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yields better super resolved MS images compared to state-of-the-art optimization-based and
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ABSTRACT

We address the problem of sharpening low spatial-resolution
multi-spectral (MS) images with their associated misaligned high
spatial-resolution panchromatic (PAN) image, based on priors on
the spatial blur kernel and on the cross-channel relationship. In
particular, we formulate the blind pan-sharpening problem within a
multi-convex optimization framework using total generalized vari-
ation for the blur kernel and local Laplacian prior for the cross-
channel relationship. The problem is solved by the alternating direc-
tion method of multipliers (ADMM), which alternately updates the
blur kernel and sharpens intermediate MS images. Numerical exper-
iments demonstrate that our approach is more robust to large mis-
alignment errors and yields better super resolved MS images com-
pared to state-of-the-art optimization-based and deep-learning-based
algorithms.

Index Terms— blind image fusion, pan-sharpening, local
Laplacian prior, total generalized variation

1. INTRODUCTION

1.1. Background

Blind multi-spectral (MS) image pan-sharpening aims to enhance
the spatial resolution of a set of spatially low-resolution MS chan-
nels, covering a wide spectral range, using their corresponding mis-
aligned spatially high-resolution panchromatic (PAN) image. Since
the original MS and PAN images are typically captured by different
sensors, from different view angles, or at different times, they are not
guaranteed to be well-aligned with each other or to share the same
blur kernel. Further, the parametric relationship between MS and
PAN images is unclear since the spectrum of PAN image only covers
a fraction of the entire spectra of MS image. In this paper, we aim to
fuse MS and PAN images without knowledge of the misalignment,
the blur kernel, or any parametric models of cross-channel relation-
ship, and to obtain images with the spatial resolution of the PAN
image and the spectral resolution of the MS images.

1.2. Related Work and Motivation

Image alignment is necessary in image pan-sharpening. Most
model-based [1–3] and learning-based [4, 5] pan-sharpening meth-
ods typically assume that the input images are pre-registered and
well-aligned. More recently introduced, blind pan-sharpening [6–8]
aims to jointly perform both registration and pan-sharpening. Most
blind pan-sharpening methods model low-resolution MS images
as a blurred and downsampled version of a target high-resolution
MS image with an unknown blur kernel, which incorporates the
unknown misalignment, and assume that the target high-resolution
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MS image and the PAN image bear certain spatial relationship.
The blind pan-sharpening approach typically solves an optimization
problem which enforces certain constraints on the blur kernel and
on the cross-channel relationship. However, these methods exhibit
limited success in MS image pan-sharpening tasks.

In this paper, we exploit newly developed regularization func-
tions in order to improve the performance of MS image pan-
sharpening. First, recent advances in pan-sharpening using local
gradient constraints (LGC) to regularize the cross-channel relation-
ship has led to significant improvement when the blur kernel is
known [9]. Thus, it is useful to explore related cross-channel pri-
ors for blind image pan-sharpening. Second, the commonly used
total variation (TV)-based regularizer applied to the blur kernel
often forces small gradients to be 0, resulting in non-trivial errors
when the ground-truth blur kernel is smooth. Meanwhile, recent
work demonstrates that Second-Order Total Generalized Variation
(TGV2) provides more flexible features than total variation [10].
Third, due to the non-convexity of the problem, some methods can
be trapped in bad local minima when misaligned displacements are
large, causing poor fusion performance [8]. Our paper exploits these
developments to contribute the following:

• We propose a novel local Laplacian prior (LLP) to regularize
the relationship between MS and PAN images, which offers
better performance than LGC.

• We use TGV2 to regularize the blur kernel, which offers
more robust and accurate estimation of the blur kernel than
existing TV-based priors.

• We adopt an initialization strategy for the the blur kernel that
helps avoid undesirable local minima in the optimization.

2. PROBLEM FORMULATION

We use X ∈ Rhw×N to denote the measured low-resolution MS
image with N spectral bands, where h, w is the height and width
of each band, respectively. We denote the measured high-resolution
PAN image as Y ∈ RHW×1, where H , W are its height and width,
respectively. The target, well-aligned and high-resolution, MS image
of consistent sharpness with Y is denoted as Z ∈ RHW×N .

To reconstruct the target image Z, we solve the following regu-
larized inverse problem:

min
Z,u

1

2
‖X−DB(u)Z‖2F + R1(Z,Y) + R2(u), (1)

in which the first component is the data fidelity term, u ∈ Rn
2×1

is the blur kernel, incorporating the misalignment and relative blur
between Z and X prior to downsampling, B(u) ∈ RHW×HW is the
Toeplitz matrix implementing the convolution due to the blur kernel
u, and D ∈ Rhw×HW is the downsampling operator. The second



term R1 characterizes the relationship between Z and Y and the
third term R2 regularizes the blur kernel.

2.1. Cross-Channel Image Prior, R1

The data-fidelity term in (1) constrains only the low-frequency com-
ponents of Z, to match those of X. To recover the high frequency
components, we incorporate information in Y using the regularizer
R1(Z,Y). Specifically, motivated by recent advances in variational
pan-sharpening [9] and guided image filtering [11], we use the local
Laplacian prior (LLP) as a penalty term.

R1(Z,Y) =
λ

2

∑
i,j

∑
k∈ωj

(
[L(Zi)]j,k − ai,j [L(Y)]j,k − ci,j

)2
,

(2)
where parameters are defined as follows: λ is a scalar factor; ωj is
the jth square window of size (2r+1)×(2r+1) in aH×W image,
with r an integer; k refers to the kth element within the window,
k = 1, 2, . . . , (2r + 1)2; ai,j and ci,j are both constant coefficients
of the linear affine transform in window ωj , corresponding to the ith

band; Zi is the ith band of Z, L(·) is a function that computes the
Laplacian of the input image, i.e., L(Z) = Z ~ S, with

S =

 0 −1 0

−1 4 −1

0 −1 0

 . (3)

2.2. Blur Kernel Prior, R2

The estimation quality of the blur kernel significantly affects the
quality of the reconstructed high-resolution MS. We assume this ker-
nel, constraining the target high-resolution MS and the measured
low-resolution MS, is smooth, band-limited, and has compact spatial
support with non-vanishing tail. We regularize the blur kernel using
the Second-Order Total Generalized Variation (TGV2), given by

R2(u) = min
p
{α1‖∇u− p‖2,1 + α2‖E(p)‖2,1}+ IS(u), (4)

where ∇u = [∇hu∇vu] ∈ Rn
2×2 are the gradients of u, p =

[p1 p2] is an auxiliary variable of the same size as∇u,

E(p) =

[
∇hp1

∇vp1 +∇hp2

2

∇vp1 +∇hp2

2
∇vp2

]
, (5)

‖X‖2,1 =
∑n
i=1

√∑m
j=1 x

2
i,j , and α1, α2 are both scalars that con-

trol the regularization strength of p’s approximation to ∇u and of
the partial derivatives of p. S =

{
S ∈ Rn

2×1|si > 0,
∑
i si = 1

}
is the a Simplex, and IS(·) is its indicator function, which ensures
that the computed blur kernel is non-negative and preserves the en-
ergy of the image, i.e., has sum equal to 1. We name our approach
as Blind pan-sharpening with local Laplacian prior and Total gener-
alized variation prior, or BLT in short.

3. PAN-SHARPENING ALGORITHM

3.1. Formulation of Lagrangian

Combining the optimization (1), with the regularizers in (2) and (4),
we introduce constraints x = ∇u − p, y = E(p), and z = u, and

apply the classical augmented Lagrangian method by minimizing

Φ(Z,u,p,A,C,x,y, z,Λ1,Λ2,Λ3)

=

N∑
i=1

[1

2
‖Xi −DB(z)Zi‖22

+
λ

2

∑
j

∑
k∈ωj

(
[L(Zi)]j,k − ai,j [L(Y)]j,k − ci,j

)2]
+ α1‖x‖2,1 +

α1µ1

2
‖x− (∇u− p)−Λ1‖2F

+ α2‖y‖2,1 +
α2µ2

2
‖y − E(p)−Λ2‖2F

+ IS(z) +
µ3

2
‖z− u−Λ3‖22 (6)

with µ1, µ2, µ3 > 0. We solve the problem using the alternating di-
rection method of multipliers(ADMM) [12] by alternating between
a succession of minimization steps and update steps.

3.2. Minimization and Update Solutions

The minimization subproblems of x and y are similar to each other
and the solutions are given by component-wise soft-thresholding.
The lth row of xt+1 and yt+1 are update using

xt+1(l) = shrink2(∇u(l)− p(l) + Λ1(l),
1

µ1
), (7)

yt+1(l) = shrink2(E(p)(l) + Λ2(l),
1

µ2
), (8)

where shrink2(e, t) = max (‖e‖2 − t, 0) e
‖e‖2

.
We use B(u)Z to denote the operator implementing the con-

volution between u and Z. Therefore, we can rewrite B(u)Z as
B(u)Z = u~Z = Z~u = C (Z)u, where C is a Toeplitz matrix
corresponding to the convolution operation. Using this notation, the
z-subproblem first solves

min
z

N∑
i=1

1

2
||DC (Zi)z−Xi||22 +

µ3

2
||z− u−Λ3||22 (9)

using conjugate gradient descent [13] and then projects the solution
onto the simplex S [14].

The {u,p}-subproblem minimizes

min
u,p

α1µ1

2
‖x− (∇u− p)−Λ1‖2F +

α2µ2

2
‖y − E(p)−Λ2‖2F .

(10)

To solve the problem efficiently, we define q = [u> p>1 p>2 ]>.
By enforcing the first-order necessary conditions for optimality, we
obtain the following linear equation:

Σq = b, (11)

where, in the interest of space, we omit Σ and b, other than noting
that Σ is a diagonal block-Toeplitz matrix, diagonalized using the
Fourier transform. Thus (11) can be efficiently solved [10].

The A,C-subproblem can be approximated as

min
ai,j ,ci,j

∑
j

∑
k∈ωj

(
[L(Zi)]j,k − ai,j [L(Y)]j,k − ci,j

)2

. (12)



Similar to guided image filtering, ai,j and ci,j can be stably
computed using L(Zi)’s local window as the input image and
L(Y)’s local window as the guide image.

The Z-subproblem in each individual channel is reformulated as

min
Zi

1

2
‖DBZi −Xi‖22 +

λ

2
‖LZi − L̂z

i ‖22, (13)

where L̂z
i is the output of guided image filtering with input image

L(Zi) and guide imageL(Y), and L is Toeplitz matrix of the Lapla-
cian. Equation (13) has a closed-form solution:

Zi = (B>D>DB + λL>L)−1(B>D>Xi + λL̂z
i ). (14)

Similar to the solution of (11), we use Fast Fourier Transform to
accelerate the computation based on [15].

Finally, the update steps are given by:
Λ1

t+1 = Λ1
t + µ(∇ut+1 − pt+1 − xt+1)

Λ2
t+1 = Λ2

t + µ(E(pt+1)− yt+1)

Λ3
t+1 = Λ3

t + µ(ut+1 − zt+1).

(15)

3.3. Initialization of u

Due to the non-convexity of our problem, the initialization of u plays
a crucial role in avoiding bad local minima, especially when the mis-
alignment is large. To overcome this problem, we propose to treat
the stacked PAN as the ground-truth MS in the data fidelity term
constrained by N0 low-resolution MS bands whose spectra overlap
with PAN, and initialize u by solving the optimization problem:

min
u,p

N0∑
i

1

2
‖DC (Y)u−Xi‖22 + α1‖∇u− p‖2,1

+ α2‖E(p)‖2,1 + IS(u). (16)

4. NUMERICAL EXPERIMENTS

In our numerical experiments, we first verify the improvements due
to each of the LLP and TGV2 separately, then we demonstrate the
performance of our method in a blind pan-sharpening experiment.
Our dataset includes a 4-channel MS image (blue, green, red and
infra-red) and a PAN image, both of spatial resolution 610 × 338.
These images are synthesized from the Pavia University dataset:
each MS channel or PAN is generated by a weighted linear com-
bination of bands of hyperspectral imagery. We use the mean of
Peak Signal-to-Noise Ratio of all reconstructed MS channels (Aver-
age PSNR) as the metric.

4.1. Verification of Priors

To verify the effect of the LLP, we first conduct an experiment on
guided image upsampling, using the PAN image to guide the upsam-
pling of the MS image. We assume the blur kernel is a δ-function
and generate the input MS image by downsampling the ground-truth
MS image by a factor of 2, both horizontally and vertically. Then,
we treat u fixed and R2(u) as 0 to solve for Z. We compare the LLP
with the LGC [9] in an Average PSNR sense. In this experiment, the
LLP-reconstructed MS image has 37.57 dB PSNR vs 37.33 dB for
the LGC-reconstructed one.

To verify TGV2, we choose the 2D Gaussian kernel K(i, j) =

e−[(i−x)2+(j−y)2]/(2σ2), where −r ≤ i ≤ r, −r ≤ j ≤ r, n = 19,

PSNR(dB) 10 20 30 40
TViso 0.2904 0.1818 0.1008 0.0502
TGV2 0.1607 0.0940 0.0520 0.0288

Table 1: Relative error of TViso and TGV2 at different noise levels.

x = 1.33, y = 0.42 and σ = 2 to blur the PAN image West of
Sichuan from IKONOS, and downsample it by a factor of 4, both
horizontally and vertically. To test the robustness to noise, we add
additive white Gaussian, generating observed images at 10 dB, 20
dB, 30 dB, and 40 dB PSNR. We recover a kernel estimate by solv-
ing the optimization in (17) and (18), and estimate performance us-
ing the relative error εr = ‖K − K̂‖F/‖K‖F as the metric. We
compare our regularizer (TGV2) with the widely used isotropic to-
tal variation (TViso) that solves

min
u

1

2
‖Eu− f‖22 + α‖∇u‖2,1 + IS(u). (17)

Similarly, our regularizer can be written as:

min
u,p

1

2
‖Eu−f‖22+α1‖∇u−p‖2,1+α2‖E(p)‖2,1+IS(u). (18)

In both of the above, E refers to the measurement matrix of u, i.e.
the vectorized 2D blur kernel. Each row of E stores the pixels from
the input image, which convolve with the blur kernel to obtain a
noise-free pixel. f is the vectorized form of the observed image. Ta-
ble 1 lists the relative errors for both regularizers in all noise levels,
with the smaller error in each case highlighted in bold. As evident,
TGV2 recovers a better estimate of the ground truth kernel and pro-
vides more robustness to noise.

4.2. Blind Pan-sharpening

In this experiment, we simulate the input MS image via first low-pass
filtering and then downsampling the ground-truth MS image by a
factor of 2, both horizontally and vertically. Given the low-resolution
input MS image and the high-resolution PAN image, we use our pan-
sharpening algorithm to output the fused high-resolution MS image.
To demonstrate our algorithm’s effectiveness in fusing misaligned
images, we conduct two experiments, setting the kernel’s center to be
(0.87, 0.11) in Experiment 1 and (5.87, 4.11) in Experiment 2, both
with the same standard deviation (1.2), to simulate small and large
misalignment. We compare our results with two baseline algorithms:
HySure [6] and BHMIFGLR [8].

Figure 1 provides a qualitative evaluation of Experiment 1. The
input PAN and low resolution MS are shown in parts (a) and (b) re-
spectively, with high resolution ground-truth MS shown in (c). The
fused results are presented in parts (d), (e), and (f), for each method,
respectively. We observe that BHMIFGLR is prone to generating
spurious textures and ignoring details. For example, in Fig. 1(d), the
reconstructed texture on the right of the parallel white lines, along
the diagonal direction, is not present in the ground truth image. Also,
the left of the three parallel white lines along the diagonal direction
was not reconstructed. In comparison, HySure managed to fuse im-
ages with large misalignment, but failed to preserve the details of
edges and textures. In Fig. 1(e) we observe that the three parallel
white lines in the ground-truth image are blurred, and the details on
the yellow roof are not identifiable. Instead, our approach, shown
in Fig. 1(f) is visually much sharper and preserves more detail com-
pared to the baseline methods.



(a)

(b)

(c)

(d) (e) (f)

Fig. 1: Pan-sharpening results using different methods in Experi-
ment 1: (a) the PAN image, (b) the input MS image (only RGB
channels are shown), (c) Ground truth, and fused results using (d)
BHMIFGLR, (e) HySure, and (f) BLT, respectively. BLT success-
fully preserves three sharp parallel lines and avoids the fake details.

Approach BHMIFGLR HySure BLT
Exp. 1/Exp. 2 31.72/21.38 30.71/30.70 37.40/37.40

Table 2: Quantitative analysis of blind pan-sharpening results.
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Fig. 2: Comparison of estimated kernels in Experiment 2 using (a)
BHMIFGLR and (b) BLT with (c) Ground truth.

A quantitative performance comparison of the three algorithms
is shown in Table 2. Our results are consistent at small/large mis-
alignments and outperform the baseline algorithms by nearly 6 dB.
In comparison, BHMIFGLR failed to fuse MS images with consis-
tent performance; the blur kernel estimated in Experiment 2, shown
in Fig. 2(a), was trapped in a local minimum or saddle point which
is far away from the ground-truth, shown in Fig. 2(c). This is due to
the large misalignment and the poor initial estimate of the blur ker-
nel. Since the target MS image is aligned to the PAN, our approach
treats the stacked PAN as the target MS in (16), thereby generating
a reasonable initialization of the blur kernel that aligns well to the
ground-truth and resulting to a good estimation of the blur kernel.

4.3. Comparison with a Deep Learning based Approach

We also compared our algorithm with deep learning based ap-
proaches, noting that our approach requires no training data. We
choose the most recent work [5] as the benchmark and use the same

Test Images Moffett Cuprite L.A. C.F. Mean
BLT 39.94 41.17 38.53 38.91 39.64

UPGD 38.17 39.02 37.77 39.33 38.57

Table 3: Quantitative analysis of blind pan-sharpening results using
our proposed method and a learning-based method.
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Fig. 3: Comparison of fused MS images in RGB channels using (a)
UPGD and (b) BLT. (c) and (d) are the green channel residual images
of (a) and (b) compared to the ground truth.

dataset for comparison. Table 3 demonstrate the results of both al-
gorithms. Overall, our algorithm yields much higher average PSNR,
with a 1.07 dB average improvement over Unrolled PGD (UPGD)
in four test images: Moffett, Cuprite, L.A., and C.F.. Figure 3 also
demonstrates qualitatively the performance of the two algorithms in
recovering the RGB channels of the L.A. image, as well as the resid-
ual images in the green channel. As evident from these residuals,
our approach outperforms UPGD, especially in smooth areas. The
main reason for this discrepancy seems to be that it is more difficult
for a learning algorithm to be trained in a large variety of conditions,
including blur size, misalignment level, noise level, etc., requiring
data to be provisioned for a wide variety of cases to provide robust-
ness. In contrast, our approach adaptively determines a kernel for
each test image set, providing more robustness, especially to the
level of blurring under different blur conditions.

5. CONCLUSION

In this paper, we develop a novel method for misaligned multi-
spectral (MS) image pan-sharpening based on the local Laplacian
prior (LLP) and the Second-Order Total Generalized Variation
(TGV2). Numerical experiments show that our approach signif-
icantly outperforms state-of-the-art optimization-based and deep
learning-based baselines. Moreover, our model has a better gener-
alization ability than deep learning based methods, without external
training data, providing flexibility and adaptability to deal with
multi-spectral imagery from a large variety of imaging platforms.
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