, Stuart Morgan, and Luke Prender-
gast. Numerical coordinate regression with convolutional
neural networks. arXiv preprint arXiv:1801.07372, 2018. 2,
8

[57] Ewa Nowara, Tim Marks, Hassan Mansour, and Ashok Veer-
araghavany. SparsePPG: towards driver monitoring using
camera-based vital signs estimation in near-infrared. In
CVPR Workshops, 2018. 1

[58] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An
imperative style, high-performance deep learning library. In
NeurIPS, 2019. 12

[59] Shengju Qian, Keqiang Sun, Wayne Wu, Chen Qian, and Ji-
aya Jia. Aggregation via separation: Boosting facial land-
mark detector with semi-supervised style translation. In
ICCV, 2019. 5, 6, 8, 16

[60] Shaoqing Ren, Xudong Cao, Yichen Wei, and Jian Sun. Face
alignment at 3000 fps via regressing local binary features. In
CVPR, 2014. 2

[61] Joseph Robinson, Yuncheng Li, Ning Zhang, Yun Fu, and
Sergey Tulyakov. Laplace landmark localization. In ICCV,
2019. 7

[62] Sami Romdhani, Shaogang Gong, and Ahaogang Psarrou. A
multi-view nonlinear active shape model using kernel PCA.
In BMVC, 1999. 2

[63] Christos Sagonas, Epameinondas Antonakos, Georgios Tz-
imiropoulos, Stefanos Zafeiriou, and Maja Pantic. 300 faces
in-the-wild challenge: Database and results. Image and Vi-
sion Computing, 2016. 5, 6, 14

[64] Christos Sagonas, Georgios Tzimiropoulos, Stefanos
Zafeiriou, and Maja Pantic. 300 faces in-the-wild challenge:
The first facial landmark localization challenge. In CVPR
Workshops, 2013. 5, 6

[65] Christos Sagonas, Georgios Tzimiropoulos, Stefanos
Zafeiriou, and Maja Pantic. A semi-automatic methodology
for facial landmark annotation. In CVPR Workshops, 2013.
5, 6

[66] Patrick Sauer, Timothy Cootes, and Christopher Taylor. Ac-
curate regression procedures for active appearance models.
In BMVC, 2011. 2

[67] Kumar Shridhar, Felix Laumann, and Marcus Liwicki.
A comprehensive guide to bayesian convolutional neu-
ral network with variational inference. arXiv preprint
arXiv:1901.02731, 2019. 3

[68] Ke Sun, Yang Zhao, Borui Jiang, Tianheng Cheng, Bin Xiao,
Dong Liu, Yadong Mu, Xinggang Wang, Wenyu Liu, and
Jingdong Wang. High-resolution representations for labeling
pixels and regions. arXiv preprint arXiv:1904.04514, 2019.
6, 7, 12, 15, 16



[69] Jaewon Sung and Daijin Kim. Adaptive active appearance
model with incremental learning. Pattern recognition letters,
2009. 2

[70] Ying Tai, Yicong Liang, Xiaoming Liu, Lei Duan, Jilin Li,
Chengjie Wang, Feiyue Huang, and Yu Chen. Towards
highly accurate and stable face alignment for high-resolution
videos. In AAAI, 2019. 2

[71] Zhiqiang Tang, Xi Peng, Shijie Geng, Lingfei Wu, Shaoting
Zhang, and Dimitris Metaxas. Quantized densely connected
U-Nets for efficient landmark localization. In ECCV, 2018.
2

[72] Zhiqiang Tang, Xi Peng, Kang Li, and Dimitris Metaxas. To-
wards efficient U-Nets: A coupled and quantized approach.
TPAMI, 2019. 2, 3, 6, 8, 12

[73] Alexander Toshev and Christian Szegedy. Deeppose: Human
pose estimation via deep neural networks. In CVPR, 2014. 2

[74] George Trigeorgis, Patrick Snape, Mihalis Nicolaou,
Epameinondas Antonakos, and Stefanos Zafeiriou.
Mnemonic descent method: A recurrent process ap-
plied for end-to-end face alignment. In CVPR, 2016. 5,
6

[75] Oncel Tuzel, Tim Marks, and Salil Tambe. Robust face align-
ment using a mixture of invariant experts. In ECCV, 2016.
2

[76] Oncel Tuzel, Fatih Porikli, and Peter Meer. Learning on lie
groups for invariant detection and tracking. In CVPR, 2008.
2

[77] Georgios Tzimiropoulos. Project-out cascaded regression
with an application to face alignment. In CVPR, 2015. 2

[78] Georgios Tzimiropoulos and Maja Pantic. Optimization
problems for fast AAM fitting in-the-wild. In ICCV, 2013. 2

[79] Xinyao Wang, Liefeng Bo, and Li Fuxin. Adaptive wing loss
for robust face alignment via heatmap regression. In ICCV,
2019. 2, 6, 8, 15, 16

[80] Shih-En Wei, Varun Ramakrishna, Takeo Kanade, and Yaser
Sheikh. Convolutional pose machines. In CVPR, 2016. 8

[81] Wayne Wu, Chen Qian, Shuo Yang, Quan Wang, Yici Cai,
and Qiang Zhou. Look at boundary: A boundary-aware face
alignment algorithm. In CVPR, 2018. 2, 5, 6, 7, 8, 16

[82] Wenyan Wu and Shuo Yang. Leveraging intra and inter-
dataset variations for robust face alignment. In CVPR Work-
shops, 2017. 8, 16

[83] Xuehan Xiong and Fernando De la Torre. Supervised descent
method and its applications to face alignment. In CVPR,
2013. 2

[84] Jing Yang, Qingshan Liu, and Kaihua Zhang. Stacked hour-
glass network for robust facial landmark localisation. In
CVPR Workshops, 2017. 2

[85] Kwang Yi, Eduard Trulls, Vincent Lepetit, and Pascal Fua.
Lift: Learned invariant feature transform. In ECCV, 2016. 3

[86] Stefanos Zafeiriou, George Trigeorgis, Grigorios Chrysos,
Jiankang Deng, and Jie Shen. The Menpo facial landmark
localisation challenge: A step towards the solution. In CVPR
Workshops, 2017. 5, 6

[87] Jie Zhang, Shiguang Shan, Meina Kan, and Xilin Chen.
Coarse-to-fine auto-encoder networks (CFAN) for real-time
face alignment. In ECCV, 2014. 2

[88] Shizhan Zhu, Cheng Li, Chen Loy, and Xiaoou Tang. Face
alignment by coarse-to-fine shape searching. In CVPR, 2015.
2, 7, 8, 16

[89] Shizhan Zhu, Cheng Li, Chen Loy, and Xiaoou Tang.
Unconstrained face alignment via cascaded compositional
learning. In CVPR, 2016. 5, 7

[90] Xiangyu Zhu, Zhen Lei, Xiaoming Liu, Hailin Shi, and Stan
Li. Face alignment across large poses: A 3D solution. In
CVPR, 2016. 5, 6

[91] Xu Zou, Sheng Zhong, Luxin Yan, Xiangyun Zhao, Jiahuan
Zhou, and Ying Wu. Learning robust facial landmark de-
tection via hierarchical structured ensemble. In ICCV, 2019.
6



LUVLi Face Alignment: Estimating Landmarks’
Location, Uncertainty, and Visibility Likelihood

Supplementary Material

A1. Implementation Details

Images are cropped using the detector bounding boxes
provided by the dataset and resized to 256 × 256. Images
with no detector bounding box are initialized by adding
5% uniform noise to the location of each edge of the tight
bounding box around the landmarks, as in [7].

Training. We modified the PyTorch [58] code for DU-
Net [72], keeping the number of U-nets K = 8 as in [72].
Unless otherwise stated, we use the 2D Laplacian likeli-
hood (12) as our landmark location likelihood, and there-
fore we use (13) as our final loss function. All U-nets have
equal weights λi = 1 in (14). For all datasets, visibility
vj = 1 is assigned to unoccluded landmarks (those that
are not labeled as occluded) and to landmarks that are la-
beled as externally occluded. Visibility vj=0 is assigned to
landmarks that are labeled as self-occluded and landmarks
whose labels are missing.

Training images for 300-W Split 1 are augmented ran-
domly using scaling (0.75 − 1.25), rotation (−30◦,−30◦)
and color jittering (0.6, 1.4) as in [72], while those
from 300-W Split 2, AFLW-19, WFLW-98 and MERL-
RAV datasets are augmented randomly using scaling (0.8−
1.2), rotation (−50◦, 50◦), color jittering (0.6, 1.4), and
random occlusion, as in [7].

The RMSprop optimizer is used as in [7, 72], with batch
size 24. Training from scratch takes 100 epochs and starts
with learning rate 2.5 × 10−4, which is divided by 5, 2,
and 2 at epochs 30, 60, and 90 respectively [72]. When
we initialize from pretrained weights, we finetune for 50
epochs using the LUVLi loss: 20 with learning rate 10−4,
followed by 30 with learning rate 2×10−5. We consider the
model saved in the last epoch as our final model.

Testing. Whereas heatmap based methods [7, 68, 72]
adjust their pixel output with a quarter-pixel offset in the
direction from the highest response to the second highest
response, we use the spatial mean as the landmark loca-
tion without carrying out any adjustment nor shifting the
heatmap even by a quarter of a pixel. We do not need to
implement a sub-pixel shift, because our spatial mean over
the ReLUed heatmaps already performs sub-pixel location
prediction.

Spatial Mean The spatial mean µij of each of the

heatmap is defined as

µij =

[
µijx
µijy

]
=

∑
x,y

σ
(
Hij(x, y)

) [x
y

]
∑
x,y

σ
(
Hij(x, y)

) (16)

where σ
(
Hij(x, y)

)
denotes the output of post-processing

the heatmap pixel with a function σ.

A2. Additional Experiments and Results
We now provide additional results evaluating our sys-

tem’s performance in terms of both localization and uncer-
tainty estimation.

A2.1. System Trained on 300-W

A2.1.1 Training

For Split 1, we initialized using the pre-trained DU-Net
model available from the authors of [72], then fine-tuned on
the 300-W training set (Split 1) using our proposed archi-
tecture and LUVLi loss. For Split 2, for the experiments in
which we pre-trained on 300W-LP-2D, we pre-trained from
scratch on 300W-LP-2D using heatmaps (using the original
DU-Net architecture and loss). We then fine-tuned on the
300-W training set (Split 2) using our proposed architecture
and LUVLi loss.

A2.1.2 Comparison with KDN [13]

To compare directly with Chen et al. [13], in Figure 6
we plot normalized mean error (NME) vs. predicted un-
certainty (rank, from smallest to largest), as in Figure 1
of [13]. (We obtained the predicted uncertainty and NME
data of [13] from the authors.) The figure shows that for our
method as well as for [13], there is a strong trend that higher
predicted uncertainties correspond to larger location errors.
However, the errors of our method are significantly smaller
than the errors produced by [13].

A2.1.3 Verifying Predicted Uncertainty Distributions

For every image, for each landmark j, our network predicts
a mean µKj and a covariance matrix ΣKj . We can view
this as our network predicting that a human labeler of that
image will effectively select the landmark location pj for



Figure 6: Average NME vs sorted uncertainty, averaged
across landmarks in an image.

Figure 7: Scatter plot of transformed ground-truth loca-
tions, p′j = Σ−0.5Kj (pj − µKj), for 300-W Test (Split 2).
The histograms (orange) of their x and y coordinates are
very close to the the marginal pdf (black curves) of the Stan-
dard Laplacian distribution P (z′|0, I).

that image from the Laplacian distribution from (12) with
mean µKj and covariance ΣKj :

pj ∼ P (z|µKj ,ΣKj) =
e
−
√

3(z−µKj)T Σ−1
Kj(z−µKj)

2π
3

√
|ΣKj |

.

(17)
If we had multiple labels (e.g., ground-truth landmark lo-
cations from multiple human labelers) for a single land-
mark in one image, then it would be straightforward to

evaluate how well our method’s predicted probability dis-
tribution matches the distribution of labeled landmark loca-
tions. Unfortunately, face alignment datasets only have a
single ground-truth location for each landmark in each im-
age. This makes it difficult, but not impossible, to evaluate
how well the human labels for images in the test set fit our
method’s predicted uncertainty distributions. We propose
the following method for verifying the predicted probabil-
ity distributions.

Suppose we transform the ground-truth location of a
landmark, pj , using the predicted mean and covariance for
that landmark as follows:

p′j = Σ−0.5Kj (pj − µKj). (18)
If our method’s predictions are correct, then from (17),
pj ∼ P (z|µKj ,ΣKj). Hence, p′j is drawn from the trans-
formed distribution P (z′), where z′ = Σ−0.5Kj (z− µKj):

p′j ∼ P (z′|0, I) =
e−
√
3z′T z′

2π/3
. (19)

After this simple transformation (transforming the labeled
ground-truth location pj of each landmark using its pre-
dicted mean and covariance), we have transformed our net-
work’s prediction about pj into a prediction about p′j that is
much easier to evaluate, because the distribution in (19) is
simply a standard 2D Laplacian distribution—it no longer
depends on the predicted mean and covariance.

Thus, our method predicts that after the transforma-
tion (18), every ground-truth landmark location p′j is drawn
from the same standard 2D Laplacian distribution (19).
Now that we have an entire population of transformed la-
bels that our model predicts are all drawn from the same
distribution, it is easy to verify whether the labels fit our
model’s predictions. Figure 7 shows a scatter plot of the
transformed locations, p′j , for all landmarks in all test im-
ages of 300-W (Split 2). We plot the histogram of the
marginalized landmark locations (x- or y-coordinate of p′j)
in orange above and to the right of the plot, and overlay the
marginal pdf of the standard Laplacian (19) in black. The
excellent match between the transformed landmark loca-
tions and the standard Laplacian distribution indicates that
our model’s predicted uncertainty distributions are quite ac-
curate. Since Kullback-Leibler (KL) divergence is invariant
to affine transformations like the one in (18), we can evalu-
ate the KL-divergence (printed at the top of the scatterplot)
between the standard 2D Laplacian distribution (19) and the
distribution of the transformed landmark locations (using
their 2D histograms) as a numerical measure of how well
the predictions of our model fit the distribution of labeled
locations.



A2.1.4 Relationship to Variation Among Human
Labelers on Multi-PIE

We test our Split 2 model on 812 frontal face images of
all subjects from the Multi-PIE dataset [31], then compute
the mean of the uncertainty ellipses predicted by our model
across all 812 images. To compute the mean, we first nor-
malize the location of each landmark using the inter-ocular
distance, as in [63], and also normalize the covariance ma-
trix by the square of the inter-ocular distance. We then take
the average of the normalized locations across all faces to
obtain the mean landmark location. The covariance ma-
trices are averaged across all faces using the log-mean-
exponential technique. The mean location and covariance
matrix of each landmark (averaged across all faces) is then
used to plot the results which are shown on the right in Fig-
ure 8.

We compare our model predictions with Figure 5 of [63],
shown on the left of Figure 8. To create that figure, [63]
tasked three different human labelers with annotating the
same frontal face images from the Multi-PIE database of
80 different subjects in frontal pose with neutral expression.
For each landmark, they plotted the the covariance of the la-
bel locations across the three labelers using an ellipse. Note
the similarity between our model’s predicted uncertainties
(on the right of Figure 8 and the covariance across human
labelers (on the left of Figure 8), especially around the eyes,
nose, and mouth. Around the outside edge of the face, note
that our model predicts that label locations will vary primar-
ily in the direction parallel to the edge, which is precisely
the pattern observed across human labelers.

Figure 8: Variation across three human labelers [63] (left)
versus uncertainties computed by our proposed method on
frontal images of Multi-PIE dataset (right).

A2.1.5 Sample Uncertainty Ellipses on Multi-PIE

To illustrate how the predicted uncertainties output by our
method vary across different subjects from Multi-PIE, in
Figure 9 we overlay our model’s mean uncertainty predic-
tions (in blue, copied from right side of Figure 8) with our

model’s predicted uncertainties of some of the individual
Multi-PIE face images (in various colors). To simplify the
figure, we plot all landmarks except for the eyes, nose, and
mouth.

Figure 9: Our model’s uncertainty predictions for some
individual frontal face images from the Multi-PIE dataset
(various colors), overlaid with the mean uncertainty predic-
tions across all frontal Multi-PIE faces (blue, copied from
Figure 8).

A2.1.6 Laplacian vs. Gaussian Likelihood

We have described two versions of our model: one whose
loss function (13) uses a 2D Laplacian probability distribu-
tion (12), and another whose loss function (11) uses a 2D
Gaussian probability distribution (10). We now discuss the
question of which of these two models performs better.

The numerical comparisons are shown in Table 11. The
numbers in the first two columns of the table were also pre-
sented in the ablation studies table, Table 10.

Comparing the Predicted Locations. If we consider
only the errors of the predicted landmark locations, the first
two columns of Table 11 show that the Laplacian model is
slightly better: The Laplacian model has a smaller value of
NMEbox and a larger value of AUC7

box.
Comparing the Predicted Uncertainties. To compare

the two models’ predicted uncertainties as well as their pre-
dicted locations, we consider the probability distributions
over landmark locations that are predicted by each model.
We want to know which model’s predicted probability dis-
tributions better explain the ground-truth locations of the
landmarks in the test images. In other words, we want
to know which model assigns a higher likelihood to the
ground-truth landmark locations (i.e., which model yields
a lower negative log-likelihood on the test data). We com-
pute the negative log-likelihood of the ground-truth loca-
tions pj from the last hourglass using (13) for the Lapla-



cian model and (11) for the Gaussian model. The results, in
the last column of Table 11, show that the Laplacian model
gives a lower negative log-likelihood. In other words, the
ground-truth landmark locations have a higher likelihood
under our Laplacian model. We conclude that the learned
Laplacian model explains the human labels better than the
learned Gaussian model.

Table 11: Comparison of our model with Laplacian likeli-
hood vs. with Gaussian likelihood, on 300-W Test (Split 2).
[Key: (↑) = higher is better;(↓) = lower is better ]

Likelihood NMEbox(%) (↓) AUC7
box(%) (↑) NLL (↓)

Laplacian 2.10 70.1 0.51
Gaussian 2.13 69.8 0.66

A2.2. WFLW Face Alignment

Data Splits and Implementation Details. The training
set consists of 7,500 images, while the test set consists of
2,500 images. In Table 12, we report results on the entire
test set (All), which we also reported in Table 7. In Ta-
ble 12, we additionally report results on several subsets of
the test set: large head pose (326 images), facial expression
(314 images), illumination (698 images), make-up (206 im-
ages), occlusion (736 images), and blur (773 images). The
images are cropped using the detector bounding boxes pro-
vided by [68] and resized to 256× 256.

We first train the images with the heatmaps on proxy
ground-truth heatmaps, then finetune using our proposed
LUVLi loss. NMEinter-ocular, AUC10

inter-ocular, and FR10
inter-ocular

are used as evaluation metrics, as in [20, 68, 79]. We report
AUC and FR with cutoff 10% as in [20, 68, 79].

Results of Facial Landmark Localization Table 12
compares our method’s landmark localization results with
those of other state-of-the-art methods on the WFLW
dataset. Our method performs best (tied with AWing [79])
on the NME metric, and performs in the top two methods
on the other two metrics. Importantly, all of the other meth-
ods only predict landmark locations–they do not predict the
uncertainty of their estimated landmark locations. Not only
does our method place in the top two on all three landmark
localization metrics, but our method also accurately predicts
its own uncertainty of landmark localization.

A2.3. System Trained on MERL-RAV

Demo Video. We include a short demo video of
our LUVLi model that was trained on our new MERL-
RAV dataset. The video demonstrates our method’s ability
to predict landmarks’ visibility (i.e., whether they are self-
occluded) as well as their locations and uncertainty. We
take a simple face video of someone turning his head from
frontal to profile pose and run our method on each frame
independently. Overlaid on each frame of video, we plot

each estimated landmark location in yellow, and plot the
predicted uncertainty as a blue ellipse. To indicate the pre-
dicted visibility of each landmark, we modulate the trans-
parency of the landmark (of the yellow dot and blue el-
lipse). Landmarks whose predicted visibility is close to
1 are shown as fully opaque, while landmarks whose pre-
dicted visibility is close to zero are fully transparent (are not
shown). Landmarks with intermediate predicted visibilities
are shown as partially transparent.

In the video, notice that as the face approaches the profile
pose, points on the far edge of the face begin to disappear,
because the method correctly predicts that they are not vis-
ible (are self-occluded) when the face is in profile pose.

A2.4. More Qualitative Results

In Figure 10, we show example results on images from
four datasets on which we tested.

A2.5. Examples from our MERL-RAV Dataset

Figure 11 shows several sample images from our MERL-
RAV dataset. The ground-truth labels are overlaid on the
images. On each image, unoccluded landmarks are shown
in green, externally occluded landmarks are shown in red,
and self-occluded landmarks are indicated by black circles
in the face schematic on the right.
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Table 12: NMEinter-ocular and AUC10
inter-ocular comparison between our proposed method and the state-of-the-art landmark

prediction methods on the WFLW dataset.
[Key: Best, Second best; (w/DA) = uses more data; (w/B) = uses boundary; (↓) = smaller is better; (↑) = larger is better]

Metric Method All Head Pose Expression Illumination Make-up Occlusion Blur

NMEinter-ocular(%) (↓)

CFSS [88] 9.07 21.36 10.09 8.30 8.74 11.76 9.96
DVLN [82] 10.84 46.93 11.15 7.31 11.65 16.30 13.71

LAB (w/B) [81] 5.27 10.24 5.51 5.23 5.15 6.79 6.32
Wing [27] 5.11 8.75 5.36 4.93 5.41 6.37 5.81

DeCaFA (w/DA) [20] 4.62 8.11 4.65 4.41 4.63 5.74 5.38
HR-Net [68] 4.60 7.94 4.85 4.55 4.29 5.44 5.42

AVS [59] 4.39 8.42 4.68 4.24 4.37 5.60 4.86
AWing [79] 4.36 7.38 4.58 4.32 4.27 5.19 4.96

LUVLi (Ours) 4.37 7.56 4.77 4.30 4.33 5.29 4.94

AUC10
inter-ocular(↑)

CFSS [88] 0.366 0.063 0.316 0.385 0.369 0.269 0.303
DVLN [82] 0.456 0.147 0.389 0.474 0.449 0.379 0.397

LAB (w/B) [81] 0.532 0.235 0.495 0.543 0.539 0.449 0.463
Wing [27] 0.554 0.310 0.496 0.541 0.558 0.489 0.492

DeCaFA (w/DA) [20] 0.563 0.292 0.546 0.579 0.575 0.485 0.494
AVS [59] 0.591 0.311 0.549 0.609 0.581 0.517 0.551

AWing [79] 0.572 0.312 0.515 0.578 0.572 0.502 0.512
LUVLi (Ours) 0.577 0.310 0.549 0.584 0.588 0.505 0.525

FR10
inter-ocular(%) (↓)

CFSS [88] 20.56 66.26 23.25 17.34 21.84 32.88 23.67
DVLN [82] 10.84 46.93 11.15 7.31 11.65 16.30 13.71

LAB (w/B) [81] 7.56 28.83 6.37 6.73 7.77 13.72 10.74
Wing [27] 6.00 22.70 4.78 4.30 7.77 12.50 7.76

DeCaFA(w/DA) [20] 4.84 21.40 3.73 3.22 6.15 9.26 6.61
AVS [59] 4.08 18.10 4.46 2.72 4.37 7.74 4.40

AWing [79] 2.84 13.50 2.23 2.58 2.91 5.98 3.75
LUVLi (Ours) 3.12 15.95 3.18 2.15 3.40 6.39 3.23



Figure 10: Results of our LUVLi face alignment on example face images from four face datasets. Top row: 300-W. Second
row: AFLW-19. Third row: WFLW. Bottom row: MERL-RAV. Ground-truth (green) and predicted (yellow) landmark
locations are shown. The estimated uncertainty of the predicted location of each landmark is shown in blue (Error ellipse
for Mahalanobis distance 1). In the MERL-RAV images (bottom row), the predicted visibility of each landmark controls its
transparency. In particular, the predicted locations of landmarks with predicted visibility close to zero (such the points on the
far side of the profile face in the third image of the bottom row) are 100% transparent (not shown).



Figure 11: Sample images from our MERL-RAV dataset with unoccluded landmarks shown in green, externally occluded
landmarks shown in red, and self-occluded landmarks indicated by black circles in the face schematic on the right of each
image.
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