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Abstract
Plug-and-play (PnP) denoising for solving inverse problems has received significant attention
recently thanks to its state of the art signal reconstruction performance. However, the per-
formance improvement hinges on carefully choosing the noise level of the Gaussian denoiser
and the descent step size in every iteration. We propose a strategy for training a Gaussian
denoiser inspired by an unfolded proximal quasi-Newton algorithm, where the noise level of
the input signal to the denoiser is estimated in each iteration and at every entry in the signal.
Our scheme deploys a small convolutional neural network (mini-CNN) to estimate an element-
wise noise level, mimicking a diagonal approximation of the Hessian matrix in quasi-Newton
methods. Empirical simulation results on image deblurring demonstrate that our proposed
approach achieves approximately 1dB improvement over state of the art methods, such as,
BM3D-PnP and proximal gradient descent-PnP that are supplied with the true noise level,
as well as over an end-to-end retrained FFDNet architecture that was trained to estimate the
noise level and recover the deblurred images.
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ABSTRACT

Plug-and-play (PnP) denoising for solving inverse problems has
received significant attention recently thanks to its state of the art
signal reconstruction performance. However, the performance im-
provement hinges on carefully choosing the noise level of the Gaus-
sian denoiser and the descent step size in every iteration. We propose
a strategy for training a Gaussian denoiser inspired by an unfolded
proximal quasi-Newton algorithm, where the noise level of the input
signal to the denoiser is estimated in each iteration and at every entry
in the signal. Our scheme deploys a small convolutional neural net-
work (mini-CNN) to estimate an element-wise noise level, mimick-
ing a diagonal approximation of the Hessian matrix in quasi-Newton
methods. Empirical simulation results on image deblurring demon-
strate that our proposed approach achieves approximately 1dB im-
provement over state of the art methods, such as, BM3D-PnP and
proximal gradient descent-PnP that are supplied with the true noise
level, as well as over an end-to-end retrained FFDNet architecture
that was trained to estimate the noise level and recover the deblurred
images.

Index Terms— Inverse problems, deep learning, plug-and-play,
proximal methods, quasi-Newton.

1. INTRODUCTION

Recent work has demonstrated that Deep learning can be very ef-
fective in solving linear inverse problems encountered in signal pro-
cessing applications [1–3]. This success is due to the ability of deep
network architectures to provide nonlinear and differentiable models
for classes of signals that are not well-characterized using conven-
tional signal models, such as subspace, manifold, or sparse models.

A linear inverse problem can be described by the linear system
of equations

y = Ax+ v,

in which a target signal (or image) x ∈ RN is observed through
a linear and often under-determined forward operator A ∈ Rm×N
to produce the measurements y ∈ Rm. The measurement noise,
v ∈ Rm, is often assumed to be independent Gaussian distributed.
Given the measurements y and observation matrix A, the task is to
recover the target signal x by incorporating some prior knowledge
on the structure of the class of signals being acquired. Consequently,
established frameworks for tackling such problems set up the follow-
ing optimization problem:

min
x
f(x) + λρ(x), (1)
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where f(x) := 1
2
‖y −Ax‖22 is the objective function, ρ(x) is regu-

larizing penalty function—typically a non-smooth—that restricts the
space of solutions to the appropriate class of signals x, and λ is the
regularization parameter controlling the trade-off. Traditional signal
processing methods explicitly model the regularizer ρ(x) and have
derive efficient algorithms for solving (1). One of the most com-
putationally efficient and effective iterative methods is the proximal
gradient descent (PGD) method [4, 5], that splits the update in each
iteration t into the following two steps:

zt+1 = xt − αtAT (Ax− y) (2a)

xt+1 = arg min
u

1

2

∥∥u− zt+1
∥∥2

2
+ αtλρ(u) (2b)

The first step is a gradient descent update with respect to the ob-
jective function f(·) using the step size αt, while the second step
computes a proximal mapping with respect to the penalty function.

However, in some applications, the penalty function ρ(·) may
be difficult to determine or describe analytically, but examples of the
class of signals x may be readily available. In this context, the Plug-
and-Play (PnP) framework [6] replaces the proximal mapping with
respect to ρ(·) with a signal denoiser that can be trained from the
data. In this framework, the update equations become

zt+1 = xt − αtAT (Ax− y) (3a)

xt+1 = D
(
zt+1) (3b)

where D denotes a denoising deep neural network (DNN) that plays
the role of a proximal operator. This approach resembles the classi-
cal PGD, but lacks a regularization parameter that is tightly related
to the noise level in the observations. In other words, once the de-
noiser is trained on a certain noise level, it becomes a black box, and
we cannot control the denoiser strength. The resulting algorithm has
fundamental generalization issues, that become evident when the ob-
servation noise level is outside the range of pre-trained noise levels.

In this paper, we seek to equip the deep learning PnP approach
with a mechanism to estimate the noise standard deviation at each of
the N entries in x, and subsequently control the denoiser strength.
To that end, we adopt the FFDNet [7] architecture for the PnP de-
noiser which allows us to input the noise standard deviation at every
iteration. We then re-train the FFDNet denoiser by unfolding the
proximal quasi-Newton (PQN) algorithm over T iterations and in-
troducing a small Convolutional Neural Network (mini-CNN) to es-
timate the element-wise noise level affecting the iterates xt at every
iteration t ∈ {1 . . . T} in (3a). The proposed framework mimics a
diagonal approximation of the Hessian matrix in the PQN algorithm,
thus reducing the computation complexity of the algorithm. More-
over, the diagonal approximation provides a direct intuition of the
noise standard deviation affecting the elements of xt.



Learning deep signal denoisers is a rich research area that has
generated state of the art preformance, ranging from CNN architec-
tures [8], Encoder-Decoder [9], Deep Image Prior [10], and many
more. Most of these denoisers do not have a mechanism of con-
trolling the denoising after the training phase is finished. Thus, [11]
uses the half quadratic splitting algorithm and the DnCNN denoiser
in the PnP framework by training a set of denoisers on a wide range
of noise levels. This approach faces fundamental issues of practical-
ity as well as the challenges of training and storing multiple denoiser
networks. The same issue of controlling the deep learning denoiser
strength has been flagged in the literature, e.g., see [12, 13]. Re-
cently, the FFDNet [7] was proposed, which has an input layer that
represents the estimation of the standard deviation of the noise level.
This feature makes the FFDNet architecture a good candidate PnP
denoiser for our problem.

The paper is organized as follows: Section 2 provides a back-
ground of the model-based optimization methods and deep learning
denoisers in inverse problems. In Section 3, we present the proposed
proximal quasi-Newton method. Simulation results are reported in
Section 4 and we conclude the paper in Section 5, where we also
address some open questions.

2. BACKGROUND

2.1. Model-based Optimization Methods

The classical model based optimization formulates the linear inverse
problem as minimizing a composite cost function as

x̂ = arg min
x
‖y −Ax‖2︸ ︷︷ ︸

f(x)

+λρ(x) (4)

where the first term, f(·), measures the discrepancy between the es-
timation and the observations, and ρ(·) captures the structure of the
signal x.

The Proximal Newton Method (PNM) is a non-smooth exten-
sion of the Newton-Raphson method [14]. The method first gener-
ates a quadratic approximation of the smooth term at each iteration.
Then a non-separable proximal operator is computed as follows

zt+1 = xt −
[
∇2
xf(xt)

]−1 ∇f(xt) (5a)

xt+1 = arg min
x

1

2

∥∥x− zt+1
∥∥2

∇2
xf(xt)

+ λρ(x) (5b)

in case∇2
xf(xt) is replaced with a scaled identity, the PNM reduces

to the Proximal Gradient Descent (PGD) method. Aside from invert-
ing the Hessian matrix, the major computational challenge in using
PNM is evaluating the non-seperable proximal operator, which de-
pends on both ρ(·) and the structure of the Hessian matrix.

2.2. Deep Neural Networks as Denoisers

The plug-and-play (PnP) method relies on the notion that the proxi-
mal mapping is in fact a constrained Gaussian denoiser

Proxρ (z, λ) := arg min
x

1

2λ
‖x− z‖2 + ρ(x). (6)

To exploit DNNs, that can capture highly complex signal represen-
tations, the Gaussian denoiser problem may be reformulated as

Θ̂ = arg min
Θ

M∑
i=1

‖xi −NNΘ(yi)‖2 (7a)

x̂learn = NN?
Θ(y) = D(y), (7b)

Fig. 1. A single iteration block model of the proposed proximal
quasi-Newton method. The core denoiser is based on a retrained
FFDNet architecture with a noise estimator (NE) block for estimat-
ing a spatially variant input noise standard deviation.

where M is number of training samples, and Θ models the neural
network parameters. The reconstructed image x̂learn is produced at
the output of the neural network NN?

Θ(y) that acts as a denoiser
and takes as input the blurry image y. The PnP framework uses this
network in place of the proximal mapping in the proximal algorithm.
Our goal is to use this framework to obtain a PnP version of the
quasi-PNM with a denoiser that is versatile to the noise level.

3. LEARNED PROXIMAL QUASI-NEWTON DENOISER

The challenge in designing a noise-versatile PnP denoiser for prox-
imal quasi-Newton iterations arises when the forward operator A is
column-rank deficient. In such cases, the inverse of the Hessian does
not exist and every iteration introduces noise that belongs in the null
space of A.

Many neural network architectures have been proposed in the
literature as Gaussian denoisers of natural images. For exam-
ple, DnCNN uses 17 layers with a residual connection [8], multi-
level wavelet CNN (MWCNN) uses a modified U-Net architecture
and wavelet transform concepts [15], and RED-Net uses encoder-
decoder with symmetric skip connections [9]. Despite their promis-
ing performance, these approaches cannot be applied if the noise
distribution and variance differs from that of the training dataset.
Instead, the FFDNet [7] architecture adds an input layer that repre-
sents the noise standard deviation, thus resolving the lack of explicit
dependence on the noise level.

We adopt an algorithm unfolding strategy in order to train a de-
noiser based on the main FFDNet architecture. In order to handle
the spatially varying noise that arises from the contribution of the
null space of A, we add a noise estimator (NE) module to the input
of the FFDNet denoiser that behaves as a diagonal Hessian estima-
tor Ĥ(xt) and determines the element-wise noise standard devia-
tion affecting the entries of xt. The NE module is composed of a
small convolutional neural network (mini-CNN) formed from two
2-D convolution layers with 24 filters in each layer of size 3×3, and
a ReLU activation function. The output of the NE module produces
the noise standard deviation input layer of the FFDNet denoiser.

By unfolding the proximal quasi-Newton method over T itera-
tions, we produce a learned PQN method (PQNM) where each iter-



Table 1. The average PSNR (dB) and SSIM results on different datasets and methods.

Dataset Blurred BM3D (true σ) PGD (true σ, fine) PGD (true σ, Gauss) PQNM (1-iter ≡ E-to-E) PQNM

Set5 26.05 / 0.78 29.34 / 0.86 32.73 / 0.90 30.20 / 0.87 31.52 / 0.89 32.62 / 0.90

Set14 24.64 / 0.71 27.43 / 0.81 28.69 / 0.84 26.32 / 0.77 29.08 / 0.85 30.74 / 0.87

CBSD68 25.01 / 0.71 27.39 / 0.81 30.09 / 0.88 27.42 / 0.81 29.61 / 0.87 30.92 / 0.88

ation is composed of the following update equations:

zt+1 = xt − αt AT (Ax− y) (8a)

xt+1 = FFDNet
(
zt+1, λ αt Ĥ(xt)

)
(8b)

Note that equation (8a) is missing the inverse of the approximate

Hessian component
[
Ĥ(xt)

]−1

. This is due to a numerical insta-
bility that we observed during the training phase that prevents the
training from converging. A block diagram of one iteration of the
proposed PQNM is presented in Fig. 1. The Noise Estimator mod-
ule represents a mini-CNN that is shared with all the iterations. The
task of this network is to process a noisy image and output the esti-
mated noise level in the range of [0, 1/(λαt)].

We use T THΘ
(·) to denote the T unfolded iterations of the simpli-

fied PQNM-PnP, where HΘ represents the NE network parameters.
Therefore the overall optimization problem can be formulated as

Θ̂ = arg min
Θ

M∑
i=1

∥∥∥xi − T THΘ
(yi)

∥∥∥2

(9)

s.t. 0 6 NNHΘ(yi) 6
1

λαt
∀i = 1, · · · ,M

In order to simplify the training process, the box constraint is em-
bedded into the model architecture by adding a clipping layer.

4. NUMERICAL RESULTS

We evaluate the performance of our learned proximal quasi-Newton
denoiser on an image deblurring application where the blurring ker-
nels are known.

4.1. Denoiser Pre-training

The pre-trained FFDNet Gaussian denoiser is obtained from [16],
which is trained with M = 128 × 8000 patches from the Wa-
terloo Exploration Database [17]. The FFDNet was trained by
adding white Gaussian noise of standard deviation in the range of
[0, 75]/255. During the pre-training phase, the noise standard devi-
ation input layer is assumed to be known and uniform. During the
unfolded training stage, the assumption of a known noise level will
be dropped and the mini-CNN will be used to estimate this noise
input layer.

4.2. Unfolded training of PQNM-PnP

Once the PQNM-PnP algorithm is unfolded over T = 10 iterations,
the mini-CNN is trained along with fine tuning of the last 3 layers
of the FFDNet. The goal of this fine tuning is to be able to adapt
the FFDNet denoiser to handle the changing distribution of the noise
that arises from the null space of the forward operator A in each

iteration. Using the same procedure and in order to evaluate the per-
formance relative to a comparable end-to-end learning approach, we
retrain the PQNM for a single iteration with all the layers retrained
except the first 2 convolution layers. In both of the scenarios, the
simulation settings are as follows: we extract 100, 000 patches of
size 128 × 128 from the Waterloo Exploration Database. Motion
blur kernels are generated by uniformly sampling 6 angles in [0, π]
and 6 lengths in a range of [5, 15] pixels with 15× 15 pixel size ker-
nels. After convolving an image with each kernel, a Gaussian noise
of 0.01 variance is added to the blurry images.

The step size parameter of each iteration, αt, is a learnable pa-
rameter. The training is performed using the Adam solver, with an
initial learning rate of 10−4. For the validation dataset, we use the
Kodak24 dataset [18]. The Adam learning rate is decayed by a factor
of 0.1 after two epochs of non-increasing average PSNR of the val-
idation dataset, i.e. when the training reaches a plateau phase. The
model is trained for 50 epochs.

4.3. Evaluation

We use different datasets to evaluate the performance of the pro-
posed algorithm, namely CBSD68 [19], Set5, and Set14 [20]. Each
image is convolved with 4 kernels with different angles and lengths.
We compare the performance of our proposed PQNM-PnP method
with several algorithms such as the BM3D-PnP approach. Moreover,
we compare with two PGD-PnP versions that lack a noise estima-
tor module. In one of the PGD methods, the Gaussian pre-trained
FFDNet denoiser is kept fixed and the true noise standard deviation
is given to the denoiser in every iteration. The other method, uses a
fine tuned FFDNet denoiser where the last 3 layers are updated along
with the true noise standard deviation. Furthermore, We also present
the performance of an end-to-end trained FFDNet denoiser network
with a mini-CNN to estimate the noise standard deviation using the
same image deblurring training dataset to demonstrate the advantage
of algorithm unfolding.

Table 1 illustrates the deblurring performance of the above men-
tioned methods. The comparison is based on the average PSNR and
the Structural Similarity Index (SSIM). Despite the fact that our pro-
posed PQNM is blind to the noise level, it achieves the highest PSNR
and SSIM in almost all the experiments compared to the PGD-PnP
and BM3D-PnP that are supplied with the true noise level. More-
over, the proposed PQNM outperform the single iteration end-to-end
learning approach with FFDNet by a consistent 1 dB in the average
PSNR value.

Fig 2 illustrates sample results for the proposed approach using
a Gaussian blur kernel with standard deviation 1.6, and similar noise
level to the previous experiment. Note that Gaussian kernel was not
among the fine tuning process, therefore this experiment should in-
dicate the generalization ability of our simple fine tuning scheme.
The proposed approach outperforms both the BM3D-PnP and PGD-
PnP algorithms that use the true noise level. This could be attributed



Fig. 2. Image deblurring performance(PSNR) of the proposed PQNM-PnP, using the common Gaussian blur with standard deviation 1.6.

to the flexibility of the mini-CNN that is capable of accounting for
spatially-variant noise level that arises during the iterative frame-
work.

5. CONCLUSION

The integration between deep learned denoisers and the Plug-and-
play (PnP) approach has shown promising state-of-the-art results.
Nonetheless, deep learned denoisers fundamentally suffer from a
lack of a mechanism to control the denoising strength. In this work,
we proposed a diagonal approximation of the Proximal Quasi New-
ton Method (PQNM), which is implemented via a mini-CNN. This
approximation can be interpreted as estimating the noise standard
deviation from a statistical perspective. The unfolding of the PQNM
faces numerical challenges with inverting the estimated Hessian ma-
trix during the learning process. Despite these challenges, the pro-
posed approach delivers promising simulation results that encour-
ages further investigation. In summary, we propose an approach that

can control the strength of the deep learned denoiser by estimating
the noise levels across multiple iterations of an unfolded algorithm.
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