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3D Point Cloud Processing and Learning for
Autonomous Driving

Siheng Chen, Baoan Liu, Chen Feng, Carlos Vallespi-Gonzalez, Carl Wellington

Abstract

We present a review of 3D point cloud processing and learning for autonomous driving. As one of the most
important sensors in autonomous vehicles, light detection and ranging (LiDAR) sensors collect 3D point clouds that
precisely record the external surfaces of objects and scenes. The tools for 3D point cloud processing and learning are
critical to the map creation, localization, and perception modules in an autonomous vehicle. While much attention
has been paid to data collected from cameras, such as images and videos, an increasing number of researchers have
recognized the importance and significance of LiDAR in autonomous driving and have proposed processing and
learning algorithms to exploit 3D point clouds. We review the recent progress in this research area and summarize
what has been tried and what is needed for practical and safe autonomous vehicles. We also offer perspectives on
open issues that are needed to be solved in the future.

I. INTRODUCTION AND MOTIVATION

As one of the most exciting engineering projects of the modern world, autonomous driving is an aspiration for
many researchers and engineers across generations. It is a goal that might fundamentally redefine the future of human
society and everyone’s daily life. Once autonomous driving becomes mature, we will witness a transformation of
public transportation, infrastructure and the appearance of our cities. The world is looking forward to exploiting
autonomous driving to reduce traffic accidents caused by driver errors, to save drivers’ time and liberate the
workforce, as well as to save parking spaces, especially in the urban area [1].

A. Autonomous driving: History and current state
It has taken decades of effort to get closer to the goal of autonomous driving. From the 1980s through the

DARPA Grand Challenge in 2004 and the DARPA Urban Challenge in 2007, the research on autonomous driv-
ing was primarily conducted in the U.S. and Europe, yielding incremental progresses in driving competence in
various situations [2]. In 2009, Google started a research project on self-driving cars, and later created Waymo
to commercialize the accomplishment based on their early technical success. Around 2013-2014, the rise of deep
neural networks brought on the revolution of practical computer vision and machine learning. This emergence made
people believe that many technical bottlenecks of autonomous driving could be fundamentally solved. In 2015, Uber
created the Uber Advanced Technologies Group with the aim to enable autonomous vehicles to complete scalable
ride-sharing services. This aim has become a common deployment strategy within the industry. Currently, there are
numerous high-tech companies, automobile manufacturers, and start-up companies working on autonomous-driving
technologies, including Apple, Aptiv, Argo AI, Aurora, Baidu, GM Cruise, Didi, Lyft, Pony.ai, Tesla, Zoox, the
major automobile companies, and many others [3]. These companies have ambitious goals to achieve SAE level
41 in the near future. Although there has been significant progress across many groups in industry and academia,
there is still much work to be done. The efforts from both industry and academia are needed to achieve autonomous
driving. Recently, there have been many discussions and hypotheses about the progress and the future of autonomous
driving; however, few thoughts from those who push industrial-level self-driving technologies from the frontline
are publicly accessible. In this article, we provide a unifying perspective from both practitioners and researchers.

S. Chen is with Mitsubishi Electric Research Laboratories, Cambridge, MA, USA. Email: schen@merl.com. B. Liu is with Precivision
Technologies, Inc., Pittsburgh, PA, USA. Email: baoanliu@precivision.tech. C. Feng is with New York University, Brooklyn, NY, USA.
Email: cfeng@nyu.edu. C. Vallespi-Gonzalez and C. Wellington are with Uber Advanced Technologies Group, Pittsburgh, PA, USA. Emails:
cvallespi@uber.com, cwellington@uber.com.

1SAE International, a transportation standards organization, introduced the J3016 standard, which defines six levels of driving automation;
See details in https://www.sae.org/news/2019/01/sae-updates-j3016-automated-driving-graphic. It ranges from SAE Level Zero (no automa-
tion) to SAE Level 5 (full automation). One turning point occurs between Levels 2 and 3, where the driving responsibility shifts from a
human driver to an autonomous system, and another turning point occurs between Levels 3 and 4, where the human no longer drives under
any circumstances.
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Fig. 1: High-level architecture of a typical autonomous system. A high-definition map is built offline. At runtime,
the online system is given a destination. The system then senses its environment, localizes itself to the map, perceives
the world around it and makes corresponding predictions of future motion for these objects. The motion planner
uses these predictions to plan a safe trajectory for an autonomous vehicle (AV) to follow the route to the destination
that is executed by the controller. Note that two types of 3D point clouds are used in this autonomous system: a
point-cloud map, created by the map creation module and consumed by the localization module, and a real-time
LiDAR sweep, collected by the sensing module and consumed by the localization and perception modules.

In industry, an autonomous system usually includes a series of modules with complicated internal dependencies.
Most modules are still far from being perfect due to a number of technical bottlenecks and the long-tail issues [4].
Additionally, a small error from one module can cause problems in subsequent modules and potentially result in
a substantial failure at the system level. There has been some initial research on end-to-end systems where the
entire system is trained end-to-end and information can flow from sensors directly to the final planning or control
decisions. These systems offer the promise to reduce internal dependency challenges; however, these systems often
lack explainability and are difficult to analyze. Although significant progress has been made, there remain many
open challenges in designing a practical autonomous system that can achieve the goal of full self-driving.

B. A tour of an autonomous system

An autonomous system typically includes the sensing, map creation, localization, perception, prediction, routing,
planning, and control modules [5]; see Figure 1. A high-definition map is created offline. At runtime, the online
system is given a destination. The system then senses its environment, localizes itself to the map, perceives the
world around it and makes corresponding predictions of future motion for these objects. The motion planner uses
these predictions to plan a safe trajectory for an autonomous vehicle (AV) to follow the route to the destination
that is executed by the controller.

Sensing module. To ensure reliability, autonomous driving usually requires multiple types of sensors. Cameras,
radio detection and ranging (RADAR), light detection and ranging (LiDAR) and ultrasonic sensors are most
commonly used. Among those sensors, LiDAR is particularly interesting because it directly provides a precise 3D
representation of a scene. Although the techniques for 3D reconstruction and depth estimation based on 2D images
have been significantly improved with the development of deep learning based computer vision algorithms, the
resulting estimations are still not always precise or reliable. Besides algorithmic constraints, fundamental bottlenecks
also include inherent exponential range error growth in depth estimation, poor performance in low light, and the
high computational cost of processing high-resolution images. On the other hand, LiDAR measures 3D information
through direct physical sensing. A real-time LiDAR sweep consists of a large number of 3D points; called a 3D point
cloud2. Each 3D point records the range from the LiDAR to an object’s external surface, which can be transformed
into the precise 3D coordinate. These 3D point clouds are extremely valuable for an autonomous vehicle to localize
itself and detect surrounding objects in the 3D world. The vast majority of companies and researchers rely heavily
on LiDAR to build a reliable autonomous vehicle [6]. This is why we believe that advanced techniques for 3D
point cloud processing and learning are indispensable for autonomous driving.

Map creation module. Map creation is the task of creating a high-definition (HD) map, which is a precise
heterogeneous map representation of the static 3D environment and traffic rules. A HD map usually contains two

2The measurements from RADAR and Ultrasound are also called 3D point clouds, but we focus on 3D point clouds collected by LiDAR.
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map layers: a point-cloud map, representing 3D geometric information of surroundings, and a traffic-rule-related
semantic feature map, containing road boundaries, traffic lanes, traffic signs, traffic lights, etc. These two map layers
are aligned together in the 3D space and provide detailed navigation information. As one map layer, the point-cloud
map is a dense 3D point cloud and mainly used for providing localization prior. Different from common maps
designed for humans, an HD map is designed for autonomous vehicles. The map creation module is crucial because
an HD map provides valuable prior environmental information; see details in Section III.

Localization module. Localization is the task of finding the ego-position of an autonomous vehicle relative to
a reference position in the HD map. This module is crucial because an autonomous vehicle must localize itself in
order to use the correct lane and other important priors in the HD map. One of the core techniques is 3D point
cloud registration; that is, estimating the precise location of an autonomous vehicle by matching real-time LiDAR
sweeps to the offline HD map; see details in Section IV.

Perception. Perception is the task of perceiving the surrounding environment and extracting information that is
related to navigation. This module is crucial because the perception module is the visual system of an autonomous
vehicle, which should detect, track and classify objects in the 3D scene. It used to be considered as the technical
bottleneck of autonomous driving. Recently, with large-scale training data and developments of advanced machine
learning algorithms, the overall performance of the perception module has achieved tremendous improvement. Some
core techniques include 2D object detection and 3D object detection. 2D object detection becomes relatively mature,
while 3D object detection is based on real-time LiDAR sweeps and becomes an increasingly hot research topic;
see details in Section V.

Prediction. Prediction is the task of predicting the future potential trajectories of each object in the 3D scene.
This module is crucial because an autonomous vehicle needs to know the possible future behaviors of nearby
objects to plan a safe trajectory.

Routing. Routing is the task of designing a high-level path from the starting position to the destination for an
autonomous vehicle. The output of this module provides a high-level guideline for the planning module.

Planning. Motion planning is the task of designing a trajectory for an autonomous vehicle based on the state of
current cars, surrounding environment and the destination. This module is crucial because an autonomous vehicle
needs to know how to react to the surrounding environment.

Control. Control is the task of executing the commands from the planning module. It takes charge of controlling
the actuators of the steering wheel, throttle, and brakes.

C. Overview of 3D point cloud processing and learning

As mentioned earlier, LiDAR provides indispensable 3D information for autonomous driving. We now move on
to the processing and learning techniques that convert raw measurements into useful information.

Usages in autonomous driving. Two types of 3D point clouds are commonly used in an autonomous vehicle:
a real-time LiDAR sweep and a point-cloud map, which is one layer in the HD map; see Figure 1. A point-cloud
map provides prior environmental information: the localization module uses a point-cloud map as a reference in
3D point cloud registration to determine the position of the autonomous vehicle, and the perception module uses
a point-cloud map to help split the foreground and the background. On the other hand, real-time LiDAR sweeps
are consumed by the localization module to register against the point-cloud map, and by the perception module to
detect surrounding objects in the 3D scene. Therefore, 3D point cloud processing and learning are critical to build
the map creation, localization and perception modules in an autonomous system.

Recent progress in academia. Sensors capture data and data feeds algorithms. During the development of
RADAR, acoustic sensors and communication systems, 1D signal processing experienced a rapid growth during
the past century, leading to a revolutionary impact on digital communication systems. With the popularization of
cameras and televisions, 2D image processing experienced a rapid growth during the past 30 years, resulting in
a significant change to photography, entertainment, and surveillance. With the increasing needs from industrial
robotics, autonomous driving and augmented reality, 3D sensing techniques is experiencing rapid development
recently. At the same time, the algorithms to process and learn from 3D point clouds are starting to get much
attention in academia. The following discussion is divided into two parts: 3D point cloud processing, which handles
3D point clouds from a signal-processing perspective, and 3D point cloud learning, which handles 3D point clouds
from a machine-learning perspective.
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3D point cloud processing. 3D point cloud processing is the process of analyzing and modifying a 3D point cloud
to optimize its transmission, storage and quality through various mathematical and computational algorithms. Even
though the processing algorithms could be significantly different, many processing tasks are naturally extended from
1D signal processing and 2D image processing. For example, 3D point cloud compression is the 3D counterpart
of image compression that aims to reduce the cost for storage or transmission of a 3D point cloud; 3D point cloud
denoising is the 3D counterpart of image denoising that aims to remove noise from a 3D point cloud; 3D point
cloud registration is the 3D counterpart of image registration that aims to align two or more 3D point clouds of
the same scene; and 3D point cloud downsampling and upsampling are the 3D counterpart of image scaling that
aims to change the resolution (number of points) in a 3D point cloud.

3D point cloud learning. 3D point cloud learning is the process of interpreting and understanding a 3D point
cloud. With the powerful tools of deep neural networks, computer vision researchers aim to extend the success
from images and videos to 3D point clouds. Two primary learning problems are 3D point cloud recognition and
segmentation. Similarly to the cases for 2D images, 3D point cloud recognition aims to classify a given 3D point
cloud into a predefined class category and 3D point cloud segmentation aims to partition a given 3D point cloud
into multiple segments. Due to the irregular format of 3D point clouds, one of the biggest challenges for designing a
learning algorithm is to formulate efficient data structures to represent 3D point clouds. Some algorithms transform
3D point clouds to regular 3D voxels, so that 3D convolutions can be used for the analysis; however, they have to
make a trade-off between resolution and memory. To handle raw point clouds directly, PointNet [7] uses point-wise
multilayer perceptrons (MLPs) and max-pooling to ensure the permutation invariance. After that, a series of 3D
deep learning methods follow PointNet as their base networks.

Relations between academia and industry. The technical transition from 1D time-series to 2D images is quite
natural, because both types of data are supported on regular-spacing structures; however, the technical transition
from 2D images to 3D point clouds is not straightforward because those points are irregularly scattered in a 3D
space. Numerous popular methods to handle 3D point clouds are proposed heuristically by practitioners. Therefore,
there is a substantial room for both researchers and practitioners to collaborate and solve fundamental tasks on 3D
point cloud processing and learning, so that we can accelerate the progress of autonomous driving.

D. Outline

The outline of this article is as follows: Section II presents key ingredients of 3D point cloud processing and
learning. It starts by explaining common properties of a 3D point cloud, followed by various approaches to represent
a 3D point cloud. It then presents modern methods to process and learn from a 3D point cloud. Sections III, IV,
and V cover the state-of-the-art methods and challenges about 3D point cloud processing and learning in the map
creation, localization and perception modules of an autonomous system, respectively. We specifically consider these
three modules because they heavily rely on 3D point clouds to achieve reliable performance. In each module, we
discuss what this module is specifically working on; why 3D point cloud processing and learning are significant for
this module; and how 3D point cloud processing and learning make a difference in this module. Section VI concludes
with discussion and pointers to future directions. In the supplementary material, we compare the perspectives
between academia and industry in Section I, illustrate the latest qualitative results in Section II, and overview a
series of elementary tasks about 3D point clouds that have received much attention in academia in Section III.

II. KEY INGREDIENTS OF 3D POINT CLOUD PROCESSING AND LEARNING

In this section, we introduce basic tools of 3D point cloud processing and learning. We start with the key
properties of 3D point clouds. We next evaluate some options for representing a 3D point cloud. Finally, we review
a series of popular tools to handle 3D point clouds. Those tools have received great attention in academia. Even
some of them might not be directly applied to an autonomous system, it is still worth mentioning because they
could inspire new techniques, which are potentially useful to autonomous driving.

A. Properties

As discussed in Section I-C, we consider two typical types of 3D point clouds in autonomous driving: real-time
LiDAR sweeps and point-cloud maps.
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Real-time LiDAR sweeps. Because of the sensing mechanism, for each 3D point in a real-time LiDAR sweep, we
can trace its associated laser beam and captured time stamp. One real-time LiDAR sweep can naturally be organized
on a 2D image, whose x-axis is the time stamp and y-axis is the laser ID. We thus consider each individual real-time
LiDAR sweep as an organized 3D point cloud. For example, a Velodyne HDL-64E has 64 separate lasers and each
laser fires thousands of times per second to capture a 360-degree field of view. We thus obtain a set of 3D points
associated with 64 elevation angles and thousands of azimuth angles3. Each collected 3D point is associated with a
range measurement, an intensity value and a high precision GPS time stamps. Note that for a global-shutter image,
the pixel values are collected by a charge-coupled device (CCD) at the same time; however, for a real-time LiDAR
sweep, the 3D points are collected at various time stamps. For the same laser, firings happen sequentially to collect
3D points; for different lasers, firings are not synchronized either; thus, the collected 3D points are not perfectly
aligned on a 2D regular lattice. Since the arrangement of 64 lasers follows a regular angular spacing, the point
density of a real-time LiDAR sweep changes over the range; that is, we collect many more 3D points from nearby
objects than from far-away objects. Moreover, a real-time LiDAR sweep naturally suffers from the occlusion; that
is, we get 3D points only from the sides of objects facing the LiDAR. To summarize, some key properties of a
real-time LiDAR sweep include:

● Pseudo 3D. A real-time LiDAR sweep arranges 3D points approximately on a 2D lattice. Due to the non-
perfect synchronization, 3D points are not perfectly aligned on a 2D lattice. Meanwhile, unlike a 3D point
cloud obtained from multiple views, a real-time LiDAR sweep only reflects a specific view; we thus consider
its dimension pseudo 3D;

● Occlusion. Each individual real-time LiDAR sweep records the 3D environment almost from a single view-
point4. A front object would occlude the other objects behind it; and

● Sparse point clouds. Compared to a 2D image, a real-time LiDAR sweep is usually sparse representations of
objects, especially for far-away objects. It cannot provide detailed 3D shape information of objects.

Point-cloud maps. To create a point-cloud map, one needs to aggregate real-time LiDAR sweeps scanned from
multiple autonomous vehicles across time. Since there is no straightforward way to organize a point-cloud map,
we consider it as an unorganized 3D point cloud. For example, for a 200 × 200 square meter portion of an HD
map, one needs to aggregate the LiDAR sweeps around that area for 5-10 trials, leading to over 10 millions 3D
points. Since LiDAR sweeps could be collected from significantly different views, an HD map after aggregation
gets denser and presents a detailed 3D shape information. To summarize, some key properties of a point-cloud map
include:

● Full 3D. A point-cloud map aggregates multiple LiDAR sweeps from various views, which is similar to 3D
data collected by scanning an object on a turntable. A point-cloud map captures information on more objects’
surfaces, providing a denser and more detailed 3D representation;

● Irregularity. 3D points in a point-cloud map are irregularly scattered in the 3D space. They come from multiple
LiDAR sweeps and lose the laser ID association, causing an unorganized 3D point cloud;

● No occlusion. A point-cloud map is an aggregation of 3D points collected from multiple viewpoints. It depicts
the static 3D scene with much less occlusion;

● Dense point clouds. A point-cloud map provides a dense point cloud, which contains detailed 3D shape
information, such as high-resolution shapes and the surface normals; and

● Semantic meanings. As another layer in the HD map, a traffic-rule-related semantic feature map contain the
semantic labels of a 3D scene, including road surfaces, buildings and trees. Since a traffic-rule-related semantic
feature map and a point-cloud map are aligned in the 3D space, we can trace the semantic meaning of each
3D point. For example, 3D points labeled as trees in a point-cloud map would help improve perception as
LiDAR points on leaves of trees are usually noisy and difficult to be recognized.

B. Matrix representations

Representations have always been at the heart of most signal processing and machine learning techniques. A
good representation lays the foundation to uncover hidden patterns and structures within data and is beneficial

3In a real-time LiDAR sweep, the vertical resolution is usually much lower than the horizontal resolution.
4Since the autonomous vehicle could move in real-time, the viewpoint of LiDAR would change slightly.
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for subsequent tasks. A general representation of a 3D point cloud is through a set, which ignores any order of
3D points. Let S = {(pi,ai)}

N
i=1 be a set of N 3D points, whose ith element pi = [xi, yi, zi] ∈ R3 represents

the 3D coordinate of the ith point and ai represents other attributes of the ith point. A real-time LiDAR sweep
usually includes the intensity ai = ri ∈ R and a point-cloud map usually includes surface normals ni ∈ R3; thus,
ai = [ri,ni] ∈ R4. For generality, we consider the feature of the ith point as xi = (pi,ai) ∈ Rd.

For efficient storage and scientific computation, a matrix (or tensor) representation is appealing. Let f be the
mapping from a set of 3D points S to a matrix (or tensor) X with a pending shape. A matrix representation of a
3D point cloud is thus X = f(S). We next discuss a few typical approaches to implement the mapping f(⋅).

Raw points. The most straightforward matrix representation of a 3D point cloud is to list each 3D point in the
set S as one row in the matrix. Consider

X(raw) = [x1 x2 ⋯ xN ]
T

∈ RN×d, (1)

whose ith row X
(raw)
i = xi ∈ Rd is the features of ith point in the 3D point cloud.

The advantages of the raw-point-based representation are that i) it is simple and general; ii) it preserves all the
information in the original set of 3D points; however, the shortcoming is that it does not explore any geometric
property of 3D points. This representation is generally used in the map and the localization module of an autonomous
system, where high precision is needed.

3D voxelization. To enjoy the success of 2D image processing and computer vision, we can discretize the 3D
space into voxels and use a series of voxels to represent a 3D point cloud. A straightforward discretization is to
partition the 3D space into equally-spaced nonoverlapping voxels from each of three dimensions; see Figure 2 (a).
Let a 3D space with range H,W,D along the X,Y,Z axes, respectively. Each voxel is of size h,w, d, respectively.
The (i, j, k)th voxel represents a 3D voxel space, Vi,j,k = {(x, y, z)∣(i−1)h ≤ x < ih, (j−1)w ≤ y < jw, (k−1)d ≤

z < kd}. We then use a three-mode tensor to represent this 3D point cloud. Let X(vox) ∈ RH×W×D, whose (i, j, k)th
element is

X
(vox)
i,j,k = {

1, when Vi,j,k ∩ S ≠ ∅;
0, otherwise. (2)

The tensor X(vox) records the voxel occupancy.
The advantages of the 3D-voxelization-based representation are that (i) the resulting voxels are associated with a

natural hierarchical structure and all the voxels have a uniform spatial size; and (ii) we can use off-shelf tools, such
as 3D convolutions to analyze data; however, the shortcomings are that (i) it does not consider specific properties
of organized 3D point clouds; (ii) it usually leads to an extremely sparse representation where most voxels are
empty; and (iii) it involves a serious trade-off between the resolution and the memory. This representation can be
used in the perception module of autonomous driving, as well as the storage of 3D point clouds.

Range view. As discussed in Section II-A, a real-time LiDAR sweep is essentially a series of range measurements
from a single location with certain angular field of view; see Figure 2 (b). We can approximately organize the 3D
points in a real-time LiDAR to a 2D range-view image. Each pixel in the range-view image corresponds to a
frustum in the 3D space. The pixel value is the range from the LiDAR to the closest 3D point inside the frustum.
Specifically, we partition the 3D space along the azimuth angle α ∈ [0,2π) and the elevation angle θ ∈ (−π/2, π/2]
with the resolution of azimuth angle α0 and the resolution of elevation angle θ0. The (i, j)th pixel corresponds to
a frustum space, Vi,j = {(x, y, z)∣α0(i − 1) ≤ acos( x√

x2+y2
) < α0i, θ0(j − 1) ≤ atan( z√

x2+y2
) + π

2 < θ0j}. We then

use a 2D matrix to represent a 3D point cloud. Let X(FV) ∈ RH×W , whose (i, j)th element is

X
(FV)
i,j = {

min(x,y,z)∈Vi,j∩S
√
x2 + y2 + z2, Vi,j,k ∩ S ≠ ∅;

−1, otherwise.
(3)

We consider the smallest range value in each frustum space. When no point falls into the frustum space, we set
a default value as −1. Note that the range-view-based representation could also use nonuniform-spaced elevation
angles according to the LiDAR setting.

The advantages of the range-view-based representation are that (i) it naturally models how LiDAR captures 3D
points, reflecting a 2D surface in the 3D space; (ii) Most frustum spaces associated have one or multiple 3D points,
leading to a compact range-view image; however, the shortcoming is that it is difficult to model an unorganized
point cloud, such as the point-cloud map in an HD map. This representation can be used in the perception module.
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Bird’s-eye view. The bird’s-eye-view (BEV)-based representation is a special case of 3D voxelization by ignoring
the height dimension. It projects 3D voxels to a BEV image; see Figure 2 (c). Let a 3D space with range H,W
along the X,Y axes, respectively. Each pixel is of size h,w, respectively. The (i, j)th pixel in the BEV image
represents a pillar space, Vi,j = {(x, y, z)∣(i − 1)h ≤ x < ih, (j − 1)w ≤ y < jw}. We then use a 2D matrix to
represent a 3D point cloud. Let X(BEV)

∈ RH×W , whose (i, j)th element is

X
(BEV)
i,j = {

1, when Vi,j ∩ S ≠ ∅;
0, otherwise. (4)

The matrix X(BEV) records the occupancy in the 2D space. Note that there are a few variations of the BEV-based
representations. For example, instead of using a binary value, MV3D [8] uses a few statistical values in each pillar
space to construct X(BEV).

The advantages of the BEV-based representation are that (i) it is easy to apply 2D vision-based techniques; (ii) it
is easy to merge with information from the HD map. For example, drivable areas and the positions of intersections
encoded in the HD map can be projected to the same 2D space and fused with LiDAR information; (iii) it is easy
to use for subsequent modules, such as prediction and motion planning, and (iii) objects are always the same size
regardless of range (contrasting with the range-view-based representation), which is a strong prior and makes the
learning problem much easier; however, the shortcoming of this voxelization is that (i) it also involves a serious
trade-off between resolution and memory, causing excessive quantization issues of getting detailed information on
small objects; (ii) it does not consider the specific properties of organized 3D point clouds and cannot reason the
occlusion; and (iii) it causes the sparsity issue because most pixels are empty. This representation can be used in
the perception module of autonomous driving.

(a) 3D voxel-based representation. (b) Range-view-based representation. (c) Bird’s-eye-view-based representation.

Fig. 2: Common approaches to discretize the 3D space. The 3D voxel-based representation is to discretize the
3D space into equally-spaced nonoverlapping voxels from each of the three dimensions; the range-view-based
representation is to discretize the 3D space along the azimuth angle and the elevation angle; and the bird’s-eye-
view-based representation is to discretize the 3D space along the X,Y axes, omitting the height dimension.

C. Representative tools

3D point clouds have been studied across various communities, such as robotics, computer graphics, computer
vision and signal processing. We introduce a few representative tools to process and learn from 3D point clouds. We
mainly emphasize deep-neural-network-based approaches because of their practical usages in autonomous driving.

Non-deep-learning methods. Before the emergence of deep learning, there have been many traditional methods
to handle 3D point clouds for various tasks. However, unlike deep neural networks, those conventional methods
can hardly be described in a single methodological framework. This is because hand-crafted tools are specifically
designed to cater to the needs of each individual task. For example, in 3D point cloud segmentation and 3D
shape detection, traditional techniques have been developed based on either region growth with simple geometric
heuristics, or graph-based optimization, or robust estimation methods, such as RANSAC [9]. As another important
task, 3D keypoint matching is closely related to 3D point cloud registration and 3D point cloud recognition. To
tackle this task, many statistics-based methods have been developed in a hand-crafted fashion and aim to describe
the geometric structures around 3D keypoints or objects; see a more comprehensive discussion in [10].
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Convolutional neural networks. The motivation of using convolutional neural networks is to leverage off-shelf
deep learning tools to process 3D point clouds. As regularized versions of multilayer perceptrons, convolutional
neural networks (CNNs) employ a series of convolution layers and are commonly applied to analyzing images and
videos. A convolution layer operates a set of learnable filters on input data to produce the output that expresses the
activation map of filters. The beauty of a convolution layer is weight-sharing; that is, the same filter coefficients
(weights) are applied to arbitrary positions in a 2D image, which not only saves a lot of learnable weights, but
also ensures shift invariance, and helps avoid overfitting to limited training data. As a general and mature learning
framework, CNNs and common variations are widely used in various computer vision tasks, including classification,
detection, and segmentation, and have achieved state-of-the-art performance in most tasks.

Based on the success of CNNs in images and videos, CNNs have been applied to 3D point cloud data as well.
Multiple representations have been used, including the 3D-voxelization-based representation (2), the range-view-
based representation (3) and the BEV-based representation (4). A benefit of using CNNs to handle a 3D point cloud
is that a convolution operator naturally involves local spatial relationships. In PointNet, each 3D point is processed
individually; while in CNNs, adjacent voxels or pixels are considered jointly, providing richer contextual information.
The basic operator is a 3D convolution for the 3D voxelization-based representation and a 2D convolution for the
range-view-based representation and the BEV-based representation, respectively. Without loss of generality, consider
a 4-mode tensor X ∈ RI×J×K×C , after convolving with C 3D filters H ∈ Rk×k×k×C , the (i, j, k, c′)th element of the
output Y ∈ RI×J×K×C′ is

Yi,j,k,c′ =
C−1
∑
c=0

k−1
∑
`=0

k−1
∑
m=0

k−1
∑
n=0

Hi−`,j−m,k−n,c′ X`,m,n,c .

For simplicity, we omit the boundary issue. 3D convolution is expensive in both computation and memory usage.
Because of the discretization, many techniques and architectures developed for 2D images can be easily extended

to handle 3D point clouds. Even though the discretization causes inevitable loss of information, CNNs usually
provide reliable performances and are widely used in many tasks. As discussed previously, one critical issue about
discretizing a 3D point cloud is that a resulting 3D volume or 2D image is sparse. A huge amount of computation
is wasted in handling empty voxels.

To summarize, CNNs handle a 3D point cloud in a discretized representation. This approach inevitably modifies
the exact 3D position information, but still provides strong and promising empirical performances because of the
spatial relationship prior and the maturity of CNNs. It is thus widely used in the industry.

PointNet-based methods. The motivation of using PointNet-based methods is to directly handle raw 3D points
by deep neural networks without any discretization. PointNet [7] is a pioneering work that achieves this goal. Raw
3D point clouds are inherently unordered sets, and PointNet was designed to respect this property and produce the
same output regardless of the ordering of the input data. The key technical contribution of PointNet is to use a
set of shared point-wise multi-layer perceptrons (MLPs) followed by global pooling to extract geometric features
while ensuring this permutation-invariant property of raw 3D data. Even though the architecture is simple, it has
become a standard building block for numerous 3D point cloud learning algorithms and achieves surprisingly strong
performance on 3D point cloud recognition and segmentation.

PointNet considers the raw-point-based representation X(raw) (1). Let H ∈ RN×D be a local-feature matrix, where
the ith row Hi represents the features for ith point, and h ∈ RD be a global-feature vector. A basic computational
block of PointNet works as

Hi = MLP(L) (X
(raw)
i ) ∈ RD, for i = 1,⋯,N, (5)

h = maxpool (H) ∈ RD,

where X
(raw)
i is the ith 3D point’s feature, and MLP(L)(⋅) denotes a L-layer MLPs, which map each 3D point

to a feature space, and maxpool(⋅) performs downsampling by computing the maximum values along the column
(the point dimension); see Figure 3 (a). Note that each 3D point goes through the same MLPs separately.

Intuitively, the MLPs propose D representative geometric patterns and test if those patterns appear around each
3D point. The max-pooling records the strongest response over all the 3D points for each pattern. Essentially,
the global-feature vector h summarizes the activation level of D representative geometric patterns in a 3D point
cloud, which can be used to recognize a 3D point cloud. Meanwhile, since each 3D point goes through the same
MLPs separately and the max-pooling removes the point dimension, the entire computational block is permutation
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invariant; that is, the ordering of 3D points does not influence the output of this block. To some extent, PointNet
for 3D point cloud learning is similar to principal component analysis (PCA) for data analysis: it is simple, general
and effective. Just like principal component analysis, PointNet extracts global features in a 3D point cloud.

To summarize, PointNet-based methods handle 3D point clouds in the raw-point-based representation and ensure
the permutation invariance. The effectiveness has been validated in various processing and learning tasks.

Graph-based methods. The motivation of using graph-based methods is to leverage the spatial relationships
among 3D points to accelerate the end-to-end learning of deep neural networks. One advantage of CNNs is that a
convolution operator considers local spatial relationships; however, those relationships are between adjacent voxels
(or adjacent pixels), not original 3D points. To capture the local relationships among 3D points, one can introduce
a graph structure, where each node is a 3D point and each edge reflects the relationship between each pair of 3D
points. This graph structure is a discrete proxy of the surface of an original object. A matrix representation of a
graph with N nodes is an adjacency matrix A ∈ RN×N , whose (i, j)th element reflects the pairwise relationship
between the ith and the jth 3D points; see Figure 3 (b). Graph-based methods usually consider the raw-point-based
representation (1). Each column vector in X(raw) is then data supported on the graph A; called a graph signal.

(a) PointNet. (b) Graph-based methods.

Fig. 3: Illustration of representative tools. Plot (a) shows that PointNet uses a set of shared point-wise multi-layer
perceptrons (MLPs) followed by max-pooling to extract geometric features that exhibit the permutation-invariant
property of raw 3D point clouds. Plot (b) shows that graph-based methods introduce a graph structure to capture the
local relationships among 3D points. In the graph, each node is a 3D point and each edge reflects the relationship
between each pair of 3D points.

There are several ways to construct a graph, such as a K-nearest-neighbor graph, an ε-graph and a learnable
graph. A K-nearest-neighbor graph is a graph in which two nodes are connected by an edge, when their Euclidean
distance is among the K-th smallest Euclidean distances from one 3D point to all the other 3D points. An ε-nearest-
neighbor graph is a graph in which two nodes are connected by an edge, when their Euclidean distance is smaller
than a given threshold ε. Both K-nearest-neighbor graphs and ε-graphs can be efficiently implemented by using
efficient data structures, such as Octree [11]. A learnable graph is a graph whose adjacency matrix is trainable in
an end-to-end learning architecture.

A general graph-based operation is a graph filter, which extends a classical filter to the graph domain and
extracts features from graph signals. The most elementary nontrivial graph filter is called a graph shift operator.
Some common options for a graph shift operator include the adjacency matrix A, the transition matrix D−1A (D
is the weighted degree matrix, a diagonal matrix with Di,i = ∑j Ai,j reflecting the density around the ith point),
the graph Laplacian matrix D−A, and many other structure-related matrices. The graph shift replaces the signal
value at a node with a weighted linear combination of values at its neighbors; that is, Y = AX(raw) ∈ RN , where
X(raw) ∈ RN×3 is an input graph signal (an attribute of a point cloud). Every linear, shift-invariant graph filter is a
polynomial in the graph shift,

h(A) =
L−1
∑
`=0

h`A
`
= h0 I+h1A+ . . . + hL−1A

L−1,

where h`, ` = 0,1, . . . , L− 1 are filter coefficients and L is the graph filter length. A higher order corresponds to a
larger receptive field on the graph vertex domain. The output of graph filtering is given by the matrix-vector product
Y = h(A)X(raw). Graph filtering can be used in various processing tasks, such as 3D point cloud downsampling
and denoising [12].
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Inspired by the success of graph neural networks in social network analysis, numerous recent research incorporate
graph neural networks to handle a 3D point cloud. As the first such work, [13] introduces two useful techniques:
the edge convolution operation and learnable graphs. The edge convolution is a convolution-like operation to extract
geometric features on a graph. The edge convolution exploits local neighborhood information and can be stacked
to learn global geometric properties. Let H ∈ RN×d be a local-feature matrix, where the ith row Hi represents
the features for the ith point. A basic computational block works as Hi = ∥(i,j)∈Eg(X

(raw)
i ,X

(raw)
j ) ∈ Rd, where

E is the edge set and g(⋅, ⋅) is a generic mapping, implemented by some neural networks, and ∥ is a generic
aggregation function, which could be the summation or maximum operation. To some extent, the edge convolution
extends PointNet by inputting a pair of neighboring points’ features. The edge convolution is also similar to graph
filtering: both aggregates neighboring information; however, the edge convolution specifically models each pairwise
relationships by a nonparametric function. [13] also suggests to dynamically learn a graph. It always uses a kNN
graph, but the distance metric is the Euclidean distance in the high-dimensional feature space.

Subsequent research has proposed to use novel graph neural networks to handle 3D point cloud recognition and
segmentation. As one of the most recent works in this area, [14] constructs the deepest yet graph convolution
network (GCN) architecture, which has 56 layers. It transplants a series of techniques from CNNs, such as residual
and dense connections, and dilated graph convolutions, to the graph domain.

To summarize, graph-based methods build graph structures to capture the distribution of a 3D point cloud and take
advantage of local spatial relationships. This approach handles 3D point clouds in the raw-point-based representation,
ensuring the permutation invariance. This approach is less mature: even though leveraging a graph improves the
overall performance, graph construction is more art than science and takes extra computational cost [13]; additionally,
deep architectures for graph-based neural networks still needs more exploration [14].

III. 3D POINT CLOUD PROCESSING FOR HIGH-DEFINITION MAP CREATION

A. Overview of high-definition map creation module

To precisely represent the static 3D environment and traffic rules, a high-definition (HD) map usually contains
two map layers: a point-cloud map, representing 3D geometric information of surroundings, and a traffic-rule-related
semantic feature map, containing road boundaries, traffic lanes, traffic signs, traffic lights, the height of the curbs,
etc. The main reason for creating an offline HD map is that understanding traffic rules in real-time is too challenging.
For example, based on the current technology, it is difficult for an autonomous vehicle to determine the correct
lane in real-time when driving into at an intersection with complicated lane merging and splitting. In contrast, all
traffic rules and environmental information can easily be encoded in an HD map, which goes through an offline
process with human supervision and quality assurance. An HD map provides strong and indispensable priors and
fundamentally eases the designs of multiple modules in an autonomy system, including localization, perception,
prediction and motion planning. Therefore, an HD map is widely believed to be an indispensable component of
autonomous driving.

Priors for localization. The role of localization is to localize the pose of an autonomous vehicle. In an HD map,
the point-cloud map and the traffic-rule-related semantic features, such as lane markers and poles, are usually served
as localization priors for the map-based localization. These priors are used to register real-time LiDAR sweeps to
the point-cloud map, such that one can obtain the real-time high-precision ego-motion of an autonomous vehicle.

Priors for perception. The role of perception is to detect all objects in the scene, as well as their internal states.
The perception module can use an HD-map to serve as a prior for detection. For example, the positions of traffic
lights in an HD map are usually served as perception priors for traffic light state estimation. With the point-cloud
map as priors, one can separate a real-time LiDAR sweep into foreground and background points in real-time. We
can then remove background points, which are those lying on the static scenes, such as road surfaces and the trunks
of trees, and feed only foreground points to the perception module. This formalism can significantly reduce the
computational cost and improve the precision of object detection.

Priors for prediction. The role of prediction is to predict the future trajectory of each object in the scene. In
an HD map, 3D road and lane geometries and connectivities are important priors to the prediction module. These
priors can be used to guide the predicted trajectories of objects to follow the traffic lanes.

Priors for planning. The role of motion planning is to determine the trajectory of an autonomous vehicle. In an
HD map, traffic-rule-related semantic features such as lane geometries and connectivities, traffic light, traffic sign
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and the speed limit of lanes, are indispensable priors for the planning module. These priors are used to guide the
designed trajectory to follow the correct lane and obey the stop signs and other traffic signs.

Since an HD map is critical to autonomous driving, it must be created with high precision and be up-to-date.
To achieve this, it usually needs sophisticated engineering procedures to analyze data from multiple modalities
by exploiting both machine learning techniques and human supervision. A standard map creation module includes
two core components: 3D point cloud stitching and semantic feature extraction; see Figure 4. 3D point cloud
stitching merges real-time LiDAR sweeps collected from multiple vehicles across times into a point-cloud map;
and semantic feature extraction extracts semantic features, such as lane geometries and traffic lights, from the point-
cloud map. See a video illustration of the industrial-level HD maps through the link5 and additional illustrations
in the supplementary material.

Fig. 4: A standard HD map creation system includes two core components: 3D point cloud stitching and semantic
feature extraction. 3D point cloud stitching usually adopts graph-based SLAM with hierarchical refinement; and
semantic feature extraction contains iterative procedures of machine learning and human supervision. A key
component in graph-based SLAM is a pose graph, modeling the relations among LiDAR poses. The nodes are
LiDAR poses and edges reflecting the misalignment level between two LiDAR poses. The final outputs include a
point-cloud map, which is a dense 3D point cloud, as well as a traffic-rule-related semantic feature map, containing
the positions of landmarkers, traffic signs and traffic lights.

B. 3D point cloud stitching

The goal of 3D point cloud stitching is to create a high-precision point-cloud map from the sensor data collected
by a fleet of vehicles across time. Since a point-cloud map dominates the precision of all the map priors, centimeter-
level precision is required for any local portion of the point-cloud map. To promptly create and update city-scale
HD maps, the process of 3D point cloud stitching must be highly robust and efficient.

One fundamental problem of 3D point cloud stitching is to estimate the 6-degree-of-freedom (DOF) pose of
each LiDAR sweep; also called LiDAR pose. We consider the map frame as the standardized global frame, and
the LiDAR frame as the ego frame of an autonomous vehicle at the time stamp when the corresponding real-time
LiDAR sweep is collected. A LiDAR pose is then a transformation between the map frame and the LiDAR frame.
It includes 3D translation and 3D rotation. Note that the 6-DOF pose can be represented as a 4×4 homogeneous
transformation matrix. With the LiDAR poses, all the LiDAR sweeps can be synchronized to the standardized
global frame and integrated to form a dense 3D point cloud. To estimate LiDAR poses, a common technique
is simultaneous localization and mapping (SLAM). Let Si and Sj be the ith and jth real-time LiDAR sweeps,
respectively. SLAM works as

argminp

⎡
⎢
⎢
⎢
⎢
⎣

∑
pi

∑
pj

hSi,Sj
(pi, pj) + g(pi)

⎤
⎥
⎥
⎥
⎥
⎦

, (6)

where pi is the 6-DOF LiDAR pose associated to the ith real-time LiDAR sweep, hSi,Sj
(pi, pj) indicates the

negative log likelihood of the measurement on the misalignment between Si and Sj , and g(⋅) indicates the negative

5https://vimeo.com/303412092

https://vimeo.com/303412092
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log likelihood of the difference between the predicted LiDAR position in the map frame and the direct measurement
of GPS [15]. A typical choice of hSi,Sj

(pi, pj) is the objective function of the iterative closest point (ICP) algorithm.
We thus minimize the objective function of the ICP algorithm and assign the optimized value to hSi,Sj

(pi, pj).
SLAM is a big research field in robotics communities and there exists extensive research that aims to solve

the optimization problem (6). For example, the filter-based SLAM solves the optimization problem (6) in an
approximated and online fashion. It employs Bayes filtering to predict and optimize the map and LiDAR poses
iteratively based on the online sensor measurements. On the other hand, the graph-based SLAM optimizes all the
LiDAR poses together by using all sensor measurements across time. It constructs a pose graph that models the
relations among LiDAR poses, In the pose graph, the ith node is the ith LiDAR pose, pi; and the (i, j)th edge
is the cost of misalignment between the ith and jth LiDAR poses, hSi,Sj

(pi, pj); see the pose graph in Figure 4.
Intuitively, each edge weight is either the total point-to-point distance or the total point-to-plane distance between
two LiDAR sweeps. Solving (6) is thus equivalent to minimizing the total sum of the edge weights of a pose graph.

For a city-scale map creation, the SLAM solution must satisfy the following requirements.
High local and global precision. Local precision indicates that the LiDAR poses in a local region are accurate

with respect to one another; and global precision indicates that all the LiDAR poses in the entire HD map are
accurate with respect to the standardized global frame. For the SLAM solution, centimeter/micro-radian level local
precision must be achieved because autonomy software modules require the highly accurate local surroundings
from the HD map; and the centimeter-level global precision is useful to accelerate the HD map update process
especially for the city-scale application;

High robustness. The SLAM solution requires to handle the noisy sensor measurements collected by multiple
vehicles driving in complicated scenes and complex driving conditions in the real world; and

High efficiency. The SLAM solution requires to handle the optimization of over 100 millions of LiDAR poses.
To achieve high precision and robustness, the graph-based SLAM is a better option than the filter-based SLAM

because the global optimization formalism makes the graph-based SLAM inherently more accurate; however, it is
still challenging to solve the city-scale graph-based SLAM problem with high efficiency and robustness. There are
two main reasons. First, the scale of the problem is enormous. It is expensive to solve the optimization problem (6)
in a brute-force way because the core step of the optimization algorithm is to solve a series of equation associated
with an n-by-n matrix, where n is the total number of LiDAR poses. For a city-scale map, n could be more
than 100 millions, causing big issues for both computational efficiency and numerical stability of the optimization
algorithm. Second, evaluating edge weights in a pose graph usually suffers from low precision because sensor data
is collected in complex driving conditions. For example, the calculation of the misalignment between consecutive
LiDAR sweeps will likely be compromised by the moving objects.

To effectively solve this problem, the graph-based SLAM with the hierarchical refinement formalism can be
adopted [16]. The functionality of hierarchical refinement formalism is to provide a good initialization for the global
optimization, making the optimization both fast and accurate. The hierarchical refinement formalism distinguishes
two types of edges in a pose graph; that is, adjacent edges and loop-closure edges. Adjacent edges model the relations
between two LiDAR poses whose corresponding LiDAR sweeps are consecutively collected from the same logset;
and loop-closure edges model the relations between two LiDAR poses whose corresponding LiDAR sweeps are
collected around the same location from different logsets (different vehicles or across time). To handle these two
types of edges, the hierarchical refinement formalism includes two steps: (1) optimizing adjacent edges, including a
chain of LiDAR poses from a single logset; and (2) optimizing loop-closure edges, including LiDAR poses across
logsets; see Figure 4. In the first step, rather than relying simply on aligning LiDAR sweeps, sensor measurements
from multiple modalities, including inertial measurement unit (IMU), global positioning system (GPS), odometer,
camera and LiDAR, can be fused together to calculate the adjacent edges. Because consecutive LiDAR sweeps
have similar LiDAR poses, this step is usually easy and provides extremely high precision. In the second step, the
loop-closure edges are calculated by aligning LiDAR sweeps through the ICP algorithm. After these two steps, we
then perform the global optimization (6).

Since most edges in a pose graph are adjacent edges, which can be highly optimized through the first step,
the hierarchical refinement formalism provides a good initialization for the global optimization. Therefore, the
computational cost for optimizing the entire pose graph can be significantly reduced and the robustness of the
global optimization can be greatly improved by the hierarchical refinement formalism.
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C. Semantic feature extraction

The goal of semantic feature extraction is to extract traffic-rule-related semantic features, such as lane geometries,
lane connectivities, traffic signs and traffic lights, from the point-cloud map. This component requires both high
precision and recall. For example, missing a single traffic light prior in a city-scale HD map can potentially
cause serious issues to the perception and motion planning modules, which can severely jeopardize the safety of
autonomous driving.

The semantic feature extraction component usually contains two iterative steps. The first step uses machine
learning techniques to automatically extract features; and the second step introduces human supervision and quality
assurance process to ensure the high precision and recall of the semantic features.

To automatically extract features, standard machine learning techniques are based on convolutional neural net-
works. The inputs are usually the combination of the LiDAR ground images and the camera images associated
with the corresponding real-time LiDAR sweep. A LiDAR ground image renders the BEV-based representation of
the point-cloud map obtained in 3D point cloud stitching, where the values of each pixel are the ground height
and laser reflectivity of each LiDAR point. The outputs are usually the semantic segmentation of either the LiDAR
ground images or the camera images. The networks follow from standard image segmentation architectures.

After obtaining the output, the pixel-wise semantic labels are projected back to the point-cloud map. By fitting
the projected 3D points into 3D splines or 3D polygons, the traffic-rule-related semantic feature map can then be
obtained. Note that the human-editing outcomes also serve as an important source of training data for automatic
feature extraction algorithms, where these two steps therefore form a positive feedback loop to improve the precision
and efficiency of HD map production.

D. Real-world challenges

There still exist several challenges for the HD map creation.
Point-cloud map with centimeter-level global precision. Global precision can greatly benefit the updating of a

city-scale point-cloud map. The changes of the urban appearance usually take place locally. Ideally the map update
should focus on the targeted portion of the pose graph; however, a point-cloud map with high local precision
but without high global precision cannot freely access the targeted portion from a global aspect and guarantee
its precision. In comparison, given a point-cloud map with high global precision, one can focus on updating the
targeted portion of the pose graph, thus significantly reducing the scale of computation; however, it is challenging
to enforce the global precision to the graph-based SLAM. This is because the global optimization formalism of
graph-based SLAM tends to distribute the error of each edge uniformly in the graph. Therefore, even if the GPS
observations are accurate, the corresponding LiDAR poses can be misaligned after global optimization. Enforcing
centimeter-level global precision of a point-cloud map can be especially challenging in the places where the GPS
signal is unavailable, such as in building canyon, tunnel and underground garage.

Automatic semantic feature extraction. Although there exists extensive research on the semantic segmentation
based on 3D point clouds and camera images, it is still challenging to automatically extract the lane connectivities in
intersections and traffic lights that indicate lane control relations. This is due to limited training labels and complex
traffic conditions. Currently, the solution to extracting the complex semantic features such as traffic light to lane
control information still relies largely on human supervision, which is both expensive and time-consuming.

IV. 3D POINT CLOUD PROCESSING FOR LOCALIZATION

A. Overview of localization module

As introduced in Section I-B, the localization module finds ego position of an autonomous vehicle relative to
the reference position in the HD map. It consumes the real-time measurements from multiple sensors, including
LiDAR, IMU, GPS, odometer, cameras, as well as the HD map; see Figure 5. Because of the 3D representation
of an HD map, the ego position of an autonomous vehicle is a 6DOF pose (translation and rotation), which is a
rigid transformation between the map frame and the LiDAR frame. The importance of the localization module to
autonomous driving is that it bridges the HD map to the other modules in an autonomy system. For example, by
projecting the HD map priors, such as the lane geometries to the LiDAR frame, the autonomous vehicle gains the



14

knowledge of which lane itself drives on and which lanes the detected traffics are on. See a video illustration of
the real-time localization through the link6 and additional illustrations in the supplementary material.

Fig. 5: A standard map-based localization system includes two core components: LiDAR-to-map registration and
multisensor fusion. LiDAR-to-map registration uses geometry based matching and laser reflectivity based matching
to achieve high precision and recall; and multisensor fusion adopts Bayes filters to merge multiple modalities.

To enable the full autonomous driving, high precision and robustness are the most critical criteria for the
performance of localization module. High precision indicates the error of translation should be at the centimeter
level and the error of rotation angle should be at the micro-radian level. It allows the traffic detected from 1 kilometer
away to be associated to the correct lanes in HD map, and the lane-change intentions of the closer traffic can be
predicted by measuring the distance between its wheels to the lane boundaries, which can significantly benefit
motion planning and prediction modules; and robustness indicates that the localization module is expected to work
in all driving conditions with the changes of illumination, weather, traffic and the condition of roads. Note that
although the commercial-grade GPS/IMU unit with real-time kinematics mode has accurate position measurement
in open areas, it is not robust enough for autonomous driving because it suffers from the low precision issue in the
city due to the multi-path effects.

To achieve these aforementioned criteria, the map-based localization with multi-sensor fusion is the standard
approach. As discussed in previous sections, an HD map could be created beforehand and significantly ease the
localization. On the contrary, the SLAM-based solution cannot satisfy these criteria.

B. Map-based localization

The basic idea of the map-based localization is to estimate the LIDAR pose by matching a LiDAR sweep to the
point-cloud map in an HD map by leveraging the measurements from IMU, GPS, cameras to make pose estimation
robust. A map-based localization system usually consists of two components; see Figure 5. The first component
is the LiDAR-to-map registration, which computes the LiDAR pose by registering LiDAR sweep to a point-cloud
map; The second component is the multisensor fusion, which estimates the final pose from IMU, odometer, GPS,
as well as the estimation from the LiDAR-to-map registration.

LiDAR-to-map registration. The LiDAR-to-map registration component is to directly estimate the LiDAR pose
by matching the LiDAR sweep to the the point-cloud map. Let S , S(map) be a real-time LiDAR sweep and the
point-cloud map, respectively. The problem of LiDAR-to-map registration can be formulated as

argminp
⎡
⎢
⎢
⎢
⎣
∑
xi∈S

g(fp(xi),S
(map)

i∗)
⎤
⎥
⎥
⎥
⎦
, (7)

where p is the LiDAR pose, xi is the ith 3D point in the LiDAR sweep and S(map)
i∗ is the 3D point in the

point-cloud map that is associated with the ith 3D point in the LiDAR sweep. The associated index i∗ is usually
chosen from the closest point in the Euclidean distance. The function fp ∶ R3 → R3 is the function that transforms
a 3D point xi in the LiDAR frame into the map frame based on the LiDAR pose p; and the function g(⋅) indicates

6https://vimeo.com/327949958

https://vimeo.com/327949958
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a loss function measuring the misalignment between the points from the LiDAR sweep and the HD map. Usually,
g(⋅) takes the forms of the point-to-point, point-to-line, or point-to-plane distance between the associated points in
the LiDAR sweep and the point-cloud map.

To solve (7) and achieve high precision and recall, there exist two major approaches.
● Geometry based matching. This approach calculates the high precision 6DOF pose by matching the LiDAR

sweep to the point-cloud map based on the ICP algorithm [17]. This approach usually works well in heavy traffic
and challenging weather conditions, such as snow, because a point-cloud map contains abundant geometry
priors for LiDAR sweeps to match with; however, in geometry-degenerated scenes, such as tunnel, bridge,
and highway, the ICP calculation could diverge because of the loss of geometric patterns, hence causing bad
precision; and

● Laser reflectivity based matching. This approach calculates the pose by matching a LiDAR sweep to a point-
cloud map based on laser reflectivity signals. The matching can be done in either the dense 2D image matching
method or the feature extraction based ICP matching method. For the first method, the laser reflectivity readings
of the LiDAR sweep and the point-cloud map are first converted into grey-scale 2D images, following the
BEV-based representation (4), and then the pose is calculated by image matching techniques. Note that this
method only calculates the x, y, yaw components of the pose. To obtain the 6-DOF pose, the z, roll, pitch
components are estimated based on the terrain information in the HD map. For the second method, the region
of interest objects, such as lane markers, and poles, are firstly extracted from the LiDAR sweep based on
the Laser reflectivity readings [18]. The ICP algorithm can then be used to calculate the LiDAR pose by
matching the region of interest objects between a real-time LiDAR sweeps and the priors in the HD map. This
approach usually outperforms the geometry based matching in the scenarios of highway and bridge, because
those scenarios lack geometry features but have rich laser reflectivity textures on the ground (e.g. dashed lane
markers). This approach does not work well in the challenging weather conditions such as heavy rain and
snow where the laser reflectivity of the ground will change significantly.

To achieve the best performance, both of these two strategies can simultaneously be used to estimate LiDAR
poses; however, LiDAR-to-map registration alone cannot guarantee the 100% precision and recall for the pose
estimation over the time. To give an extreme example, if LiDAR is totally occluded by trucks driving side-by-side
or front-and-back, the LiDAR-to-map registration component would fail. To handle extreme cases and make the
localization module robust, the multisensor fusion component is required.

Multisensor fusion. The multisensor fusion component is to estimate a robust and confident pose from measure-
ments of multiple sensors, including IMU, GPS, odometer, cameras, as well as the poses estimated by the LiDAR-
to-map registration module. The standard approach of multisensor fusion is to employ a Bayes-filter formalism,
such as Kalman filter, extended Kalman filter, or particle filter. Bayes filters consider an iterative approach to predict
and correct the LiDAR pose and other states based on the vehicle motion dynamics and the multisensor readings.
In autonomous driving, the states tracked and estimated by Bayes filters usually include motion related states such
as pose, velocity, acceleration, etc., and sensor related states such as IMU bias etc.

Bayes filters work in two iterative steps: prediction and correction. In the prediction step, during the gaps between
sensor readings, the Bayes filter predicts the states based on the vehicle motion dynamics and the assumed sensor
model. For example, by taking the constant acceleration approximation as the vehicle motion dynamics during a
short period of time, the evolution of pose, velocity, and acceleration can be predicted by Newton’s laws. The IMU
bias states can be predicted by assuming that it behaves as white noise.

In the correction step, when receiving a sensor reading or a pose measurement, the Bayes filter corrects the
states based on the corresponding observation models. For examples, when an IMU reading is received, the states
of acceleration, angular velocities, and the IMU bias are corrected. When a pose measurement is received, the pose
state is corrected. Note that the states require the correction because the prediction step is not prefect and there are
accumulated errors over time.

C. Real-world challenges

The real-world challenges of the localization module is to work in extreme scenes. For example, when an
autonomous vehicle drives through a straight tunnel without dashed lane marker, there are few geometric and
texture features, causing the failure of the LiDAR-to-map registration; when an autonomous vehicle is surrounded
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by large trucks, LiDAR could be totally blocked, also causing the failure of the LiDAR-to-map registration. When
the failure of the LiDAR-to-map registration lasts for several minutes, the LiDAR pose estimated by the multisenor
fusion component will drift significantly and the localization module will lose the precision.

V. 3D POINT CLOUD PROCESSING FOR PERCEPTION

A. Overview of perception module

As introduced in Section I-B, the perception module is the visual system of an autonomous vehicle that enables
the perception of the surrounding 3D environment. The input of the perception module usually includes the
measurements from cameras, LiDAR, RADAR and ultrasound, as well as the ego-motion pose output from the
localization module and the priors from the HD map. The outputs of the perception module are typically traffic
light states and objects’ 3D bounding boxes with tracks.

As discussed in Section I-B, multiple sensing modalities are used to ensure the robustness of the perception
module. Depending on the mechanism to fuse those modalities, a perception module can be categorized into late
fusion and early fusion. Late fusion fuses modalities in a semantic space, which usually happens in the final step;
and early fusion fuses modalities in a feature space, which usually happens in an early or intermediate step. Figure 6
(a) shows a standard framework of a late-fusion-based perception module. To obtain objects’ 3D bounding boxes
with tracks, a late-fusion-based perception module uses an individual pipeline to handle each sensor input. Each
pipeline includes the detection component and the association and tracking component. The detection component
finds bounding boxes and the association and tracking component tracks bounding boxes across frames to assign a
unique identity for each individual object. A late-fusion module unifies the bounding box information from multiple
pipelines and outputs a final 3D bounding-boxes with tracks. In comparison, Figure 6 (b) shows an early-fusion-
based perception module. It uses an early-fusion detector to take the outputs from all the sensing modalities and
produce all the 3D bounding boxes. It then uses an association and tracking component to associate 3D bounding
boxes across frames and assign an identity for each object. To estimate traffic light states, a traffic light state
estimator extracts the traffic light regions from images according to the position priors in an HD map and then it
uses machine learning techniques to analyze the image and identify the traffic light state.

(a) Late-fusion-based perception module. (b) Early-fusion-based perception module.

Fig. 6: A perception module takes multiple sensing modalities and outputs traffic light states and objects’ 3D
bounding boxes with tracks. Depending on the mechanism to fuse modalities, a perception module is categorized
into late fusion, which fuses in a semantic space, or early fusion, which fuses in a feature space.

The late-fusion-based approach is much more mature while the early-fusion-based approach is believed to have
a bigger potential [8]. The industry has adopted the late-fusion-based approach for decades because this approach
modularizes the tasks and makes each sensor pipeline easy to implement, debug and manage. The early-fusion-based
approach carries the spirit of end-to-end learning and enables the mutual promotion of multiple sensing modalities
in a high-dimensional feature space; however, there are still significant challenges in this research direction and
many companies still use the late-fusion-based approach.

A robust perception module usually includes multiple intermediate components, such as lane detection, 2D object
detection, 3D object detection, semantic segmentation and object tracking, to achieve the final goal. Among those
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components, 3D object detection is particularly interesting and challenging because it needs to handle real-time
LiDAR sweeps and can directly produce the 3D bounding boxes for all objects in the scene. This task has drawn
much attention recently when combined with the power of deep learning [8]. We next focus on 3D object detection.

B. 3D object detection

The task of 3D object detection is to detect and localize objects in the 3D space with the representation of
bounding boxes based on one or multiple sensor measurements. 3D object detection usually outputs 3D bounding
boxes of objects, which are the inputs for the component of object association and tracking. Based on the usage
of sensor measurements, we can categorize 3D object detection into LiDAR-based detection (see Figure V(a)) and
fusion-based detection (see Figure V(b)). Qualitative performances are illustrated in the supplementary material.

LiDAR-based detection. Let S be a real-time LiDAR sweep. A LiDAR-based detector aims to find all the
objects in the sweep; that is,

{oi}
O
i=1 = h(S), (8)

where oi = [yi,bi] is the ith object in the 3D scene with yi the object’s category, such as vehicle, bikes and
pedestrian, and bi the corners of bounding box. Now the detection function h(⋅) is typically implemented with
deep-neural-network-based architectures.

The main difference between 2D object detection and 3D object detection is the input representation. Different
from a 2D image, a real-time LiDAR sweep could be represented in various ways, leading to corresponding
operations in subsequent components. For example, PointRCNN [19] adopts the raw-point-based representation (1)
and then uses PointNet with multi-scale sampling and grouping to learn point-wise features; 3D FCN [20] adopts the
3D-voxelization-based representation (2) and uses 3D convolutions to learn voxel-wise features; PIXOR [21] adopts
the BEV-based representation (4) and then uses 2D convolutions to learn pixel-wise features; and LaserNet [6]
adopt the range-view-based representation (3) and then use 2D convolutions to learn pixel-wise features. Some
other methods consider hybrid representations. VoxelNet [22] proposes a voxel-feature-encoding (VFE) layer that
combines the advantages of both the raw-point-based representation and the 3D-voxelization-based representation.
VFE first groups 3D points according to the 3D voxel they reside in, then uses PointNet to learn point-wise features
in each 3D voxel, and finally aggregates point-wise features to obtain voxel-wise feature for each 3D voxel. The
benefit of VFE is to convert raw 3D points to the 3D voxelization-based representation and simultaneously learn
3D geometric features in each 3D voxel.

Similarly to 2D objection detection, there are usually two paradigms of 3D object detection: single-stage detection
and two-stage detection. The single-stage detection directly estimates bounding boxes, while the two-stage detection
first proposes coarse regions that may include objects and then estimates bounding boxes. The single-stage detection
directly follows (8). To implement the detection function h(⋅), a deep-neural-network architecture usually includes
two components: a backbone, which extracts deep spatial features, and a header, which outputs the estimations. For
a backbone, all these methods use 2D/3D convolutional neural networks with multiscale, pyramidal hierarchical
structure. One off-the-shelf backbone structure is feature pyramid networks [23]. A header is usually a multitasking
network that handles both category classification and bounding box regression. It is usually small and efficient.
Some off-the-shelf header structures are single shot detector [24] and other small convolutional neural networks.
The two-stage detection implements the detection function h(⋅) in two stages; that is,

{ri}
R
i=1 = h1(S), (9a)

{oi}
O
i=1 = h2(S,{ri}

R
i=1), (9b)

where ri is a set of parameters that describes the ith proposed region in the 3D space7. The proposal-generation
stage (9a) proposes several 3D regions that may include objects inside; and the bounding-box-estimation stage (9b)
extracts 3D points from those proposed regions and estimates the precise object positions.

For example, PointRCNN is a recent work that follows the two-stage detection include PointRCNN [19]. In the
proposal-generation stage, PointRCNN uses PointNet++ as the backbone and proposes the bin-based localization
to propose regions. The bin-based localization first finds the bin associated with the center location of an object

7There are multiple approaches to parameterizing a 3D region [19].
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and then regresses the residual. In the bounding-box-estimation stage, PointRCNN use canonical transformation to
align 3D points in each proposed region and PointNet to estimate the parameters of 3D bounding boxes.

To summarize, the input representation plays a crucial role in the LiDAR-based detection. The raw-point-based
representation provides complete point information, but lacks the spatial prior. PointNet has become a standard
method to handle this issue and extract features in the raw-point-based representation. The 3D voxelization-based
representation and the BEV-based representation are simple and straightforward, but result in a lot of empty voxels
and pixels. Feature pyramid networks with sparse convolutions can help address this issue. The range-view-based
representation is more compact because the data is represented in the native frame of the sensor, leading to e.ficient
processing, and it naturally models the occlusion. But objects at various ranges would have significantly different
scales in the range-view-based representation, it usually requires more training data to achieve high performance.
VFE introduces hybrid representations that take advantages of both the raw-point-based representations and the 3D
voxelization-based representation. The one-stage detection tends to be faster and simpler, and naturally enjoys a
high recall, while the two-stage detection tends to achieve higher precision [25].

Fusion-based detection. A real-time LiDAR sweep provides a high-quality 3D representation of a scene; however,
the measurements are generally sparse and only return instantaneous locations, making it difficult for LiDAR-based
detection approaches to estimate objects’ velocities and detect small objects, such as pedestrians, at range. On
the other hand, RADAR directly provides motion information and 2D images provides dense measurements. It
is possible to naively merge detections from multiple modalities to improve overall robustness, but the benefit of
this approach is limited. Following the end-to-end fashion in deep neural networks, early fusion is believed to be
a key technique to significantly improve the detection performance; however, it remains an unresolved problem
to design an effective early-fusion mechanism. The main challenges are: (1) measurements from each modality
come from different measurement spaces. For example, 3D points are sparsely scattered in a continuous 3D space,
while images contain dense measurements supported on a 2D lattice; (2) measurements from each modalty are
not perfectly synchronized. LiDAR, camera and RADAR capture the scene at their own sampling frequencies;
and (3) sensing modalities have unique characteristics. The low-level processing of the sensor data depends on the
individual sensor modality, but the high-level fusion needs to consider the characteristics across multiple modalities.

Some existing early-fusion-based detection systems include MV3D [8], F-PointNet [26], PointFusion [27],
ContinuousConvolution [28] and LaserNet++ [29]. Each of these works has shown that adding image data can
improve detection performance, especially when LiDAR data is sparse; however, the benefit is not substantial and
there is no consensus on a system prototype or a basic operation. This makes the industry hard to overturn the
previous late-fusion-based approaches.

To summarize, it remains an open problem to design an early-fusion-based detection system. Most designs are
based on concatenation of intermediate features from both images and 3D point clouds, allowing the networks to
figure out how to merge them. So far, there has been no specific design to handle the unsynchronization issue of
multiple sensors, which might be implicitly handled by learning from large-scale training data.

Datasets. High-quality datasets are required to train any of the referenced machine learning models. KITTI [30]
is the most commonly used autonomous-driving dataset, which was released in 2012 and has been updated several
times since then. Most 3D object detection algorithms are validated on KITTI; however, KITTI is a relatively
small dataset and does not provide detailed map information. Several autonomous-driving companies have recently
released their datasets, such as nuScenes8, Argoverse9, Lyft Level 5 AV dataset10 and the Waymo open dataset11.

Evaluation metrics. To evaluate the detection performance, standard evaluation metrics in academia are the
precision-recall (PR) curve and average precision (AP); however, there is no standard platform to evaluate the
running speed of each model. On the other hand, industry considers more detailed evaluation metrics to check the
detection performances. For example, practitioners would check the performances at various ranges, shapes, sizes,
appearances, and occlusion levels to get more signals. They would also check the influences on the subsequent
modules, such as object tracking, future trajectory prediction, and motion planning to obtain the system-level metrics.

8https://www.nuscenes.org/
9https://www.argoverse.org/
10https://level5.lyft.com/dataset/
11https://waymo.com/open

https://www.nuscenes.org/
https://www.argoverse.org/
https://level5.lyft.com/dataset/
https://waymo.com/open
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C. Real-world challenges

With the growth of deep learning, the perception module has achieved tremendous improvements. Some practi-
tioners no longer consider it as the technical bottleneck of autonomous driving; however, the perception module is
still far from perfect. Here are a series of challenges in the perception module.

High cost. A self-driving vehicle is usually equipped with one or more LiDARs and computing devices, such
as GPUs and other specialized processors, which are expensive. The high cost makes it formidable to maintain
a scaled fleet of autonomous vehicles. It remains an open problem to exploit information from real-time LiDAR
sweeps using low-cost computation;

Tradeoffs between effectiveness and efficiency. A self-driving vehicle should react to its surroundings in real-
time. It would be meaningless to pursue a high-precision perception module when it introduces too much latency;
however, researchers tend to focus much more on the effectiveness than the efficiency of an algorithm;

Training data deluge. A modern perception module heavily depends on machine learning techniques, which
usually need as much training data as possible; however, it takes a lot of time and computational resources to handle
large-scale training data. It remains a yet to be resolved problem to effectively choose a representative subset of
training data from the entire dataset, which would significantly accelerate the product development;

Long-tail issues. There are countless traffic conditions where large-scale training data cannot cover all the
possibilities. It remains an unresolved problem to find and handle corner cases, especially detecting objects that
never appear in the training data;

Research conversion. In academia, research tends to design algorithms based on clean and small-scale datasets.
It turns out that many effective algorithms work well for those clean and small-scale datasets, but are ineffective
on noisy and large-scale datasets. Meanwhile, some algorithms that work well on large-scale datasets do not work
well on small-scale datasets [6]. These discrepencies can reduce the usefulness of research results when applied to
real-world problems. Industry should consider providing representative datasets and perhaps even a computational
evaluation platform that allows people to compare various methods at full industrial scale; and

Evaluation metrics. Objects in a scene have various levels of interactions with an autonomous vehicle. Incorrect
estimations of some objects would lead to much bigger consequences than that of other objects; however, the PR
curve and AP give uniform weights to all the samples. Additionally, the PR curve and AP do not clearly reflect
corner cases, which have only a small sample size; Thus, improving the PR curve and AP do not necessarily lead
to a better behavior of an autonomous vehicle. It is often more important to slice the test data and look at the
performance over subsets of high-impact cases in addition to overall AP. A standardized simulator could also be
developed to provide some system-level metrics.

VI. SUMMARY AND OPEN ISSUES

The field of autonomous driving is experiencing rapid growth. Many techniques have become relatively mature;
however, an ultimate solution for autonomous driving has yet to be determined. At the current stage, LiDAR is
an indispensable sensor for building a reliable autonomous vehicle, and advanced techniques for 3D point cloud
processing and learning are critical building blocks for autonomous driving. In this article, we surveyed recent
developments in the area of 3D point cloud processing and learning and presented their applications to autonomous
driving. We described how 3D point cloud processing and learning makes a difference in three important modules
in autonomous driving: map creation, localization and perception.

With the rapid development of 3D point cloud processing and learning, the overall performances of the map
creation, localization and perception modules in an autonomous system have been significantly improved; however,
quite a few challenges remain ahead. Here we briefly mention a few important open issues from a big picture
perspective12.

How should we make processing and learning algorithms scalable and efficient? Now we are still in the
developing phase and autonomous vehicles are tested in a limited number of canonical routes or over a small area.
In the near future, autonomous vehicles might be tested in a city/country scale, which needs a city/country-scale
HD map. This requires scalable algorithms to create and update HD maps. Now an autonomous vehicle is usually

12Adversarial attack is also a potential issue; however, it is not one of the most critical technique challenges at the current stage because
the current techniques are far away from the performance level where adversarial attack could be a major concern. Meanwhile, we need to
consider adversarial attack, so that we can avoid optimizing a solution that may have a non-considered major issue at the end.
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equipped with a 64-line LiDAR, which still produces relatively sparse point clouds. In the near future, LiDAR
might have many more lines and produce much denser point clouds. This requires more efficient algorithms to
achieve LiDAR-to-map localization and 3D object detection in the real-time;

How should we make processing and learning algorithms robust enough to handle corner cases? We can
collect large amounts of real-world sensor data and generate large amounts of simulated sensor data, but we need to
deliberately select the most representative data to improve the generality of the algorithms. At the same time, one
has to face the fact that all learning algorithms depend on training data, which can never cover all the possibilities.
To address this issue, one key research area is to improve the uncertainty estimation of an algorithm, because this
allows a system to react conservatively when the learned components are not confident. This requires reasoning
both about the known uncertainty from the training data and also the more challenging uncertainty from cases that
are not covered by the training data;

How should we develop processing and learning algorithms with a faster iteration speed? We want more
data and more complicated algorithms to achieve better performance for autonomous driving; meanwhile, we want
efficient and practical algorithms to accelerate product development, which is also critical. Practitioners in industry
should collaborate closely with researchers in academia to increase the research conversion rate; and

How should we evaluate processing and learning algorithms? Currently most processing and learning
algorithms are evaluated on specific model-level metrics to meet the criteria of the corresponding tasks; however,
these model-level metrics often do not fully correlate with system-level metrics that reflect the overall behavior.
Along these same lines, the research community often focuses on improving the average performance, but there
needs to be an increased focus on improving the rare long-tail cases that are really critical for a real-world system.
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