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Abstract
Motivated by real-world automotive radar measurements that are distributed around object
(e.g., vehicles) edges with a certain volume, a novel hierarchical truncated Gaussian mea-
surement model is proposed to resemble the underlying spatial distribution of radar measure-
ments. With the proposed measurement model, a modified random matrix-based extended
object tracking algorithm is developed to estimate both kinematic and extent states. In par-
ticular, a new state update step and an online bound estimation step are proposed with the
introduction of pseudo measurements. The effectiveness of the proposed algorithm is verified
in simulations
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ABSTRACT

Motivated by real-world automotive radar measurements that are
distributed around object (e.g., vehicles) edges with a certain vol-
ume, a novel hierarchical truncated Gaussian measurement model
is proposed to resemble the underlying spatial distribution of radar
measurements. With the proposed measurement model, a modified
random matrix-based extended object tracking algorithm is devel-
oped to estimate both kinematic and extent states. In particular, a
new state update step and an online bound estimation step are pro-
posed with the introduction of pseudo measurements. The effective-
ness of the proposed algorithm is verified in simulations.

Index Terms— Automotive radar, Bayesian filtering, object
tracking, extended object, random matrix, autonomous driving.

1. INTRODUCTION

Autonomous driving has received increasing attention over the past
few years. Automotive radar, along with ultrasonic, camera and
LIDAR sensors, is an indispensable component, providing reliable
environmental perception in all-weather conditions, with affordable
cost. In this paper we focus on object tracking using automotive
radar measurements. Within this context, we explore extended ob-
ject tracking (EOT) which uses multiple measurements per object to
improve tracking capability, exploiting an augmented state descrip-
tion including object kinematics and extent, compared to traditional
point object tracking of a kinematic-only state [1–8].

Our approach uses a Bayesian filtering framework, which ben-
efits from a probabilistic measurement model to describe multiple
measurements per object given the object state (e.g., position, kine-
matic, and extent). Such probabilistic models capture both the spa-
tial model, i.e., how radar measurements are spatially distributed
around the object, and the characteristics of sensor noise. In con-
trast, early work uses a fixed set of points to model a rigid body and
requiring a non-scalable data association between those points and
radar measurements [9–11].

Our approach follows the paradigm of recent work on flexible
spatial models. In this framework, automotive radar measurements
are spatially distributed as a function of individual measurement
likelihoods, also referred to as the spatial distribution. For automo-
tive radar measurements, the spatial distribution can be generally
divided into the three categories shown in Fig. 1: (a) contour models
that reflect the measurement distribution along the contour [12, 13];
(b) surface models that assume the radar measurements are gener-
ated from the inner surface of objects; and (c) surface-volume mod-
els that balance between the above models with more realistic fea-
tures, such as low measurement likelihood at the center.
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Fig. 1: Spatial distributions for automotive radar measurements: a) contour
model; b) surface model; and c) surface-volume model.

Typical examples of the contour model include a rectangular
shape model around four edges [14, 15] and a curve approximation
using Gaussian process [16, 17]. A widely used surface model is
the elliptical object shape where a random matrix is used to track
extended objects [18, 19]. The surface model often leads to compu-
tationally simpler algorithms than the contour model, which requires
more degrees of freedom to describe more complex shapes.

However, real-world automotive radar measurements are typi-
cally distributed around edges of rigid objects (e.g., vehicles) with a
certain volume, see [20, Fig. 1] and [21, Fig. 3]. This motivates re-
cent developments of surface-volume models including a volcanor-
mal measurement model [20] that pushes the measurement likeli-
hood away from its center, and a completely data-driven measure-
ment model that is trained offline by aggregating real-world automo-
tive radar measurements using a variational Gaussian mixture [21].

In this paper, we propose a new surface-volume model to resem-
ble the spatial distributional characteristics of real-world automotive
radar measurements. This is achieved by introducing a hierarchical
truncated Gaussian measurement model where unobserved measure-
ment sources are used to capture the feature that radar measurements
are more likely to appear around object edges with a certain volume.
The observable noisy measurements, conditioned on the measure-
ment sources, are used to model sensor noise.

To integrate the proposed model into the Bayesian filtering
framework, we develop a new measurement update step within the
random matrix model of [19] using pseudo measurements and the
resulting converted measurement statistics. In addition, we treat the
truncation bounds of the truncated Gaussian distribution as unknown
parameters and introduce an online estimation step to adaptively up-
date them, for a more accurate spatial distribution.

2. PROBLEM FORMULATION

We define the object state as a tuple ξk = (xk, Xk) with xk ∈ Rdx
denoting the kinematic state and Xk ∈ S2

++, a symmetric and posi-
tive definite matrix, denoting the extent state. For each time step k,
we receive nk measurements Zk , {zjk}

nk
j=1 from automotive radar

sensors. The objective of object tracking is to recursively compute
the posterior density of the object state p(ξk|Z1:k) given all mea-
surements Z1:k = {Z1, · · · , Zk} up to and including time k. The
object state ξk with corresponding uncertainty measures can then be



extracted from the posterior density p(ξk|Z1:k).
Recursive Bayesian filtering assumes the posterior density

p(ξk−1|Z1:k−1) at time k−1 and the transition density p(ξk|ξk−1).
First, a predicted density is derived from the Chapman-Kolmogorov
equation (state prediction)

p(ξk|Z1:k−1) =

∫
p(ξk−1|Z1:k−1)p(ξk|ξk−1)dξk−1. (1)

This density is then updated (state update) with the current measure-
ments Zk as

p(ξk|Z1:k) ∝ p(ξk|Z1:k−1)p(Zk|ξk), (2)

where p(Zk|ξk) =
∏nk
j=1 p(z

j
k|ξk) is the joint measurement like-

lihood with p(zjk|ξk) denoting the spatial distribution. We approx-
imate the predicted and posterior state densities such that they are
all of the same functional form, which allows a recursive use of the
prediction and update functions.

3. PROPOSED MEASUREMENT MODEL

To capture the spatial characteristics of automotive radar measure-
ments, we propose a hierarchical measurement model for the spatial
distribution p(zjk|ξk). Specifically, we model each measurement zjk
as zjk = yjk + vjk. The noisy measurement conditioned on the mea-
surement source p(zjk|y

j
k) is modeled using the Gaussian distribution

N (zjk; yjk, Rk) with Rk denoting the measurement noise covariance
matrix and the corresponding hidden measurement source yjk is dis-
tributed as

T N (yjk;Hxk, ρXk, Dk) =
1Dk (yjk)

cDk

N (yjk;Hxk, ρXk), (3)

where H is the observation matrix, ρ is a scaling factor, Dk spec-
ifies the truncated Gaussian density support, 1Dk (·) is the indica-
tor function on Dk, and cDk is the corresponding normalization
factor. An illustrative example for the measurement source yjk is
shown in the top plot of Fig. 2. The truncated area is described by
Bk , [ak,1, ak,2, bk,1, bk,2]T with respect to the object centerHxk.
It requires that {ak,1, ak,2, bk,1, bk,2} ≥ 0 and that the orientation
of the truncated area is aligned with the object’s orientation.

Given the hierarchical measurement model above, the resulting
spatial distribution p(zjk|ξk) can be computed by marginalizing out
the measurement source yjk

p(zjk|ξk) =

∫
p(zjk|y

j
k)p(yjk|ξk)dyjk

=
1

cDk

∫
Dk

N (zjk; yjk, Rk)N (yjk;Hxk, ρXk)dyjk. (4)

An illustration of p(zjk|ξk) is shown in the bottom plot of Fig. 2.
As shown, the proposed hierarchical measurement model pushes
the measurement likelihood away from the object center onto four
edges, which enables a better resemblance to the distribution of real-
world automotive radar measurements. It is worth noting that the
proposed hierarchical measurement model can also be used to de-
scribe partially observed radar measurements due to self-occlusion,
e.g., when only the rear part of a vehicle is observable, by setting
one or more truncation bounds to infinity.

Fig. 2: Top: the probability density of the measurement source p(yjk|ξk) of
(3) centered at the origin of coordinates (ρ = 0.25, l = 4.7, w = 1.8,
a1 = b1 = 2.14 and a2 = b2 = 0.75). Bottom: the resulting spatial
distribution p(zjk|ξk) of (4) with Rk = diag([0.09, 0.09]).

4. PROPOSED EOT ALGORITHM

Using the proposed measurement model, we propose to estimate the
object state ξk and the truncation bounds Bk by iterating a two-step
procedure until a convergence criterion is met. In the t-th itera-
tion, we first use the filtered state estimates ξ(t−1)

k from the previ-
ous iteration to update the truncation bounds B(t)

k from the maxi-
mum likelihood estimation. Then, we introduce a modified random
matrix-based EOT algorithm [19] with B(t)

k to obtain updated state
estimates ξ(t)

k . When t = 0, i.e., at the first iteration, we replace
the filtered state estimate ξ(0)

k by the predicted state estimates, i.e.,
ξ

(0)
k = ξk−1 from the previous time step k − 1.

To start, we assume that both the predicted and updated state
densities have the factorized form [19]

p(ξk|Z1:k′) ≈ p(xk|Z1:k′)p(Xk|Z1:k′) (5)
= N (xk;mk|k′ , Pk|k′)IW(Xk; νk|k′ , Vk|k′),

where k′ = k − 1 is for the state prediction and k′ = k for the
state update. The kinematic state xk is Gaussian distributed with
predict/update meanmk|k′ and covariance matrix Pk|k′ , whereas the
extent matrixXk is inverse Wishart distributed with νk|k′ degrees of
freedom and the scale matrix Vk|k′ . This factorized form allows for
the modeling of non-linear dynamics [19]. Using the factorized state
density, we compute {m,P, v, V }k|k−1 for the state prediction and
{m,P, v, V }k|k for the state update.

4.1. State Prediction

To do so, we assume the state transition density is approximated as
a product of Gaussian and Wishart distributions [18]

p(ξk|ξk−1) ≈ p(xk|xk−1)p(Xk|Xk−1, xk−1) = (6)

N (xk; g(xk−1), Qk−1)W

(
Xk;κk−1,

Exk−1Xk−1E
T
xk−1

κk−1

)
,

where g(·) denotes a kinematic state motion model, Qk−1 denotes
the process noise covariance and Ex denotes the transformation
matrix—typically an identity matrix or a rotation matrix depend-
ing on xk−1. Given the state transition density above and the



posterior density p(ξk−1|Z1:k−1) in (5), the predicted parameters
{m,P, v, V }k|k−1 of p(ξk|Z1:k−1) can be (approximately) calcu-
lated as [19]

mk|k−1 = g(mk−1|k−1), Gk−1 = ∇xg(x)|x=mk−1|k−1
, (7a)

Pk|k−1 = Gk−1Pk−1|k−1G
T
k−1 +Qk−1, (7b)

νk|k−1 = 6 + e−Ts/τ (νk−1|k−1 − 6), (7c)

Vk|k−1 = e−Ts/τEmk−1Vk−1|k−1E
T
mk−1

, (7d)

where Ts is the sampling time and τ is a maneuvering correlation
constant. The kinematic state prediction in (7a) and (7b) follows
the standard prediction step of a (nonlinear) Kalman filter, whereas
the extent state prediction is given by (7c) and (7d). More general
extent prediction steps can be obtained by analytically solving the
Chapman-Kolmogorov equation [22].

4.2. State Update

Due to the “surface-volume” characteristics of radar measurements,
a direct state update with the random matrix-based approach, using
the sample mean and spread is likely to yield biased state estimates.
To correct such biases, we introduce a set of pseudo measurements
and make use of the resulting converted measurement statistics.

Given nk observable noisy measurements Zk = {zjk}
nk
j=1, cor-

responding measurement sources Yk , {yjk}
nk
j=1 are distributed

according to
∏nk
j=1 T N (yjk;Hxk, ρXk, Dk). Supposing that we

have nck pseudo noisy measurements Z̃k , {z̃jk}
nc
k
j=1, independently

drawn from the measurement likelihood

p(z̃jk|ξk) =
1

1− cDk

∫
Dc

k

N (z̃jk; ỹjk, Rk)N (ỹjk;Hxk, ρXk)dỹjk,

(8)
where corresponding pseudo measurement sources Ỹk , {ỹjk}

nc
k
j=1

are independently drawn from T N (ỹjk;Hxk, ρXk, D
c
k) and Dc

k =

R2 \ Dk, then the joint measurement sources Y̆k = {Yk, Ỹk} can
be regarded as equivalent samples from the Gaussian distribution
N (y̆jk;Hxk, ρXk) when the ratio of numbers of observable and
pseudo measurement satistifies

nk/n
c
k = cDk/(1− cDk ). (9)

See Fig. 4 for an illustration. It follows that the corresponding joint
measurements Z̆k = {Zk, Z̃k} can be regarded as equivalent sam-
ples from the distributionN (z̆jk;Hxk, ρXk +Rk).

The converted sample mean and spread of Z̆k can be, respec-
tively, expressed as functions of the sample mean and spread of ob-
servable measurements Zk and pseudo measurements Z̃k

z̆k =

nk+nc
k∑

j=1

z̆jk/(nk + nck) = cDkzk + (1− cDk )z̃k, (10a)

ΣZ̆k
=

nk+nc
k∑

j=1

(z̆j − z̆k)(z̆j − z̆k)T . (10b)

The pseudo measurement z̃jk can be drawn from N (z̃jk; ỹjk, Rk),
and the corresponding measurement source ỹjk can be drawn from
T N (ỹjk;Hx

(t−1)

k|k , ρX
(t−1)

k|k , D
c,(t−1)
k ) where x

(t−1)

k|k and X
(t−1)

k|k

are from the previous iteration (t − 1). We may replace
∑
z̃jk and

Fig. 3: The ratio between the numbers of observed (blue dots) and pseudo
(red dots) measurement sources is determined by the normalization factor of
the truncated Gaussian distribution.

∑
z̃jk{z̃

j
k}
T by its expectation E{z̃jk} and its second-order moment

E{z̃jk{z̃
j
k}
T } to avoid the pseudo-sample drawing step.

Given the proposed measurement model (4) and the predicted
density p(ξk|Z1:k−1) of the form (5), the updated parameters
{m,P, v, V }k|k for the updated density p(ξk|Zk) are given as [19]

mk|k = mk|k−1 +Kε, (11a)
Pk|k = Pk|k−1 −KHPk|k−1, (11b)
νk|k = νk|k−1 + (nk + nck), (11c)

Vk|k = Vk|k−1 + N̂ + Ẑ, (11d)

where K = Pk|k−1HS
−1, S = HPk|k−1H

T + R̂/(nk + nck),
R̂ = ρX̂+Rk, X̂ = Vk|k−1/(Vk|k−1−6) and ε = z̆k−Hmk|k−1.
The update step for the kinematic state xk in (11a) and (11b) is given
as a Kalman-filter-like update. The extent state update in (11c) and
(11d) requires two new matrices

N̂ = X̂1/2S−1/2εεTS−T/2X̂T/2, (12a)

Ẑ = X̂1/2R̂−1/2ΣZ̆k
R̂−T/2X̂T/2, (12b)

which are proportional to, respectively, the spread of the predicted
measurement εεT and the converted sample spread ΣZ̆k

. We can
further apply the converted measurement statistics to other random
matrix-based state update steps [23, 24].

4.3. Truncation Bound Update

The final step is to update the truncation bounds, given the above
updated state ξk|k. Due to space limitations, we only briefly outline
the steps necessary for updating truncation bounds. The idea is to
maximize the joint measurement likelihood

p(Zk|ξ)|ξk=ξk|k =
∏
j

p(zjk|ξk)ξ=ξk|k (13)

over Bk , [ak,1, ak,2, bk,1, bk,2]T , where the spatial distribution
p(zjk|ξk) is given by (4) with ξk replaced by the updated state ξk|k
and, thus, is a function of Bk viz the normalization factor cDk and
the integral in (4).

We first convert the measurements in the global coordinate to the
object local coordinate such that the orientation of the truncated area
(specified byDk) is aligned with the axes. Thus we can decouple the
expression of the measurement likelihood p(Zk|ξk) as a function of
four truncation bounds Bk via the cumulative density function of a
standard normal distribution. We then apply the coordinate ascent



(a) (b) (c)

Fig. 4: (a) The simulated trajectory, object extent and sample measurements; and estimation results in terms of localization error, object’s width and length
estimations in (b) ideal measurement model and (c) with model mismatch.

to maximize the derived joint measurement likelihood along one di-
rection at a time. More specifically, we cyclically find the optimal
estimate of a single truncation bound at each iteration (e.g., using the
Newton’s method), while fixing the other three.

5. SIMULATION RESULTS

In this section, we consider a scenario in which a rectangular object
(4.7-m long and 1.8-m wide) moves with constant polar velocity
and turn rate for 90 time steps, as shown in Fig. 4(a). The number of
measurements at each time step is drawn from a Poisson distribution
with mean 8. We assume that the object rotation center coincides
the object physical center. The kinematic object state is defined as
xk = [pk, vk, θk, ωk]T ∈ R5 with the two-dimensional position
pk ∈ R2, polar velocity vk, heading θk and turn rate ωk. The coor-
dinated turn motion model is used with a sampling time of Ts = 1s
and standard polar and angular acceleration noise of σv̇ = 0.1 and
σω̇ = π/180, respectively. The exact expressions for the transi-
tion matrix g(·) and process noise covariance matrixQ can be found
in [25]. The transformation function E is a rotation matrix that de-
pends on the turn rate. Given the posterior density of extent state
IW(Xk; νk|k, Vk|k), the estimates of length l and width w can be
extracted from the normalized eigen-decomposition of the mean of
the inverse Wishart distribution, X̂k = Vk|k/(νk|k − 6); its initial
parameters were set to ν0|0 = 22 and ν0|0 = diag([40, 10]).

5.1. Performance Evaluation with Ideal Measurement Model

We first consider the ideal case that the automotive radar measure-
ments follow the proposed measurement model over the course of
the simulated trajectory, with parameters specified in the caption of
Fig. 2 and Rk = diag([0.125, 0.125]). Figure 4(a) shows two snap-
shots of synthesized automotive radar measurements around the ob-
ject. It can be seen that most of these radar measurements appear to
be around the object edges. We compare the tracking performance
between the random matrix approach [19] (RM) and the proposed
method (referred to as HTG-RM), averaged over 100 Monte Carlo
runs. Fig. 4(b) shows the tracking performance in terms of localiza-
tion errors (w.r.t object center), and object length/width errors over
time. As evident, the proposed HTG-RM algorithm outperforms the
conventional RM approach by a large margin in all aspects. Particu-
larly, the HTG-RM algorithm provides more consistent estimates in
terms of the object length and width over time. Corresponding root

Ideal Measurement Model Model Mismatch
States RM HTG-RM RM HTG-RM
p [m] 0.527 0.365 0.490 0.407
v [m] 0.097 0.062 0.096 0.064
θ [◦] 0.879 0.723 0.835 0.799
l [m] 2.370 0.207 1.731 0.259
w [m] 1.007 0.081 0.758 0.127

Table 1: Root mean square errors of the estimated state parameters

mean squared errors (RMSEs) of the kinematic and extent states are
summarized in Table 1.

5.2. Performance Evaluation with Model Mismatch

In practice, no measurement models can perfectly describe the real-
world automotive radar measurements. To validate the effectiveness
of the proposed HTG-RM algorithm in case of model mismatch, we
adopt a variational radar model of 50 student’s t mixture compo-
nents, learned offline from aggregated real-world automotive radar
measurements [21], to synthesize the observed radar measurement
over the course of Fig. 4(a). It is worth noting that the resulting
variational radar model in [21, Fig. 4] also shows a high probabil-
ity of measurement occurrence around the object edge with a certain
volume. It can be seen from Fig. 4(c) that the proposed HTG-RM al-
gorithm still outperforms the conventional RM approach [19]. Com-
pared to the ideal measurement model in Fig. 4(b), the HTG-RM
performance is only slightly degraded, validating the robustness of
the proposed HTG-RM algorithm over a different surface volume
measurement model. This is further confirmed by comparing the
root mean square errors of the kinematic and extent state estimates
between the two columns of Table 1.

6. CONCLUSIONS

In this paper, we propose a new surface-volume measurement model
for automotive radar object tracking, using a hierarchical truncated
Gaussian model. The proposed measurement model has been inte-
grated into the random matrix approach for extended object tracking
using pseudo measurements and the resulting converted measure-
ment statistics. Our simulations validate and demonstrate the effec-
tiveness of our approach.
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