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Abstract
Discovering and exploiting shared, invariant neural activity in electroencephalogram (EEG)
based classification tasks is of significant interest for generalizability of decoding models across
subjects or EEG recording sessions. While deep neural networks are recently emerging as
generic EEG feature extractors, this transfer learning aspect usually relies on the prior as-
sumption that deep networks naturally behave as subject- (or session-) invariant EEG feature
extractors. We propose a further step towards invariance of EEG deep learning frameworks
in a systemic way during model training. We introduce an adversarial inference approach
to learn representations that are invariant to inter-subject variabilities within a discrimina-
tive setting. We perform experimental studies using a publicly available motor imagery EEG
dataset, and state-of-the-art convolutional neural network based EEG decoding models within
the proposed adversarial learning framework. We present our results in cross-subject model
transfer scenarios, demonstrate neurophysiological interpretations of the learned networks,
and discuss potential insights offered by adversarial inference to the growing field of deep
learning for EEG.

IEEE Access

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in
whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all
such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric
Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and all
applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall require
a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Copyright c© Mitsubishi Electric Research Laboratories, Inc., 2020
201 Broadway, Cambridge, Massachusetts 02139





This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2971600, IEEE Access

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2020.DOI

Learning Invariant Representations from
EEG via Adversarial Inference
OZAN ÖZDENIZCI1, (Student Member, IEEE), YE WANG2, (Senior Member, IEEE), TOSHIAKI
KOIKE-AKINO2, (Senior Member, IEEE), and DENIZ ERDOĞMUŞ1, (Senior Member, IEEE)
1Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115, USA
2Mitsubishi Electric Research Laboratories (MERL), Cambridge, MA 02139, USA

Corresponding author: Ozan Özdenizci (oozdenizci@ece.neu.edu).
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ABSTRACT Discovering and exploiting shared, invariant neural activity in electroencephalogram (EEG)
based classification tasks is of significant interest for generalizability of decoding models across subjects
or EEG recording sessions. While deep neural networks are recently emerging as generic EEG feature
extractors, this transfer learning aspect usually relies on the prior assumption that deep networks naturally
behave as subject- (or session-) invariant EEG feature extractors. We propose a further step towards
invariance of EEG deep learning frameworks in a systemic way during model training. We introduce
an adversarial inference approach to learn representations that are invariant to inter-subject variabilities
within a discriminative setting. We perform experimental studies using a publicly available motor imagery
EEG dataset, and state-of-the-art convolutional neural network based EEG decoding models within the
proposed adversarial learning framework. We present our results in cross-subject model transfer scenarios,
demonstrate neurophysiological interpretations of the learned networks, and discuss potential insights
offered by adversarial inference to the growing field of deep learning for EEG.

INDEX TERMS adversarial learning, brain-computer interface, deep neural networks, electroencephalo-
gram, invariant representation, motor imagery

I. INTRODUCTION

RAPID progress of deep learning in computer vision
with the emergence of large image data sets and com-

putational resources over the last decade motivated a vari-
ety of studies exploring deep neural networks in decoding
information from electroencephalographic (EEG) data [1],
[2]. This interest was particularly focused on EEG-based
brain-computer interface (BCI) technology which is primar-
ily motivated by an aim to provide a neural control channel
for individuals with severe neuromuscular disorders [3], [4].
Developing BCI systems mainly rely on robust decoding of
user (subject) intentions from EEG, under the prior belief that
EEG encodes the information on such intent. To that end,
convolutional neural network (CNN) based feature extractors
became powerful generic EEG signal processing tools, alle-
viating the need for manual feature extraction [2], [5].

One of the main challenges in EEG classification is coping
with the change in data distributions across different subjects
or recording sessions, well known as the problem of transfer
learning [5–7]. Particularly in cross-subject transfer, the aim

is to discover and exploit shared, invariant neural structures
across subjects towards the primary goal of eliminating or re-
ducing system calibration times for people with neuromuscu-
lar disabilities. Conventional machine learning approaches in
addressing cross-subject invariance mostly focus on regular-
izing classifiers [8] or feature extractors [9], [10] using other
subjects’ data, as well as learning population level common
spatial bases dictionaries [11], [12]. Such methods are shown
to yield promising results when learned representations are
regularized not to overfit to the subject pool. However from a
deep feature learning standpoint, current approaches rely on
the hypothesis that the deep, capable network architectures
will internally learn robust representations (features) during
training, that are generalizable across subjects and/or ses-
sions [13–16] (cf. Section II-A for a detailed look). Neverthe-
less this assumption can be naturally constrained given that
most neuroimaging datasets are of smaller scale than those
of images or videos, which further restrains the progress of
deep learning in cognitive neuroscience.

In light of recent work on invariant representation learning
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with neural networks [17], [18], we present in this paper
an adversarial inference approach to learn nuisance-invariant
representations from EEG. Particularly, we aim to learn
representations that are invariant to cross-subject variabilities
within a discriminative neural network setting. We recently
explored a similar idea in EEG-based biometric identification
systems for inter-recording invariance with promising results
[19]. Here, we hypothesize that an adversarial regularization
towards learning subject-invariant representations can shed
light on current EEG deep learning studies to develop EEG
decoding models that systematically consider the general-
izability problem. We propose our adversarial training ap-
proach independent of the EEG deep learning architecture.
In experimental evaluations, using a publicly available EEG
dataset, we demonstrate the impact of adversarial discrimi-
native training on three state-of-the-art neural network archi-
tectures for EEG decoding (i.e., EEGNet [15], DeepConvNet
and ShallowConvNet [14]). We further employ the layer-
wise relevance propagation method [20] for the trained neural
networks to investigate the neurophysiological signatures
that subject-invariant models exploit. We compare our results
with regards to the non-adversarially trained counterpart of
each architecture, and finally discuss the benefits offered by
adversarial inference to the field of deep learning for EEG.

Contributions of this paper are three-fold: (1) an adversar-
ial inference approach to learn invariant representations for
deep learning based EEG decoding models is presented, (2)
implementation and evaluations of this approach for subject-
invariant discriminative EEG feature learning are performed
in cross-subjects model transfer scenarios, and (3) visual
demonstrations of the neurophysiological interpretability of
invariant representation learning models are revealed.

II. RELATED WORK
A. DEEP LEARNING IN EEG
Over the last two decades, deep neural networks have been
widely explored as generic feature extractors for EEG, partic-
ularly in the context of developing brain interfaces [2]. A sig-
nificant collection of work uses convolutional architectures
that are capable of exploiting temporal, spectral and spatial
structures from input raw EEG. Applications of such models
were thoroughly studied for decoding motor imagery [14],
[21], [22], visually evoked potentials (VEP), which was first
demonstrated with P300 detection on two users’ data [23],
steady-state visually evoked potentials [24], as well as for
rhythm perception from EEG during auditory stimuli [25].
In other respects, EEG is translated into different network
input forms, such as topographical images [26], combina-
tions of different spectral EEG components [16], topology-
preserving multi-spectral images (i.e., EEG movies) within
recurrent-CNNs [13], or frequency domain representations
[27], [28]. Nevertheless, a large portion of existing works
were either limited by not being generalizable to different
EEG decoding problems, or being offline studies lacking
demonstrations of cross-subjects generalization [5].

Recent examples of CNNs in EEG decoding introduce

non-task-specific architectures for discriminative feature ex-
traction; specifically DeepConvNet, ShallowConvNet [14],
and EEGNet [15]. Further progress on assessing neurophys-
iological features extracted within the deep learning black-
boxes made these tools more interpretable [14], [29], [30].
Yet, most studies rely on the intuition that the deeper and
more capable the architecture, learned features would be less
sensitive to variations across a large dataset and potentially
be transferable across-subjects [13], [16]. With a similar aim
in [31], transfer capability of a convolutional autoencoder
was assessed by training with cross-subject validation sets,
which tends to introduce a model selection bias at early
validation stopping and makes the learned models inap-
plicable for plug-in model transfer. Also recently, across-
subjects transfer capabilities of motor imagery [21], as well
as VEP [32] decoding CNN models were demonstrated only
by fine-tuning global parameters to reduce calibration times.
Notably in [16], leave-one-out cross-subject generalizability
of the proposed architecture was demonstrated successfully,
however relying on the deep capability of the network with
no explicit approach towards imposing subject-invariance
within the model. In [33] joint adversarial training methods
were used to transfer knowledge from large, annotated im-
age databases to learn generalizable EEG feature extractors,
while restricting the EEG input representations to match with
image dataset CNN architectures. Recently, an end-to-end
CNN for cross-subject EEG decoding using a deep domain
adaptation approach was presented [34], while assuming
availability of target domain data during model training
which makes it hardly applicable to real-time brain interface
control problems. In this respect, we highlight that existing
EEG deep learning methods do not explicitly ensure inferring
subject-invariant representations during discriminative model
training, which is left to be explored.

B. ADVERSARIAL REPRESENTATION LEARNING
Adversarial representation learning can be viewed as si-
multaneously learning to predict a dependent variable from
a representation, while exploiting an adaptive dependence
measure between these two to also learn the representation
itself such that this dependence is minimized. The history
of adversarial learning methods in data science goes back
as far as Schmidhuber’s principle of predictability minimiza-
tion introduced for unsupervised learning of distributed non-
redundant representational units from data [35]. The princi-
ple suggests learning an adaptive predictor of each unit that
uses the remaining units, while each individual unit trying to
minimize its predictability. This eventually enables learning
statistically independent representational units, which still
combine to become descriptive. More recently with gener-
ative adversarial networks (GAN), a generative model can
be learned to synthesize realistic data samples from random
noise, while an adversarial classifier has the antagonistic
objective of identifying real and generated data samples [36].

Progressive work of our interest focuses on using adver-
sarial training for the latent space, instead of the output space
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as in GANs, particularly to learn invariant latent represen-
tations by disentangling specific attributes (e.g., nuisance
variables) from the representation. A significant amount of
work tackles this problem from a generative perspective,
where variational autoencoders (VAEs) are censored by con-
straining the encoded latent space to be invariant to specific
attributes either with an invariance-enforcing kernel-based
penalty term [37], or with adversarial training objectives that
exploits a simultaneously learned attribute classifier loss [38].
Similar approaches to invariant representation learning are
also proposed with discriminative perspectives tailored to
specific prediction tasks, such as learning attribute-invariant
fair clusters [39], or jointly training a classifier with an
adversarially censored VAE to learn fair classifiers [40].

Considering fully-discriminative approaches that do not
require learning a generative decoder counterpart, adversarial
discriminative representation learning can be observed as
a domain adaptation problem when the nuisance variable
is binary. Assuming that the two domains (source and tar-
get) are the nuisance variables, domain-invariant predictive
representations can be adversarially learned to minimize a
measure of domain discrepancy. Most of the existing ap-
proaches to this problem in image processing assume target
data to be available at training time [41–43], which makes
them inapplicable to the problem of transferring EEG repre-
sentations across subjects. From another perspective, recent
work studies this as an adversarial training game that aims
to maximize task-specific prediction certainty from learned
representations, while minimizing the certainty of inferring
the nuisance variables causing such domain shift from these
representations [17], or classifier outputs [18]. Importantly,
these advancements in deep, invariant, and discriminative
feature learning were not particularly explored for EEG.

It is important to note that in this work we are only focus-
ing on partially supervised cases where nuisance variables
that represent variability across data are specified, while at
the other extreme are fully unsupervised methods where deep
networks are trained to disentangle factors of variation in data
without explicitly specifying the source of variability.

III. METHODS
A. NOTATION AND PROBLEM DESCRIPTION
Let {(Xi, yi, si)}ni=1 denote the data set consisting of n ob-
servations coming from a data generation process with X ∼
p(X|y, s), y ∼ p(y), and s ∼ p(s), where Xi ∈ RC×T is
the raw EEG data at trial i recorded from C channels for T
discretized time samples, yi ∈ {0, 1, . . . , L− 1} is the corre-
sponding condition (i.e., class) label, and si ∈ {1, 2, . . . , S}
denotes the subject identification (ID) number for the person
that the trial EEG data is collected from across S subjects that
our data set is constituted with. Note that for our problem of
interest, the underlying but reasonable assumption here is s
and y being marginally independent.

Given training data, the aim is to learn a discriminative
EEG decoder model that predicts y from observations X . For
such a model to be generalizable across subjects, ideally the

predictions should be invariant to s, which will be unknown
at test time. We regard s as some nuisance parameter that is
involved in the EEG data generation process, and aim to learn
a parametric model which can be generalized across subjects
and learns features (representations) that are invariant to s.
A similar methodology was recently utilized in our previous
work for session-to-session feature invariance [19].

B. ADVERSARIAL DISCRIMINATIVE MODEL TRAINING
Given the training data set, we train a deterministic en-
coder network with parameters θe to learn representations
h = f(X; θe). Specifications of the encoder network are
further discussed in Section IV-B. Obtained representations
are used as input separately to both a classifier with param-
eters θc to estimate y, as well as an adversary network with
parameters θa, which aims to recover the nuisance variable
s. Respectively, the classifier and adversary networks are
modeling the likelihoods qθc(y|h) and qθa(s|h). In order to
filter factors of variation caused by s within h, we propose
an adversarial game. The adversary is trained to predict s
by maximizing the likelihood qθa(s|h), while at the same
time, the encoder is trying to conceal information regarding
s that is embedded in h by minimizing that likelihood, as
well as retaining sufficient discriminative information for the
classifier to estimate y by maximizing qθc(y|h). Overall, we
train these networks simultaneously towards the objective:

θ̂e, θ̂c, θ̂a = arg min
θe,θc

max
θa
L(θe, θc, θa), (1)

where the loss function is denoted by:

L = EhEy[− log qθc(y|h)] + λEhEs[log qθa(s|h)], (2)

with θe represented through h = f(X; θe), and a higher
adversarial regularization weight λ > 0 enforcing stronger
invariance trading-off with discriminative performance. The
optimization algorithm uses stochastic gradient descent (or
ascent) alternatingly for the adversary and the encoder-
classifier networks to optimize Eq. (1) (see Algorithm 1).
This approach is motivated by the work on adversarially
learned invariant representations in discriminative model
training [17], [18]. Accordingly, the theoretical foundations
on the convergence of such an adversarial game was previ-
ously studied in various settings [17], [18], [43]. Note that in
Algorithm 1, setting λ = 0 would indicate training a regular
CNN, whereas λ < 0 would correspond to forcing the en-
coder to exploit subject-variant task-discriminative features,
which is not expected to be favorable for transfer learning.
An overview of the network is illustrated in Figure 1.

IV. EXPERIMENTAL STUDIES
We perform experiments on a publicly available EEG dataset
for motor imagery decoding [44]. Particularly, motor imagery
based BCI systems rely on detection of evident contralateral
desynchronization of oscillatory EEG rhythms over sensori-
motor areas following imagination of a movement [4].
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EEG Data: X

Convolutional
Encoder

h = f (X ; θe)

Classifier

qθc(y|h)

Adversary
qθa(s|h)

Ladv = λE[log qθa(s|h)]

Lcla = E[− log qθc(y|h)]

Regular CNN

min
θc,θe

max
θa
,min
θe

FIGURE 1. Overall adversarial model training architecture for invariant discriminative representation learning, illustrating the convolutional EEG feature encoder,
adversary, and classifier networks. Networks are simultaneously trained towards the objective in Eq. (1), as illustrated by the loss functions of the classifier (Lcla)
and the adversary (Ladv) in the dashed boxes. The gray shaded region indicates the regular CNN components with a cascaded encoder and classifier.

Algorithm 1 Adversarial discriminative model training
Input: training data {(Xi, yi, si)}ni=1, adv. weight λ > 0
Output: θ̂e, θ̂c, θ̂a

1: Randomly initialize θe, θc, θa
2: for t = 1 to #epochs do
3: for b = 1 to #batches do
4: Sample batch of M trials {(Xm, ym, sm)}Mm=1

5: Update θa with stochastic gradient ascent by:

∇θa
M∑

m=1

λ log qθa(sm|hm = f(Xm; θe))

6: Update θe, θc with stochastic gradient descent by:

∇θe,θc
M∑

m=1

[− log qθc(ym|hm) + λ log qθa(sm|hm)]

7: end for
8: end for

A. DATASET DESCRIPTION
The original dataset [44] consisted of single-session data
from 52 healthy subjects, however we discarded 4 subjects’
data due to irregular timestamp alignments and unequal
number of trials per class. This resulted in a set of 48
subjects’ EEG data for our empirical assessments. During
the experiments, subjects were sitting in front of a computer
screen and were instructed to perform cue-based tasks while
64-channel EEG [45] were recorded at a sampling rate of 512
Hz. These tasks included movement imagination of the left or
right hand during three second trials, for 100 trials per hand
in randomized order. This resulted in a total of 200 trials per
subject, with an associated binary class label (0 for left, 1 for
right hand). The original dataset also included other prelim-
inary cue-based recordings as well, which were however not
part of our experimental analyses. Further specifications of
the dataset can be accessed from [44].

B. NEURAL NETWORK ARCHITECTURE
Beyond design specifications of the network architecture,
naturally, any discriminative representation learning network
can be adversarially trained with a same approach. We

demonstrate our empirical results using three state-of-the-
art CNN models proposed for EEG decoding, namely the
EEGNet [15], DeepConvNet and ShallowConvNet [14] ar-
chitectures. Within the convolutional layers, temporal, spa-
tial, and spatio-temporal convolutions for aggregation of
neural features in h are performed. Subsequently, all three
architectures have a final dense linear classification layer
which we separated from the preceding encoder layers, as
the classifier block. This resulted in the complete convolu-
tional architectures except the final dense layer constructing
the encoder, whereas the final dense layer constructing the
classifier network. Further specifications on how the en-
coder architectures were implemented can be accessed in
Appendix A. Parameter choices were based on the original
descriptions in the manuscripts, as well as their provided
software implementations online [14], [15].

Regarding the classifier and adversary blocks, we simply
used the linear classification approach of the networks we
inherited. The classifier utilizes h as an input to a fully-
connected layer with L softmax units for task discrimination.
Similarly for the adversary, h is used as input to a fully-
connected layer with S softmax units for subject ID discrim-
ination, to obtain normalized log-probabilities that will be
used to calculate the cross-entropy losses in Eq. (2).

C. MODEL TRAINING AND EVALUATION
All raw EEG data was initially resampled to 128 Hz. This
was performed both to save computational time, as well as
to construct a common network input basis for all three
architectures [14], [15]. As the EEG pre-processing steps, we
common average referenced each subject’s EEG data, and
bandpass filtered the signals between 4 and 40 Hz with a
causal third order Butterworth filter. We epoched each trial
in the [0.5-2.5] seconds of post-cue time interval. No offline
channel selection or artifact correction was performed. This
resulted in EEG trials with dimensions of 64-channels by 256
time samples as inputs to the networks.

We evaluated adversarial and non-adversarial (regular
CNN) training of each encoder network in simulated online
decoding studies (i.e., in cross-subjects decoding scenarios
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with direct transfer of learned models to novel subjects with-
out subject-specific calibration or fine-tuning). We generate
the transfer set in 6 folds (i.e., 8 of the 48 subjects were
held out in turns), yielding cross-subject predictions for each
subject with models that are learned from a separate group
of 40 subjects. This 6-fold process was also repeated 10
times by randomly changing the 8-subject transfer set and
the remaining 40-subject group folds. In total, this resulted
in 10 transfer learning prediction accuracies for every subject
in the dataset, with models that are learned from a different
(but intersecting) group of 40 subjects. During model learn-
ing from the 40 subjects, we generate a training set and a
validation set by randomly assigning 20% of the trials (i.e.,
40 out of 200) from each of the 40 subjects for the validation
set, and the remaining 80% of the trials for the training set.
This resulted in 6400 model training set trials, and 1600 trials
for the validation sets that are used by the neural network
models to monitor losses of the classifier and/or adversary.

D. IMPLEMENTATION
We implemented all models in Tensorflow [46] using the
Keras API [47]. Networks were trained with 40 training
trials per batch for at most 500 epochs with early stopping
based on the classifier loss on the validation set. Specif-
ically, if the validation loss for class prediction did not
improve (i.e., reach a new lowest value) for 10 epochs,
training was stopped and the model which resulted in the
lowest validation loss was saved. Parameter updates were
performed once per batch with Adam [48]. For the models
described in Section IV-B, and the training approach with
the classifier output L = 2 and adversary output S = 40
(see Section IV-C), the number of parameters to be learned
during training for EEGNet are: 1,872 for encoder, 258 for
classifier, 5,160 for adversary, for DeepConvNet are: 172,150
for encoder, 4,802 for classifier, 96,040 for adversary, and for
ShallowConvNet are: 103,040 for encoder, 2,402 for classi-
fier, 48,040 for adversary. Our implementations are available
at: https://github.com/oozdenizci/AdversarialEEGDecoding.

E. INTERPRETATION OF LEARNED NETWORKS
To explore the neurophysiological signatures that the net-
works exploit, we employ layer-wise relevance propagation
(LRP) [20] as a feature interpretation method which was
recently shown as a powerful approach to study interpretabil-
ity of EEG deep learning models [29]. Specifically, LRP
decomposes the network output score into relevances of
each unit of the network input (i.e., pixels of the EEG data
matrix X), according to its contribution to the classification
decision. These relevance scores for each pixel of X are then
visualized as what we denote as a feature relevance map.

Let R(l)
i denote the relevance of neuron i in layer l. To

investigate classification decisions, firstly, the neuron with
the highest score at the network output layer prior to soft-
max activation is assigned a relevance value that is equal
to its score, while all the other output layer neurons are
assigned a relevance value of zero. Subsequently, layer by

layer, relevances of each neuron at an upper layer l + 1
are redistributed to the neurons at the adjacent lower layer
l through a backward pass until the input layer l = 1 is
reached, according to the following rule:

R
(l)
i =

∑

j

zji∑
i′ (zji′)

R
(l+1)
j , (3)

where zji is the weighted activation of a neuron i at layer
l onto neuron j at layer l + 1 during the forward pass
after training. In our implementations, we utilize a slight
variant of the LRP framework called ε-LRP from the original
work [20], which only differs with an additional term in the
denominator to preserve numerical stability.

To investigate the feature relevances for classifier decisions
of cross-subjects transferred models, the backward pass was
initiated from the classifier output neuron with the highest
score out of the L neurons, prior to softmax activation.
Similarly, to demonstrate how the networks can exploit user-
specific EEG patterns into the highest score out of the S out-
put neurons of the adversary for user identification, we also
generated feature relevance maps for the adversary decisions
on the validation set after completion of model training.

V. RESULTS
A. CHOOSING THE ADVERSARIAL REGULARIZATION
WEIGHT PARAMETER
An intuitive way to choose the adversarial regularization
weight λ is by cross-validation (parameter sweep). We train
models with various choices of λ > 0, and favor decreases
in adversary accuracy with increasing λ, while maintaining a
similar classifier accuracy on the validation sets with respect
to not using an adversary (λ = 0). Figure 2 demonstrates
these changes by varying λ for each architecture. In this
context, we define the adversary accuracy as the percentage
of correctly predicted trials in subject identification by the
adversary network (i.e., it is favored if this value is small),
whereas the classifier accuracy is defined as the percentage
of correctly predicted trials in class label discrimination by
the classifier network (i.e., it is favored if this value is high).

For the non-adversarial models (λ = 0) we trained
the adversary network alongside the encoder-classifier with
no adversarial loss feedback, and assessed the amount of
subject-discriminative information (i.e., leakage) in the en-
coded representations. We observe that regular CNNs can in-
deed learn features that exploit subject-specific information,
leading to a 48.5% average adversary accuracy to discrim-
inate 40 subjects with EEGNet, 31.4% with DeepConvNet
and 62.6% with ShallowConvNet. Increasing λ censors the
encoder as expected and suppresses adversary accuracies.
However a very strong λ can force the encoder to lose task-
discriminative information, leading to decreasing classifier
accuracies on the within-subject validation sets as observed
in Figure 2. Hence we determine an operating λ range where
the classifier does not start to perform very poorly (i.e.,
similar performance as λ = 0) and adversary accuracy is low.
Specifically, we proceed by choosing λ = 0.03 for EEGNet,
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(b) DeepConvNet
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FIGURE 2. Classifier versus adversary accuracies on the validation set after model training for (a) EEGNet, (b) DeepConvNet, and (c) ShallowConvNet. Vertical
dashed black lines denote the chance level for adversary accuracy (i.e., 40-class subject identification). For the colored box patches, center marks denote the
means across training folds and repetitions, and widths denote ±1 standard deviation intervals in both dimensions.
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FIGURE 3. Distribution of the differences between adversarial and regular
training accuracies averaged across repetitions. Each row/color indicates one
encoder architecture, and each dot indicates a single subject.

and λ = 0.05 for DeepConvNet as well as ShallowConvNet,
which are indicated with bold legend texts in Figure 2.

B. CROSS-SUBJECT DECODING MODEL TRANSFER
We investigate cross-subjects generalization of adversari-
ally learned invariant representations (λ > 0), in compar-
ison to non-adversarial CNN classifiers (λ = 0). Compar-
isons between the performances of adversarial versus non-
adversarial learning methods were evaluated by repeated-
measures Analysis of Variance (ANOVA) statistical tests for
each architecture. We model the classification accuracies
as the dependent variables obtained from the same subject
group, and the training approach (i.e., adversarial or non-
adversarial) as the categorical independent variable. We use
a repeated-measures test design since we make 10 different
cross-subject model based predictions for each subject, hence
accommodate for within-subject performance variabilities
with the same method by considering the repetitions.

Figure 3 presents the differences in accuracies obtained
with adversarial versus non-adversarial methods per subject,

averaged across repetitions. In some cases, adversarial train-
ing yields more than 4% increases in cross-subject model
transfer accuracies (e.g., 14% with one subject for Deep-
ConvNet), indicating potential benefits of invariant represen-
tations for some subjects. Repeated-measures ANOVA tests
indicated a significant performance increase with adversarial
training for DeepConvNet (p = 0.003) and ShallowConvNet
(p = 0.02), rejecting the null hypothesis that average accu-
racies across repetitions and subjects are equal. However we
did not observe significant differences across the population
for EEGNet (p = 0.59). We consider this to be potentially
due to EEGNet being a more optimized architecture than
DeepConvNet or ShallowConvNet in terms of the number of
parameters to be learned and manipulated. Most importantly,
generalization performances do not degrade significantly by
adversarial regularization of deep EEG feature extractors.

C. SINGLE-TRIAL FEATURE INTERPRETATIONS

Figure 4 illustrates feature relevance maps for classifier
decisions in three arbitrary single-trial cases, when learned
models are transferred for cross-subject prediction. For all
relevance maps, green color indicates a zero relevance score
whereas an intensity of red indicates a positive, and an
intensity of blue indicates a negative score. To exemplify
from Figure 4(a) for a trial of subject 8 where ytrue = 1
(right hand), the regular EEGNet architecture performs a
wrong prediction of ŷ = 0 with a confidence of p0 = 0.53.
However, the adversarially regularized EEGNet (λ = 0.03)
performs a correct prediction of ŷ = 1 with probability
p1 = 0.61, through the demonstrated feature relevance
maps. An artifact-free classification of motor imagery is
ideally expected to be performed via EEG evidences from
motor cortical regions (i.e., electrodes C3, C4). However
the regular EEGNet is entangling classifier predictions with
class-irrelevant EEG artifacts from occipital electrodes (i.e.,
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FIGURE 4. Feature relevance map illustrations of non-adversarial versus adversarial models for class prediction in cross-subject model transfer scenarios. Different
encoder architectures are demonstrated in (a), (b) or (c) during three arbitrary trials from different subjects. Specifications of the subject ID, trial number, and the
true class label of the trials are provided in the subcaptions. Image matrices demonstrate the relevance maps for each EEG channel and time sample. Top image
matrices relate to the non-adversarial models (λ=0), whereas the below image matrices relate to their adversarially trained counterparts. Black dotted vertical lines
on these image matrices indicate arbitrary time points for when the associated relevance scalp maps are also demonstrated where indicated with an arrow. Scalp
maps above the top image matrix, and under the below image matrix depict the time-averaged trial relevance maps. Predicted class labels in each case are
indicated with ŷ being equal to 0 (class left) or 1 (class right), together with the confidence of predictions (i.e., probability value of p0 for left or p1 for right).

Iz) as observed with strong relevance scores on the time-
averaged relevance topography. In this example, the adversar-
ially learned model was able to censor this information from
decision making as observed with the EEGNet (λ = 0.03)
time-averaged relevance topography. Same differences can
be also tracked at different time-points of the raw feature
relevance maps as shown in Figure 4(a). Particular training
set subjects who demonstrate artifactual activities across
trials can influence deep learned models for decision making
in this manner. This example illustrates how adversarial
regularization can overcome these cases to perform robust
decisions. Similar behaviors with adversarial regularization
are further presented in Figure 4(b) for DeepConvNet, and
in Figure 4(c) for ShallowConvNet, where eye blinks and
jaw/muscle movement related artifacts (e.g., electrodes F7,
AF8) are influencing incorrect decisions by regular CNNs.

Table 1 illustrates feature relevance scalp maps for cross-
subject classifier decisions, averaged across time for each
trial and across correctly predicted trials per class. For each

architecture, a different subject’s average relevance scalp
maps for left and right class predictions are presented. For
example, in the non-adversarial ShallowConvNet class left
topography for subject 13, artifactual occipital patterns are
observed. These were discarded in the adversarial counterpart
below, leading to an ideal correct decision making with the
invariant model. Similar behaviors are shown for class left
in EEGNet (for subject 4), as well as in DeepConvNet (for
subject 3) with jaw/muscle movement related artifacts that
were unattended by adversarial training. Note that in the
DeepConvNet example, relevance scores over the motor cor-
tical areas are also strengthened with the adversarial models.

Taking a step back from cross-subject model transfer learn-
ing, Figure 5 illustrates feature relevance maps for adversary
decisions in three arbitrary validation set trials after comple-
tion of model trainings. To exemplify from Figure 5(b) for a
trial of subject 6 where ytrue = 1 (right hand imagery), the
regular DeepConvNet architecture is able to discriminate the
subject for this trial (ŝ = 6) with a very high confidence
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TABLE 1. Average feature relevance scalp map illustrations for cross-subject model transfer. Topographies are obtained by first averaging raw relevance maps
across time for each trial, and then averaging across correctly predicted trials per class. Each architecture is demonstrated with a different subject. Non-adversarial
models indicate λ=0. Adversarially trained models utilize their optimal λ choices (i.e., EEGNet λ=0.03, DeepConvNet λ=0.05, ShallowConvNet λ=0.05).
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across 40 subjects (p̃6 = 0.88), mainly relying on the
eye blink patterns of this subject as observed by the time-
averaged relevance scalp map. A further look into relevance
scalp maps for the classifier decisions (illustrated in the
dashed boxes alongside) also reveals an incorrect prediction
of the class label as ŷ = 0 even though the model weakly
exploits motor cortical patterns. Nevertheless, the adversarial
counterpart successfully misclassifies the subject of the trial
(ŝ = 34) with a close to chance level probability (p̃34 =
0.11). As the encoder was trained to censor user-specific
information, the adversary decision relies on any arbitrary
EEG pattern (e.g., motor cortical rhythms in this case) rather
than the eye blink artifacts. Accordingly, classifier prediction
is also successfully performed with high confidence for the
same validation set trial (p1 = 0.78). In Figure 5(a) and
(c), similar behaviors are presented when the adversarial
models perform fooled, incorrect subject classifications with
arbitrary EEG patterns and low confidences, whereas the
regular CNNs were successfully learning user-discriminative
EEG patterns that are encoded in the deep learned represen-
tations. These illustrations further demonstrate how classifier
predictions were corrected with the invariant models.

VI. DISCUSSION
In this work we propose a step towards invariance of deep
EEG feature extractors in a systemic way using adversarial
training methods within a discriminative framework. To the
contrary of the widely relied on assumption that deep EEG
neural network architectures internally generalize across-
subjects, we argue that an adversarial regularization approach
towards learning subject-invariant representations is likely
to extend EEG deep learning approaches. Empirical results
show that explicitly learning invariant EEG representations
from a particular subject group can indeed be useful to
generalize predictive models to novel subjects. Neurophysi-
ological interpretations of the exploited EEG patterns further

demonstrate the usefulness of our approach in cases where
artifactual training data can affect model performances.

As one concerning observation, cross-subject decoding
accuracies did not consistently show very high increases
with all networks. We highlight this to be affected by var-
ious factors such as the network architecture, as well as
the size and recording quality of the dataset to be used
for training the model. As demonstrated, potentially due to
being a more optimized architecture in terms of the number
of parameters to be learned and manipulated, EEGNet did
not significantly benefit in transfer accuracies. However the
performances did not degrade by adversarial regularization,
further showing benefits when deeper architectures were
considered. Hence we argue that our approach provides a
robust basis on invariant feature learning, and can particularly
thrive when little or artifactual training data is under consid-
eration. More importantly, feature relevance interpretations
consistently demonstrated significant advantages in certain
single-trial cases, which strongly supports our hypothesis
on the need to systematically impose invariance constraints
during conventional EEG deep learning model training.

One other limitation of our approach is related to the
selection of the model learning subject group, which can
lead to variations in accuracies for cross-subject model trans-
fer. Although adversarial learning addresses potential con-
founders regarding subject-specific variations with respect to
the rest of the model learning subject group, variability in
transfer accuracies may still be caused due to a specific set
of model learning subjects yielding good or bad discrimi-
native performance for the decoding problem. Hence, one
important aspect that still remains to be addressed is active
selection of subjects from a pool with better discriminative
task performance for transferable model learning. On another
note, even though we make online decoding evaluations, our
current approach requires temporal segmenting (e.g., trials),
which does not extend to asynchronous EEG decoding yet.
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ŝ=1
p̃1=0.91
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ŷ=1
p1=0.59
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FIGURE 5. Feature relevance map illustrations of non-adversarial versus adversarial models for user identification (i.e., adversary decisions) on samples from the
validation sets, after model training. Different encoder architectures are demonstrated in (a), (b) or (c) during three arbitrary validation set trials from different
subjects. Specifications of the true subject label (strue) and true class label (ytrue) of the trials are provided in the subcaptions. Image matrices demonstrate the
relevance maps for each EEG channel and time sample. Top image matrices relate to the non-adversarial models, whereas the below image matrices relate to their
adversarially trained counterparts. Scalp maps above the top image matrix, and under the below image matrix on the left sides depict the time-averaged trial
relevance maps for the adversary. The scalp maps on the right sides inside the dashed boxes indicate the time-averaged relevance scalp maps for the classifier
decision of the same trial. Predicted labels in each case are indicated with ŝ ∈ {1, 2, . . . , 40} or ŷ ∈ {0, 1}, together with the confidence of predictions (i.e.,
probability value of p0 or p1 for classifier predictions, and p̃ŝ for adversary predictions).

Many research studies have investigated calibration-less
EEG classification models to develop simple BCI systems for
communication [49–52]. At one end of calibration-free EEG
classification, without considering an attempt for invariant
representation learning, there exists several work on on-the-
fly calibration of adaptive BCI classifiers [53]. Most common
approaches include adjusting classifier parameters through-
out BCI system use [54], [55], where models are initialized
either by pre-trained classifiers on a subject pool [50], or
simply initialized randomly [51], [52]. In terms of initializing
such classifier models, our approach has the capability of
constructing a subject-invariant baseline as well. To further
extend this idea, besides a discriminative approach, ongoing
recent work explores EEG data augmentation using GANs
[56–61]. Such data augmentation would provide significant
insights for model training with subject-invariant augmented
EEG data, which is basically a generative approach to our
problem of interest. Recently, we approached this invariant
generative model aspect in our preliminary work for transfer
learning [62], which is further currently being explored in an
invariant EEG data augmentation context.

It is important to highlight that rather than proposing a
new, alternative deep learning architecture for EEG feature
extraction, we present a framework that can naturally be used
to regularize any existing discriminative architecture to learn
nuisance-invariant representations. Generally, regularization
of neural networks is performed with dropout layers during
model training [63]. In the context of this paper, we also
exploit our knowledge on the source of intended invariance
by adversarial censoring, and empirically demonstrate its
benefits in learning invariant EEG representations. Since we
were not interested in comparison of different deep learning
models, or comparison of deep learning methods with respect
to conventional EEG feature extraction protocols (e.g., com-
mon spatial patterns [64], [65]), we restricted our analyses
to the comparison of adversarially trained versus regularly
trained CNNs, importantly with neurophysiological interpre-
tations of these models. In the light of the presented empirical
results, we believe our approach would provide a more robust
feature-invariance basis for existing deep learning models
that are proposed for EEG-based decoding tasks.

.
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APPENDIX A ENCODER ARCHITECTURES
Tables 2, 3 and 4 demonstrate the parameter specifications
of the EEGNet [15], DeepConvNet and ShallowConvNet
[14] architectures based on the original descriptions in the
manuscripts, as well as their provided software implemen-
tations online. Encoder network inputs were defined as 64
channel EEG recordings with a sampling rate of 128 Hz for
two seconds (i.e., 256 time samples). Only for the DeepCon-
vNet and ShallowConvNet architectures, since the original
parameter choices were developed for input EEG signals
with a sampling rate of 250 Hz, all temporal convolution and
pooling kernel sizes were taken as the half of the values used
in [14], in consistency with the re-implementations by [15].
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TABLE 2. EEGNet feature encoder implementation

Layer Filters × (Kernel Size) Output Dim. Options Number of Parameters
Input EEG (1, 64, 256)

Conv2D 8× (1, 32) (8, 64, 256) no bias, padding = same 256
BatchNorm (8, 64, 256) 16
Depthwise Conv2D 2× (64, 1) (16, 1, 256) no bias, max norm = 1 1024
BatchNorm + ELU (16, 1, 256) 32
Mean Pooling (1, 4) (16, 1, 64)

Dropout (16, 1, 64) p = 0.25
Separable Conv2D 16× (1, 16) (16, 1, 64) no bias, padding = same 512
BatchNorm + ELU (16, 1, 64) 32
Mean Pooling (1, 8) (16, 1, 8)

Dropout (16, 1, 8) p = 0.25
Features (h) (1, 128) flatten

TABLE 3. DeepConvNet feature encoder implementation

Layer Filters × (Kernel Size) Output Dim. Options Number of Parameters
Input EEG (1, 64, 256)

Conv2D 25× (1, 5) (25, 64, 252) 150
Conv2D 25× (64, 1) (25, 1, 252) no bias 40,000
BatchNorm + ELU (25, 1, 252) epsilon = 10−5, momentum = 0.1 50
Max Pooling (1, 2) (25, 1, 126) strides = (1, 2)

Dropout (25, 1, 126) p = 0.5
Conv2D 50× (1, 5) (50, 1, 122) no bias 6,250
BatchNorm + ELU (50, 1, 122) epsilon = 10−5, momentum = 0.1 100
Max Pooling (1, 2) (50, 1, 61) strides = (1, 2)

Dropout (50, 1, 61) p = 0.5
Conv2D 100× (1, 5) (100, 1, 57) no bias 25,000
BatchNorm + ELU (100, 1, 57) epsilon = 10−5, momentum = 0.1 200
Max Pooling (1, 2) (100, 1, 28) strides = (1, 2)

Dropout (100, 1, 28) p = 0.5
Conv2D 200× (1, 5) (200, 1, 24) no bias 100,000
BatchNorm + ELU (200, 1, 24) epsilon = 10−5, momentum = 0.1 400
Max Pooling (1, 2) (200, 1, 12) strides = (1, 2)

Dropout (200, 1, 12) p = 0.5
Features (h) (1, 2400) flatten

TABLE 4. ShallowConvNet feature encoder implementation

Layer Filters × (Kernel Size) Output Dim. Options Number of Parameters
Input EEG (1, 64, 256)

Conv2D 40× (1, 13) (40, 64, 244) 560
Conv2D 40× (64, 1) (40, 1, 244) no bias 102,400
BatchNorm (40, 1, 244) epsilon = 10−5, momentum = 0.1 80
Square: f(x) = x2 (40, 1, 244)

Mean Pooling (1, 35) (40, 1, 30) strides = (1, 7)

Log: f(x) = log(x) (40, 1, 30)

Dropout (40, 1, 30) p = 0.5
Features (h) (1, 1200) flatten
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