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Abstract
This paper considers object detection in the case of imperfect waveform separation, in the
context of automotive radars with a slow-time MIMO-FMCW signaling scheme. We develop
an explicit signal model that accounts for waveform separation residuals and propose a Kro-
necker subspace-based object detector in the framework of generalized likelihood ratio test
(GLRT). Our exact theoretical analysis under both hypotheses shows that the proposed de-
tector holds the desired property of constant false alarm rate (CFAR). Numerical simulations
validate our proposed object detection scheme.
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ABSTRACT

This paper considers object detection in the case of imperfect wave-
form separation, in the context of automotive radars with a slow-time
MIMO-FMCW signaling scheme. We develop an explicit signal
model that accounts for waveform separation residuals and propose a
Kronecker subspace-based object detector in the framework of gen-
eralized likelihood ratio test (GLRT). Our exact theoretical analy-
sis under both hypotheses shows that the proposed detector holds
the desired property of constant false alarm rate (CFAR). Numerical
simulations validate our proposed object detection scheme.

Index Terms— Automotive radar, MIMO, frequency modulated
continuous waveform (FMCW), detection.

1. INTRODUCTION

Automotive radar is rapidly becoming an indispensable component
in ADAS (advanced driver assistance systems) and emerging au-
tonomous driving applications. Along with ultrasonic, camera and
LIDAR sensors, it assists in sensing and understanding the envi-
ronment in a variety of weather conditions, with affordable cost.
Particularly, automotive radar provides direct measurement of ra-
dial velocities, long operating range, small size at millimeter or sub-
terahertz frequency bands, and high spatial resolution [1, 2].

This has led to the development of new signaling schemes to
handle mutual interference, such as phase-modulated continuous
wave (PMCW) and stepped-carrier OFDM. Among these schemes,
frequency modulated continuous waveform (FMCW) is overwhelm-
ingly preferred in practice for its simple transceiver architecture,
low sampling rate requirements, and its ability to harness a wide
frequency bandwidth.

At the same time, to increase the spatial resolution, multiple-
input multiple-output (MIMO) radars have been incorporated into
automotive radars for expanded virtual array aperture [3–12]. In
general, MIMO radars can be realized in either the time domain
(TDMA) or the waveform domain. In highly dynamical environ-
ments such as highways, the waveform-coded MIMO is preferred.
Compared to fast-time MIMO radars, requiring multiplying orthog-
onal codes on the sample-to-sample basis, slow-time MIMO radars
with orthogonal codes only on the pulse-to-pulse basis appear to be
a more cost-efficient solution for hardware implementation [5].

The existing literature mostly assumes perfect waveform sepa-
ration at each receiver, achieved by applying corresponding orthog-
onal codes at the transmitters. However, such ideal waveform sep-
aration is impossible across all Doppler frequencies and time de-
lays [13–20]. Therefore, the effect of waveform residuals has to
be considered for automotive object detection. Detection sensitivity
with respect to changes in cross-correlation levels was analyzed in
the case of distributed MIMO radars [15,18]. In [17] and [20], robust

Fig. 1. The slow-time MIMO-FMCW automotive radar architecture.
On the left, a sequence of FMCW pulses with orthogonal slow-time
(pulse) codes are sent from M transmitting antennas while, on the
right, each of N receivers uses the same source FMCW waveform
to sample the beat signal followed by range-doppler processing and
slow-time waveform separation for spatial MIMO detection.

target detectors were proposed to explicitly account for waveform
residuals in fast-time waveform-coded distributed MIMO radars.

In this paper, we account for such imperfect waveform separa-
tion effect into the context of slow-time MIMO-FMCW automotive
radars. In particular, we develop an explicit signal model that ac-
counts for waveform separation residuals. Following that, we formu-
late object detection as a binary hypothesis testing where the wave-
form residuals only appear in the alternative hypothesis when the tar-
get of interest is present. According to the developed signal model, a
Kronecker subspace-based object detector is proposed according to
the principle of generalized likelihood ratio test (GLRT). We provide
exact theoretical analysis under both hypotheses and we prove that
the proposed detector holds the desired property of constant false
alarm rate (CFAR).

2. WAVEFORM RESIDUALS FOR SLOW-TIME
MIMO-FMCW AUTOMOTIVE RADAR

As shown in Fig. 1, a slow-time MIMO-FMCW automotive radar
uses M transmitters sending K coded FMCW pulses

sm(t) =

K−1∑
k=0

cm(k)sp (t− kTPRI) e
j2πfct, (1)

where m and k are, respectively, the indices for the transmitter and
puse, cm(k) is the orthogonal code for the k-th pulse at the m-th
transmitter, TPRI is the pulse repetition interval (PRI), fc is the carrier



frequency (e.g., fc = 79 GHz), and sp(t) is the baseband FMCW
waveform

sp(t) =

{
ejπβt

2

0 ≤ t ≤ T
0 otherwise,

(2)

with β denoting the chirp rate and T the pulse duration. The band-
width of the FMCW waveform isB = βT . The baseband waveform
is repeated at each antenna before being multiplied by orthogonal
codes cm(k), e.g., Hadamard code.

For an object at a distance of R0 with a radial velocity vt, the
round-trip propagation delay from the m-th transmitting antenna to
the n-th receiving antenna is

τmn(t) = 2
R0 + vt

c
+m

dt sin(θt)

c
+ n

dr sin(θr)

c
, (3)

where dt/r and θt/r are the inter-element spacing and azimuthal an-
gle for the transmitting and receiving antennas, respectively. We
assume colocated radars and the far field approximation, i.e., θr =
θt = θ.

In the presence of an object at angle θ, the n-th receiver in
Fig. 1 receives the baseband signal (after the carrier frequency down-
conversion)

x̃n(t) ≈ α̃
∑
m

sm(t− τ0)e−j2πfc
2vt
c e−j2π(mdt+ndr)

sin(θ)
λ , (4)

where τ0 = 2R0/c and λ = c/fc. We assume that s(t − τmn) ≈
s (t− τ0) and α̃ absorbs constant phase factors. The signals at all
receivers are mixed with the source chirp to generate the analog beat
signal as bn(t) = x̃n(t)

∑
k s
∗
p(t− kTPRI)

b(k)
n (t) = α̃

∑
m

cm(k)e−j2πβτ0(t−kTPRI)e−j2πfc(2vt/c)

e−j2π(mdt+ndr)
sin(θ)
λ , (5)

where α̃ absorbs additional phase terms. The analog beat signal is
then sampled at t = kTPRI + l∆T , where ∆T and TPRI are, respec-
tively, the fast-time and slow-time sampling intervals

bn(l, k) = α̃
∑
m

cm(k)e−j2πfrle−j2πfdke−j2π(ftsm+frsn), (6)

where fr = (βτ0 + 2fcv/c) ∆T is normalized temporal (fast-time)
frequency, fd = 2fcTPRIv/c is the normalized Doppler (slow-time)
frequency, and f t/rs is the normalized spatial frequency at the trans-
mitting and receiving antennas (f ts is usually different from frs due
to different Tx/Rx spacings). In other words, the beat signal at the
n-th receiver is the sum of object responses originated from all trans-
mitted waveforms, coded using cm(k).

Due to limited computational resources, typically objects are
first detected in the range-Doppler (l, k) domain, before the slow-
time MIMO waveform separation. Once targets are detected, their
azimuthal angle is estimated using waveform separation in the slow-
time domain with identified Doppler frequency f̂d to compensate the
modulation. Specifically, one can separate the received waveform in
the slow-time domain as

bin(l) =
∑
k

ci(k)bn(l, k)ej2πf̂dk, i = 1, · · · ,M. (7)

Fig. 2. The code residual ηim for a Hadamard code of order 64 with
a normalized Doppler frequency mismatch of ∆fd = 0.01. The first
M = 8 columns of the Hadamard matrix are used for the orthogonal
code {cm(k),m = 1, · · · ,M, k = 1, · · · ,K}.

As a result, one can form the MIMO virtual array over all transmit-
ting elements i and receiving elements n. For a given range cell l,
the waveform separation gives the Tx-Rx virtual array as

bin(l) =α̃e−j2πfrle−j2πf
r
sn
(
e−j2πf

t
siηii

)
+ α̃e−j2πfrle−j2πf

r
sn

∑
m 6=i

e−j2πf
t
smηim

 (8)

where ηim =
∑
k cm(k)ci(k)e−j2π∆fdk measures the code residu-

als. Equation (8) reveals that, after slow-time waveform separation,
we can form a virtual array of MN elements for each detected ob-
ject and identify its spatial extent in the Tx-Rx element (i, n) do-
main. The waveform at each virtual element (i, n) consists of two
components: the object signal, weighted by ηii, and the residual
signal, a weighted sum of M − 1 components weighted by ηim.
If ∆fd = 0, one can have perfect waveform separation bin(l) =

Kα̃ine
−j2π(ftsi+f

r
sn)e−j2πfrl since ηii = K while ηim = 0. In

practice, however, a small mismatch in the Doppler domain may lead
to significant leakage in the separated waveform. Figure 2 shows an
example of the code residual ηim for a MIMO radar with M = 8
transmitting elements and K = 64 pulses using a Hadamard code
of order 64 for slow-time waveform separation and a normalized
Doppler frequency mismatch ∆fd = 0.01. The spectrum leakage,
present in the off-diagonal elements, ηim, i 6= m, is severe.

For each range cell l, we define the steering vector by stacking
all MN virtual elements, noting that ηii = η

b(l) ≈α̃s(frs )⊗ s(f ts) + s(frs )⊗
(
H(f ts)η

)
(9)

where α̃ absorbs additional phase terms, b(l) ∈ CMN×1, s(f ts) =

[1, · · · , e−j2πf
t
s(M−1)]T , s(frs ) = [1, · · · , e−j2πf

r
s (N−1)]T and

the subspace matrix H ∈ CM×d is

H(f) =


e−j2πf e−j2πf2 · · · e−j2πfd

1 e−j2πf2 · · · e−j2πfd

...
...

. . .
...

1 e−j2πf1 · · · e−j2πf(d−1)

 , (10)

with d denoting the subspace dimension that is related to the off-
diagonal leakage of ηim in Fig. 2 and η is the corresponding sub-
space coefficient. It is worth noting that (8) implies that the residual



subspace dimension can be up to M − 1. In practice, given the or-
thogonal code at the transmitter and the maximum range of Doppler
mismatch, one can assess the pattern of ηim and use the number of
significant code residuals to determine the subspace dimension d.

3. SPATIAL MIMO DETECTION

Object detection and spatial localization can be formulated as a bi-
nary hypothesis testing problem in the presence of the residual wave-
form. Thus, we use the GLRT to develop a Kronecker subspace-
based detector.

3.1. Hypothesis Testing

To formulate the binary hypothesis test we consider the target signal,
its residual signal due to imperfect waveform separation, and the
disturbance, including the background clutter, jamming signals and
thermal noise. More specifically,

H0 : x(l) = w(l),

H1 : x(l) = αls⊗ t + s⊗ (Hηl) + w(l), (11)

where the disturbance is assumed to be Gaussian distributed with
zero mean and covariance matrix R, i.e., w ∼ CN (0, σ2R). If R
is unknown, one can estimate it from training signals at neighboring
range cells. The receiving and transmitting steering vectors {s, t},
with corresponding dimension N and M , respectively, and the sub-
space matrix H are assumed known, following our signal model.

3.2. Proposed Spatial MIMO Detection

With known R or estimated R̂, the signal is whitened using y =
R−1/2x mapping detection to following binary hypothesis test:

H0 : y ∼ CN (0, σ2I),

H1 : y ∼ CN (R−1/2(s⊗ (αt + Hη)), σ2I).
(12)

For simplicity, we assume that R = RN ⊗RM . As a result, s̃ =

R
−1/2
N s, t̃ = R

−1/2
M t, H̃ = R

−1/2
M H, and w̃ = R−1/2w. Note

that the following derivations apply to a more general R.
Subsequently, the GLRT can be derived as the ratio of maxi-

mized likelihoods under both hypotheses

T =

max
α,η,σ2

f1(y
∣∣α,η, σ2 )

max
σ2

f0(y|σ2)
, (13)

where T is the test statistic, and f0(y|σ2) and f1(y|α,η, σ2) are,
respectively, the likelihood functions of the whitened signal

f0(y|σ2) =
e
− 1
σ2

yHy

(πσ2)MN

f1(y
∣∣α,η, σ2 ) =

e
− 1
σ2
‖y−s̃⊗(αt̃+H̃η)‖2

(πσ2)MN
. (14)

By differentiating ln f1(y
∣∣α,η, σ2 ) w.r.t. σ2 and setting to zero,

the ML estimate of σ2 under H1

σ̂2 =
1

MN
‖y − s̃⊗ (αt̃ + H̃η)‖2. (15)

Then the ML estimate of the remaining parameters β = [α,ηT ]T

can be determined by minimizing the following cost function

‖y − s̃⊗ (H̃tβ)‖2 (16)

where H̃t = [t̃, H̃]. The ML estimate of β follows:

β̂ =
[
(s̃H s̃)−1s̃H ⊗ (H̃H

t H̃t)
−1H̃H

t

]
y. (17)

Substituting β̂ back to the cost function, we have

‖y − s̃⊗ (H̃tβ̂)‖2 =
∥∥∥y − s̃⊗

[
((s̃H s̃)−1s̃H ⊗PH̃t

)y
]∥∥∥2

=
∥∥y − (Ps̃ ⊗PH̃t

)y
∥∥2

= yHP⊥s̃⊗H̃t
y

where we use the Kronecker product property that (A ⊗ B)(C ⊗
D) = (AC)⊗ (BD), and P⊥A = I−A(AHA)−1AH = I−PA.
As a result, the maximized likelihood under H1 is given by

max
β,σ2

f1(y
∣∣β, σ2 ) =

( π

MN
yHP⊥s̃⊗H̃t

y
)−MN

. (18)

Similarly, under H0, we have max
σ2

f0(y
∣∣σ2 ) =

(
π
MN

yHy
)−MN

.

Taking the (MN)-th root, the GLRT in (13) is equivalent to

T =
yHy

yHP⊥
s̃⊗H̃t

y
→ T ′ = T − 1 =

yHPs̃⊗H̃t
y

yHP⊥
s̃⊗H̃t

y
(19)

In other words, the GLRT statistic is equivalent to the ratio of the en-
ergy of the whitened signal projected onto a subspace and its orthog-
onal complement, where the subspace is spanned by the Kronecker
product of the column space of whitened transmitting steering vector
s̃ and the whitened subspace H̃t for the waveform residuals.

3.3. Theoretical Performance Analysis

We first define Tnum = yHPs̃⊗H̃t
y and Tden = yHP⊥

s̃⊗H̃t
y and

start with the following two lemmas.
Lemma 1: Under hypothesis H0 , the numerator and denominator
have the following distributions [21, 22]

2

σ2
Tnum =

2

σ2

d∑
n=1

|w̃n|2 ∼ χ2
2d (20)

2

σ2
Tden =

2

σ2

MN∑
n=d+1

|w̃n|2 ∼ χ2
2(MN−d), (21)

where w̃n is the n-th element of the whitened noise w̃ and we have
used the fact that the projection matrix PA can be decomposed as
PA = Qdiag{1, · · · , 1, 0, · · · , 0}QH with Q containing corre-
sponding eigenvectors and d non-zeros eigenvalues. Then the GLRT
statistic is a ratio of two independent central Chi-square distributions
with 2d and 2(MN − d) degrees of freedom. As a result,

(MN − d)

d
T ′ ∼ F2d,2(MN−d), under H0, (22)

where Fv1,v2 is a central F -distribution with degrees of freedom v1

and v2.



(a) (b) (c)

Fig. 3. (a) The receiver operating characteristic (ROC) curve under two levels of waveform separation residuals when SINR = 10 dB. (b) Per-
formance comparison of two object detectors in scenarios of clairvoyant (known R) and adaptive (unknown R) detection. (c) Performance
validation of theoretical (squares with dashed lines) ROC curves with Monte-Carlo results (circles) at various RINRs when SINR = 10 dB.

Lemma 2: Under hypothesis H1, the numerator and denominator
have the following distributions [21, 22]

2

σ2
Tnum =

2

σ2

d∑
n=1

|ζ̃n|2 ∼ χ2
2d(λ) (23)

2

σ2
Tden =

2

σ2

MN∑
n=d+1

|ζ̃n|2 ∼ χ2
2(MN−d). (24)

where the non-centrality parameter is λ = 2(s̃H s̃)(βHH̃HH̃β)/σ2.
Then the GLRT statistic is a ratio of a non-central Chi-square ran-
dom variable with 2d degrees of freedom and noncentrality param-
eter λ to an independent central Chi-square random variable with
2(MN − d) degrees of freedom. Therefore, we have

(MN − d)

d
T ′ ∼ F2d,2(MN−d)(λ), under H1, (25)

whereFv1,v2(λ) is a non-centralF -distribution with degrees of free-
dom v1 and v2 and non-centrality parameter λ.

Given the probabilistic distributions of the GLRT, we can analyt-
ically compute the probabilities of detection and false alarm. More
importantly, Lemma 1 implies that the GLRT is a constant false
alarm rate (CFAR) detector.

4. NUMERICAL EXAMPLES

To evaluate the performance of the proposed detector and com-
pare the verify the theoretical performance analysis we performed
extensive simulations. In all simulations, we define the signal-to-
interference-plus-noise ratio (SINR) and residual-to-interference-
plus-noise ratio (RINR) as

SINR = 2|α|2(sHR−1
N s)(tHR−1

M t)/σ2, (26)

RINR = 2(sHR−1
N s)(ηHHHR−1

M Hη)/σ2 (27)

where s represents the steering vector corresponding to N = 16
receivers, t is the steering vector for M = 8 transmitters, and the
disturbance covariance matrix RM/N is given as [R]`κ = ρ|`−κ|

with ρ = 0.6. The detection performance is evaluated in terms of the
receiver operating characteristic (ROC) by using Monte-Carlo trials.
For performance comparison, we include the conventional MIMO
detector which ignores the presence of waveform residuals.

4.1. Detection Performance Evaluation

We first consider a case of known R or R = I. In this case, the re-
ceived signal x and steering vectors t and s are pre-whitened first us-
ing R−1/2 as shown in (12). When SINR = 10 dB, Fig. 3 (a) shows
the ROC performance of the conventional detector and the proposed
detector under two levels of waveform residuals: 1) RINR = 10 dB
and 2) RINR = 15 dB. The results confirm that, by exploiting the
target residual, the detection performance can be improved. Besides,
larger performance improvement can be achieved if the target resid-
ual component is stronger (i.e., with larger RINR). This observation
is intuitive as the stronger the target residual, the larger the sepa-
ration between the null and alternative hypotheses and, hence, the
better detection performance.

Next, we quantify the performance loss due to the unknown R.
In this case, training signals x(l) from nearby range bins l are used
for adaptive object detection. Fig. 3 (b) shows, when RINR = 10 dB
and 2) RINR = 10 dB, the ROC curves for both adaptive and clair-
voyant (known R) schemes of both detectors. It clearly shows that
the detection performance degrades for both detectors when the dis-
turbance covariance matrix has to be estimated from training sig-
nals. It is also observed that, in the case of adaptive detection, the
proposed detector still outperforms the conventional detector.

4.2. Theoretical Performance Validation

Finally, we validate the theoretical performance analysis with
Monte-Carlo simulation results. To compute theoretical ROC curves,
we need to evaluate the inverse of the cumulative distribution func-
tion (CDF) of an F -distribution (e.g., finv in MATLAB) and the
CDF of a noncentral F -distribution (e.g., ncfcdf in MATLAB).
Fig. 3 (c) shows the simulated ROC curves under various RINRs
ranging from 7.5 dB to 15 dB and corresponding theoretical perfor-
mance from (22) and (25). It is seen that, for all considered scenarios,
the theoretical performance agrees well with simulated ROC curves
even at small probabilities of false alarm, e.g., Pf = 0.001.

5. CONCLUSIONS

We considered object detection for slow-time MIMO-FMCW auto-
motive radars by accounting for the residual waveform. Under this
model, we propose a Kronecker subspace detection in the GLRT
framework and provide exact performance analysis under both null
and alternative hypotheses. Simulation results confirm the effective-
ness of the proposed detection.
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