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Abstract
Recently, fully recurrent neural network (RNN) based endto-end models have been proven
to be effective for multi-speaker speech recognition in both the single-channel and multi-
channel scenarios. In this work, we explore the use of Transformer models for these tasks
by focusing on two aspects. First, we replace the RNN-based encoder-decoder in the speech
recognition model with a Transformer architecture. Second, in order to use the Transformer
in the masking network of the neural beamformer in the multi-channel case, we modify the
self-attention component to be restricted to a segment rather than the whole sequence in order
to reduce computation. Besides the model architecture improvements, we also incorporate
an external dereverberation preprocessing, the weighted prediction error (WPE), enabling
our model to handle reverberated signals. Experiments on the spatialized wsj1-2mix corpus
show that the Transformer-based models achieve 40.9% and 25.6% relative WER reduction,
down to 12.1% and 6.4% WER, under the anechoic condition in single-channel and multi-
channel tasks, respectively, while in the reverberant case, our methods achieve 41.5% and
13.8% relative WER reduction, down to 16.5% and 15.2% WER
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ABSTRACT

Recently, fully recurrent neural network (RNN) based end-
to-end models have been proven to be effective for multi-speaker
speech recognition in both the single-channel and multi-channel
scenarios. In this work, we explore the use of Transformer models
for these tasks by focusing on two aspects. First, we replace the
RNN-based encoder-decoder in the speech recognition model with a
Transformer architecture. Second, in order to use the Transformer in
the masking network of the neural beamformer in the multi-channel
case, we modify the self-attention component to be restricted to a
segment rather than the whole sequence in order to reduce com-
putation. Besides the model architecture improvements, we also
incorporate an external dereverberation preprocessing, the weighted
prediction error (WPE), enabling our model to handle reverberated
signals. Experiments on the spatialized wsj1-2mix corpus show that
the Transformer-based models achieve 40.9% and 25.6% relative
WER reduction, down to 12.1% and 6.4% WER, under the anechoic
condition in single-channel and multi-channel tasks, respectively,
while in the reverberant case, our methods achieve 41.5% and
13.8% relative WER reduction, down to 16.5% and 15.2% WER.

Index Terms— Transformer, end-to-end, overlapped speech
recognition, neural beamforming, speech separation.

1. INTRODUCTION

Deep learning techniques have dramatically improved the perfor-
mance of separation and automatic speech recognition (ASR) tasks
related to the cocktail party problem [1], where the speech from
multiple speakers overlaps. Two main scenarios are typically con-
sidered, single-channel and multi-channel. In single-channel speech
separation, various methods have been proposed, among which deep
clustering (DPCL) based methods [2] and permutation invariant
training (PIT) based methods [3] are the dominant ones. For ASR,
methods combining separation with single-speaker ASR as well as
methods skipping the explicit separation step and building directly
a multi-speaker speech recognition system have been proposed,
using either the hybrid ASR framework [4–6] or the end-to-end
ASR framework [7–9]. In the multi-channel condition, the spatial
information derived from the inter-channel differences can help dis-
tinguish between speech sources from different directions, which
makes the problem easier to solve. Several methods have been pro-
posed for multi-channel speech separation, including DPCL-based
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methods using integrated beamforming [10] or inter-channel spa-
tial features [11], and a PIT-based method using a multi-speaker
mask-based beamformer [12]. For multi-channel multi-speaker
speech recognition, an end-to-end system was proposed in [13],
called MIMO-Speech because of the multi-channel input (MI)
and multi-speaker output (MO). This system consists of a mask-
based neural beamformer frontend, which explicitly separates the
multi-speaker speech via beamforming, and an end-to-end speech
recognition model backend based on the joint CTC/attention-based
encoder-decoder [14] to recognize the separated speech streams.
This end-to-end architecture is optimized via only the connectionist
temporal classification (CTC) and cross-entropy (CE) losses in the
backend ASR, but is nonetheless able to learn to develop relatively
good separation abilities.

Recently, Transformer models [15] have shown impressive per-
formance in many tasks, such as pretrained language models [16,17],
end-to-end speech recognition [18,19], and speaker diarization [20],
surpassing the long short-term memory recurrent neural networks
(LSTM-RNNs) based models. One of the key components in the
Transformer model is self-attention, which computes the contribu-
tion information of the whole input sequence and maps the sequence
into a vector at every time step. Even though the Transformer model
is powerful, it is usually not computationally practical when the se-
quence length is very long. It also needs adaptation for specific tasks,
such as the subsampling operation in encoder-decoder based end-to-
end speech recognition. However, for signal-level processing tasks
such as speech separation and enhancement, subsampling is usually
not a good option, because these tasks need to maintain the original
time resolution.

In this paper, we explore the use of Transformer models for end-
to-end multi-speaker speech recognition in both the single-channel
and multi-channel scenarios. First, we replace the LSTMs in the
encoder-decoder network of the speech recognition module with
Transformers for both scenarios. Second, in order to also apply
Transformers in the masking network of the neural beamforming
module in the multi-channel case, we modify the self-attention lay-
ers to reduce their memory consumption in a time-restricted (or
local) manner, as used in [5, 21, 22]. To the best of our knowl-
edge, this work is the first attempt to use the Transformer model
for tasks such as speech enhancement/separation with such very
long sequences. Another contribution of this paper is to improve
the robustness of our model in reverberant environments. To do
so, we incorporate an external dereverberation method, the weighed
prediction error (WPE) [23], to preprocess the reverberated speech.
The experiments show that this straightforward method can lead to
a performance boost for reverberant speech.
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Fig. 1. End-to-end single-channel multi-speaker model in the 2-
speaker case. The speaker-differentiating encoder (EncSD), recogni-
tion encoder (EncRec), and decoder are either RNNs or Transformers.
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Fig. 2. End-to-end multi-channel multi-speaker model in the 2-
speaker case. The masking network and end-to-end ASR network
are based on either RNNs or Transformers.

2. END-TO-END MULTI-SPEAKER ASR

In this section, we review the end-to-end speech recognition mod-
els for both the single-channel [8, 9] and multi-channel [13] tasks.
For both tasks, we denote by J the number of speakers in the input
speech mixture.

2.1. Single-channel Multi-speaker ASR

In this subsection, we briefly introduce the end-to-end single-
channel multi-speaker speech recognition model proposed in [8, 9],
shown in Fig.1. The model is an extension of the joint CTC/attention-
based encoder-decoder framework [14] to recognize multi-speaker
speech. The input O = {o1, . . . ,oT } is the single-channel mixed
speech feature. In the encoder, the input feature is separated and
encoded as hidden states Gj , j = {1, . . . , J} for each speaker. The
computation of the encoder can be divided into three submodules:

H = EncoderMix(O), (1)

Hj = EncoderjSD(H), j = 1, . . . , J, (2)

Gj = EncoderRec(H
j), j = 1, . . . , J. (3)

EncoderMix first maps the input O to some high dimensional repre-
sentation H. Then J speaker-differentiating encoders EncoderjSD ex-
tract each speaker’s speech Hj . Finally, EncoderRec transforms each
Hj into the embeddings Gj = {gj1, . . . ,g

j
L}, L ≤ T with sub-

sampling. The attention-based decoder then takes these hidden rep-
resentations to generate the corresponding output token sequences
Yj = {yj1, . . . , y

j
N}. For each embedding sequence Gj , the recog-

nition process is formalized as follows:

cjn = Attention(ejn−1,G
j), (4)

ejn = Update(ejn−1, c
j
n−1, y

j
n−1), (5)

yjn ∼ Decoder(ejn, y
j
n−1), (6)

in which cjn denotes the context vector and ejn is the hidden state of
the decoder at step n. To determine the permutation of the reference
sequences Rj , permutation invariant training (PIT) is performed on
the CTC loss right after the encoder [8, 9]:

π̂ = argmin
π∈P

∑
j

Lossctc(Z
j ,Rπ(j)), j = 1, . . . , J, (7)

where Zj is the sequence obtained from Gj by linear transform to
compute the label posterior distribution, P is the set of all permuta-
tions on {1, . . . , J}, and π(i) is the i-th element of permutation π.
The model is optimized with both CTC and cross-entropy losses:

L =
∑
j

(
λLossctc(Z

j ,Rπ̂(j)) + (1− λ)Lossatt(Y
j ,Rπ̂(j))

)
, (8)

where 0 ≤ λ ≤ 1 is an interpolation factor, and Lossatt is the cross-
entropy loss of the attention-decoder.

2.2. Multi-channel Multi-speaker ASR

In this subsection, we review the model architecture of the MIMO-
Speech end-to-end multi-channel multi-speaker speech recogni-
tion system [13], shown in Fig.2. The model takes as input
the microphone-array signals from an arbitrary number C of
sensors. The model can be roughly divided into two modules,
namely the frontend and the backend. The frontend is a mask-
based multi-source neural beamformer. For simplicity of notation,
we denote the noise as the 0-th source in the mixture signals.
First, the monaural masking network estimates the masks Mj

c

for every source j = 0, 1, . . . , J on each channel c = 1, . . . , C
from the complex STFT of the multi-channel mixture speech,
Xc = (xt,f,c)t,f ∈ CT×F , where 1 ≤ t ≤ T and 1 ≤ f ≤ F
represent the time and frequency indices, as follows:

Mc = MaskNet(Xc), (9)

where Mc = (mj
t,f,c)t,f,j ∈ [0, 1]T×F×(J+1). Second, the multi-

source neural beamformer separates each source from the mixture
based on the MVDR formalization [24]. The estimated masks of
each source are used to compute the corresponding power spectral
density (PSD) matrices Φj for j∈{0, . . . , J} [25–27]:

Φj(f) =
1∑T

t=1m
j
t,f

T∑
t=1

mj
t,fxt,fx

H
t,f ∈ CC×C , (10)

where xt,f = (xt,f,c)c ∈ CC , mj
t,f = 1

C

∑C
c=1m

j
t,f,c and H rep-

resents the conjugate transpose. The time-invariant filter coefficients
gj(f) for each speaker j are then computed from the PSD matrices:

gj(f) =
(
∑
i6=j Φi(f))−1Φj(f)

Tr((
∑
i 6=j Φi(f))−1Φj(f))

u ∈ CC , (11)

where 1 ≤ j ≤ J , and u ∈ RC is a vector representing the reference
microphone derived from an attention mechanism [28]. The beam-
forming filters gj can be used to obtain the enhanced signal ŝjt,f for
speaker j, which is further processed to get the log mel-filterbank
with global mean and variance normalization (LMF(·)):

ŝjt,f = (gj(f))Hxt,f ∈ C, (12)

Oj = LMF(|Ŝj |)), (13)

where Ŝj is the short-time Fourier transform (STFT) of ŝj .
The backend ASR module maps the speech feature Oj =

{oj1, . . . ,o
j
T } of each speaker j into the output token sequences

Yj = {yj1, . . . , y
j
N}. The computation of the speech recognition is

very similar to the process for the single-channel case described in
Sec. 2.1, except that the encoder is a single path network and does
not have to separate the input feature using EncoderSD.



Similar to the single-channel model, the permutation order of
the reference sequences Rj is determined by (7). The whole MIMO-
Speech model is optimized only with ASR loss as in (8).

3. TRANSFORMER WITH TIME-RESTRICTED
SELF-ATTENTION

In this section, we describe one of the key components in the Trans-
former architecture, the multi-head self-attention [15], and the time-
restricted modification [22] for its application in the masking net-
work of the frontend.

Transformers employ the dot-product self-attention for mapping
a variable-length input sequence to another sequence of the same
length, making them different from RNNs. The input consists of
queries Q, keys K, and values V of dimension datt. The weights of
the self-attention are obtained by computing the dot-product between
the query and all keys and normalizing with softmax. A scaling
factor

√
datt is used to smooth the distribution:

Attention(Q,K, V ) = softmax
(QKT

√
datt

)
V. (14)

To capture information from different representation subspaces,
multi-head attention (MHA) is used by multiplying the original
queries, keys, and values by different weight matrices:

MHA(Q,K, V ) = Concat([Hh]d
head

h=1)W
head, (15)

where Hh = Attention(QW q
h ,KW

k
h , V

v
hW

v
h ), (16)

where dhead is the number of heads, and W head ∈ R(dheaddatt)×datt
and

W q
h ,W

k
h ,W

v
h ∈ Rd

att×datt
are learnable parameters.

In general, the speech sequence length can be considerably long,
making self-attention computationally difficult. For tasks like speech
separation and enhancement, the technique of subsampling is not
practical as in speech recognition. Inspired by [21, 22], we adjust
the self-attention of the Transformers in the masking network to be
performed on a local segment of the speech, because those frames
have higher correlation. This time-restricted self-attention for the
query at time step t is formalized as:

Attention(Q,K′, V ′) = softmax
(QK′T√

datt

)
V ′, (17)

where the corresponding keys and values are K′ = Kt−l:t+r and
V ′ = Vt−l:t+r , respectively, with l and r here denoting the left and
right context window sizes.

4. EXPERIMENTS

The proposed methods were evaluated on the same dataset as in [13],
referred to as the spatialized wsj1-2mix dataset, where the number of
speakers in an utterance is J = 2. The multi-channel speech signals
were generated1 from the monaural wsj1-2mix speech used in [8,9].
The room impulse responses (RIR) for the spatialization were ran-
domly generated2, characterizing the room dimensions, speaker lo-
cations, and microphone geometry. The final spatialized dataset con-
tains two different environment conditions, anechoic and reverber-
ant. In the anechoic condition, the room is assumed to be anechoic

1The spatialization toolkit is available at http://www.merl.com/
demos/deep-clustering/spatialize_wsj0-mix.zip

2The RIR generator script is available online at https://github.
com/ehabets/RIR-Generator

and only the delays and decays due to the propagation are considered
when generating the signals. In the reverberant condition, reverbera-
tion is also considered, with randomly drawn T60s from [0.2, 0.6] s.
In total, the spatialized corpus under each condition contains 98.5
hr, 1.3 hr, and 0.8 hr in training, development, and evaluation sets
respectively.

In the single-channel multi-speaker speech recognition task, we
used the 1st channel of the training, development, and evaluation set
to train, validate, and evaluate our model respectively. The input fea-
tures are 80-dimensional log mel-filterbank coefficients with pitch
features and their delta and delta delta features. In the multi-channel
multi-speaker speech recognition task, we also followed [13] in in-
cluding the WSJ train si284 in the training set to improve the per-
formance. The model takes the raw waveform audio signal as in-
put and converts it to its STFT using a 25 ms-long Hann window
with stride 10 ms. The spectral feature dimension is F = 257 due
to zero-padding. After the frontend computation, 80-dimensional
log filterbank features are extracted for each separated speech signal
and global mean-variance normalization is applied, using the statis-
tics of the single-speaker WSJ1 training set. All the multi-channel
experiments were performed with C = 2 channels. However, the
model can be extended to an arbitrary number of input channels as
described in [28].

4.1. Experimental Setup

All the proposed end-to-end multi-speaker speech recognition mod-
els are implemented with the ESPnet framework [29] using the Py-
torch backend. Some basic parts are the same for all the models. The
interpolation factor λ of the loss function in (8) is set to 0.2. The
word-level language model [30] used during decoding was trained
with the official text data included in the WSJ corpus. The configu-
rations of the RNN-based models are the same as in [9] and [13] for
single-channel and multi-channel experiments, respectively.

In the Transformer-based multi-speaker encoder-decoder ASR
model, there is a total of 12 layers in the encoder and 6 layers in the
decoder as in [18]. Before the Transformer encoder, the log mel-
filterbank features are encoded by two CNN blocks. The CNN lay-
ers have a kernel size of 3 × 3 and the number of feature maps is
64 in the first block and 128 in the second block. For the single-
channel multi-speaker model in Sec. 2.1, EncoderMix is the same as
the CNN embedding layer, and EncoderSD and EncoderRec contain
4 and 8 Transformer layers, respectively. For all the tasks, the con-
figuration of each encoder-decoder layer is datt = 256, dff = 2048,
dhead = 4. The masking network in the frontend has 3 layers similar
to the encoder-decoder layer except dff = 768. The training stage of
Transformer runs with the Adam optimizer and Noam learning rate
decay as in [15]. Note that the backend ASR module is currently
initialized with a pretrained model from the ESPnet recipe of WSJ
corpus and kept frozen for the first 15 epochs, for training stability.

4.2. Performance in Anechoic Condition

We first provide in Table 1 the performance in anechoic condition
of the single-channel multi-speaker end-to-end ASR models trained
and evaluated on the original single-channel wsj1-2mix corpus used
in [9, 30]. All the layers are randomly initialized. The result shows
that using the Transformer model leads to a 40.9% relative word er-
ror rate (WER) improvement on the evaluation set, decreasing from
20.43% to 12.08% compared with the RNN-based model in [9].

The multi-channel multi-speaker speech recognition perfor-
mance is shown in Table 2 using the spatialized anechoic wsj1-
2mix dataset. The baseline multi-channel system is the RNN-based

http://www.merl.com/demos/deep-clustering/spatialize_wsj0-mix.zip
http://www.merl.com/demos/deep-clustering/spatialize_wsj0-mix.zip
https://github.com/ehabets/RIR-Generator
https://github.com/ehabets/RIR-Generator


Table 1. Performance in terms of average WER [%] on the single-
channel anechoic wsj1-2mix corpus.

Model dev eval

RNN-based 1-channel Model [9] 24.90 20.43
Transformer-based 1-channel Model 17.11 12.08

Table 2. Performance in terms of average WER [%] on the spatial-
ized two-channel anechoic wsj1-2mix corpus.

Model dev eval

RNN-based MIMO-Speech [13] 13.54 8.62

+ Transformer backend 10.73 6.85
++ Transformer frontend 11.75 6.41

model from our previous study [13]. Before we move to the fully
Transformer-based MIMO-Speech model, we first replace the RNNs
with Transformers in the backend ASR only. We see that using
Transformers for the ASR backend can achieve 20.5% relative
improvement against the RNN-based model in anechoic conditions.

We then also apply Transformers in the masking network of
the frontend. Considering the feasibility of computing, in this pre-
liminary study, the left and right context window sizes of the self-
attention are set to l = 14 and r = 15. The parameters of the fron-
tend are randomly initialized. Compared with using a Transformer-
based model only for the backend, the fully Transformer-based
model leads to a further improvement, achieving a WER of 6.41%.
Compared against the whole sequence information available in the
RNN-based model, such a small context window greatly limits the
power of our model but shows its potential. Overall, the proposed
fully Transformer-based model achieves a 25.6% relative WER im-
provement against the RNN-based model in the multi-channel case.
We also see that the multi-channel system is better than the single-
channel system, thanks to the availability of spatial information.

4.3. Performance in Reverberant Condition

Even though our model can perform very well in anechoic condi-
tion, such ideal environments are rarely encountered in practice. It is
thus crucial to investigate whether the model can be applied in more
realistic environments. In this subsection, we describe preliminary
efforts to process the reverberated signal.

We first used a straightforward multi-conditioned training by
adding reverberated utterances into the training set. The results of
multi-speaker speech recognition on the multi-channel reverberant
datasets are shown in Table 3. It can be observed that only using the
Transformers for the backend is 6.6% better than the RNN-based
model. In addition, the fully Transformer-based model achieves
13.2% relative WER improvement on the evaluation set, which is
consistent with the anechoic case. However, comparing with the
numbers for the anechoic condition in Table 2, a large performance
degradation can be observed.

To alleviate this, we turned to an existing external dereverber-
ation method to preprocess the input signals as a simple yet effec-
tive solution. Nara-WPE [31] is a widely used open source software
for blind dereverberation of acoustic signals. The dereverberation is
performed on the reverberated speech before it is added to the train-
ing dataset with anechoic data. Similarly, the reverberant test set is
also preprocessed. Speech recognition performance on the multi-
channel reverberant speech after Nara-WPE is shown in Table 4. In
general, the WERs are dramatically decreased with the dereverbera-

Table 3. Performance in terms of average WER [%] on the spatial-
ized two-channel reverberant wsj1-2mix corpus.

Model dev eval

RNN-based MIMO-Speech [13] 34.98 29.99

+ Transformer backend 32.95 28.01
++ Transformer frontend 31.93 26.02

Table 4. Performance in terms of average WER [%] on the spatial-
ized two-channel reverberant wsj1-2mix corpus after Nara-WPE.

Model dev eval

RNN-based MIMO-Speech 24.45 17.67

+ Transformer backend 19.17 15.24
++ Transformer frontend 20.55 15.46

tion method. For the RNN-based model, the WER on the evaluation
set decreased by 41.1% relative, from 29.99% to 17.67%. Similar
to the experiments under other conditions, the model with backend
Transformer only is better than the RNN-based baseline model on
the reverberant evaluation set by 13.8% relative WER. However, the
Transformer-based frontend slightly degraded the performance. This
may be due the window size of the attention being too small, as it
only covers about 0.3 s of speech. Note that our systems are not
trained through Nara-WPE, which is left for future work.

At last, we show results in the single-channel task with the 1st
channel of the reverberated speech after Nara-WPE dereverberation
in Table 5. Using the RNN-based model, the WER of the evaluation
set is high, at 28.21%, which is influenced greatly by the reverber-
ation, even when preprocessing with the dereverberation technique.
However, the Transformer-based model can reach a final WER of
16.50%, a 41.5% relative reduction, proving that the Transformer-
based model is more robust than the RNN-based model.

Table 5. Performance in terms of average WER [%] on the 1st chan-
nel of the spatialized reverberant wsj1-2mix corpus after Nara-
WPE.

Model dev eval

RNN-based 1-channel Model 31.21 28.21
Transformer-based 1-channel Model 20.44 16.50

5. CONCLUSION

In this paper, we applied Transformer models for end-to-end multi-
speaker ASR in both the single-channel and multi-channel scenarios,
and observed consistent improvements. The RNN-based ASR mod-
ule is replaced with the Transformers. To alleviate the fatal mem-
ory consumption issue when applying Transformers in the frontend
with considerably long sequences, we modified the self-attention in
the Transformers of the masking network by using a local context
window. Furthermore, by incorporating an external dereverberation
method, we largely reduced the performance gap between the re-
verberant condition and the anechoic condition, and hope to further
reduce it in the future thanks to tighter integration of the dereverber-
ation within our model.
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