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Abstract
Deep learning models for monaural audio source separation are typically trained on large
collections of isolated sources, which may not be available in domains such as environmental
monitoring. We propose objective functions and network architectures that enable training
a source separation system with weak labels. In contrast with strong time-frequency (TF)
labels, weak labels only indicate the time periods where different sources are active in this
scenario. We train a separator that outputs a TF mask for each type of sound event, using a
classifier to pool label estimates across frequency. Our objective function requires the classifier
applied to a separated source to output weak labels for the class corresponding to that source
and zeros for all other classes. The objective function also enforces that the separated sources
sum to the mixture. We benchmark performance using synthetic mixtures of overlapping
sound events recorded in urban environments. Compared to training on mixtures and their
isolated sources, our model still achieves significant SDR improvement.
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ABSTRACT

Deep learning models for monaural audio source separation are typ-
ically trained on large collections of isolated sources, which may not
be available in domains such as environmental monitoring. We pro-
pose objective functions and network architectures that enable train-
ing a source separation system with weak labels. In contrast with
strong time-frequency (TF) labels, weak labels only indicate the time
periods where different sources are active in this scenario. We train a
separator that outputs a TF mask for each type of sound event, using
a classifier to pool label estimates across frequency. Our objective
function requires the classifier applied to a separated source to output
weak labels for the class corresponding to that source and zeros for
all other classes. The objective function also enforces that the sepa-
rated sources sum to the mixture. We benchmark performance using
synthetic mixtures of overlapping sound events recorded in urban
environments. Compared to training on mixtures and their isolated
sources, our model still achieves significant SDR improvement.

Index Terms— audio source separation, semi-supervised clas-
sification, weakly-labeled data

1. INTRODUCTION

Supervised methods using deep neural networks have recently
demonstrated state of the art performance in speech enhance-
ment [1, 2], speech separation [3, 4], music separation [5–8], and
sound effect separation [9]. These approaches typically require a
large dataset of isolated sources to generate sound mixtures and their
corresponding training targets.

When isolated sources are not available, it is unrealistic for
humans to manually label the audio at the granularity of a time-
frequency (TF) bin, especially to do so accurately and at scale. It is,
however, reasonable to assume they can produce limited labels for
the activity and type of sounds within some time range [10,11]. The
annotation burden can be further reduced, as done in sound event
detection (SED) [12–18], by replacing the fine resolution labels on
the sound event onsets and offsets (e.g., on the order of 10 ms) by a
coarse temporal label indicating the presence or absence of a sound
event within an audio clip (e.g., on the order of 10 s). Since the fine
resolution labels are typically defined at the level of a short-time
Fourier transform (STFT) frame, we refer to them as frame-level
labels, while we refer to the coarse labels as clip-level labels.

The goal of this paper is to consider whether deep learning sep-
aration methods that are typically trained in a supervised way using
the TF-bin level labels, can be trained using weaker labels such as
frame- or clip-level labels. The use of weakly-labeled data, for the
aforementioned practical reasons, has been extensively researched
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for the SED task. This task is particularly important in our work
since we not only try to address similar problems in transitioning
from strong to weak labels, but also employ an SED mechanism as
the critic for the separation performance.

We shall first point out an important difference regarding the no-
tion of strength of a label depending on the task. In SED, the goal
is to estimate the type of an audio event together with its precise
onset and offset. As such, the frame- and clip-level labels are re-
spectively referred to as strong and weak labels. In contrast, in the
context of source separation, ground truth consists in having infor-
mation on each source at the TF-bin granularity. Strong labels for
SED are thus only weak labels for source separation. There are also
key differences in the type of pooling required in SED and source
separation. In weakly-labeled SED, consecutive time frames often
share the same class labels; in weakly-labeled separation, the struc-
ture is much more intricate, as frequency bins sharing the same label
may be far from each other, often harmonically spaced in a highly
variable manner even among the same types of sounds.

To tackle these difficulties in pooling over the frequency dimen-
sion, we propose a form of discriminative pooling, where an SED
classifier is employed as the principal metric for loss calculation
while training the separator. When applied to a separated source,
the classifier is expected to detect that only a single class is present,
while all other sources are inactive. We further propose a multi-
task learning approach in training the separator, combining the audio
event classification objective with an additional separation-specific
objective that enforces the separated sources to sum to the mixture.
Our model learns to perform separation based solely on weak labels,
either at the frame level or at the clip level.

Several works have attempted to train source separation net-
works with relaxed training data requirements, such as semi-
supervised methods [19, 20] which do not require the isolated
sources to match the mixture, or those seeing only a target source
combined with background, and isolated backgrounds [21, 22]. An-
other class of methods based on weak labels assumes the availability
of weak labels at both training and inference time such as the score-
informed approach in [23], the variational auto-encoder in [24], and
the audio-visual approach in [25], where the video provides (weak)
labels to guide the audio separation. Our approach can separate mul-
tiple source classes, does not require seeing any sources in isolation,
and requires only the audio mixture (no labels) during inference.

Another line of research performs source separation implicitly
when training SED systems [26,27]. The objective function in [27] is
only SED cross-entropy and does not include any terms modeling the
separation task explicitly, such as enforcing each separated source to
belong to a single class, or enforcing estimated sources to sum to the
mixture as in our approach. Moreover, they test their method only
on isolated sources in background noise, whereas our experiments
deal with multiple overlapping sound events.
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Fig. 1. The joint separation-classification model. The separator receives an audio mixture and returns source estimates. The classifier
alternately processes the mixture and estimated sources (dashed lines indicate shared parameters). The classifier is pre-trained on the mixtures
to return the presence probabilities for all classes. The separator is then trained such that the classifier applied on a source estimate returns
the presence probability for that source along with zeros for all other sources.

2. PROPOSED METHOD

In this section, we present our joint separation-classification ap-
proach to audio source separation using weak labels. We describe
our model and formulate the objective function.

2.1. Joint Separation-Classification Model

In this work, we address the under-determined source separation
problem and assume only one recording channel of the mixture is
available. A common approach in this scenario is to perform mask-
ing on the mixture in the time-frequency (TF) domain. Let Xω,τ
denote the mixture magnitude in the TF domain (e.g., magnitude
STFT), and M̂i,ω,τ a TF mask estimate for the i-th source, taking
values in [0, 1]. The masking operation can be formulated as

Ŝi,ω,τ = M̂i,ω,τXω,τ , (1)

where Ŝi,τ,ω is the estimated magnitude of the i-th source. The time-
domain source estimates are then obtained by applying an inverse
transform (e.g., iSTFT) to the estimated magnitudes combined with
the mixture phase. Throughout this work, we assume each sound
source in the mixture belongs to a distinct sound class (e.g., speech,
music, gun shot), and hence we use these terms interchangeably.

Supervised mask inference refers to training a model to gener-
ate mask estimates for all sources present in an audio mixture. In
fully-supervised mask inference, the TF-domain representations of
the isolated sources or TF masks built from them are used as targets
in training the model. We refer to such targets as “strong labels”, as
they provide information about sound classes at the TF-bin level. In
the weakly-supervised case, however, the TF-bin labels are not avail-
able. Instead, the target labels only indicate the presence or absence
of sound classes over some duration of time (e.g., in a 32 ms time
frame or a 4 s audio clip).

At a high level, our model is composed of two main blocks: a
source separator and a source classifier. The block diagram of the
entire system is shown in Fig. 1. The separator block receives a TF
representation of a mixture and outputs estimates Ŝi, i = 1, . . . , n,
for each of the sources, where n indicates the total number of sound
classes available in a dataset. We assume the number of active sound
classes in a given mixture ranges from 1 to n. The input to the classi-
fier block is also a TF representation. In general, the TF representa-
tion used as input to the classifier may be different from the one used
as input to the separator, as long as we can pass gradients through the

transform used to compute it. For instance, the classifier input can
be a mel spectrogram while the separator input is a magnitude STFT.

Our main idea is that, if we can train a classifier that performs
well in predicting source class activities on natural mixtures, where
sound classes may sometimes occur in isolation and other times
overlap with other classes, we may use that classifier as a critic of
a separator’s performance. We may thus use weak labels, either at
the frame or clip level, to train the separator through the classifier.
This is illustrated in Fig. 1, where we have shown both frame-level
labels, with onsets and offsets for each sound class, and clip-level
labels where only presence or absence within a clip is indicated.

The classifier can be trained independently or jointly with the
separator. However, training the separator requires the classifier out-
put, as TF-bin labels are not available. We here pre-train the classi-
fier on the set of mixtures and fix its weights when training the sep-
arator. Note that the classifier is not trained using the set of isolated
sources as targets as this would violate the assumption that strong la-
bels are not available, although some sections with isolated sources
may naturally occur in the mixtures.

2.2. Objective Function

Our main goal in training the model is to achieve high-quality sepa-
ration, which requires explicit optimization of mask estimates, even
if ground truth TF labels are not available. To this end, a key con-
straint is to enforce the output signals of the separator to add up to
explain the input mixture. Indeed, this term is critical in prevent-
ing the separator from producing masks that only focus on the most
discriminating TF components for classification without fully recon-
structing the entire source. This is formulated as a mixture magni-
tude loss Lmix(τ) that minimizes the discrepancy between the mix-
ture magnitude and the sum of estimated source magnitudes at each
time frame τ :

Lmix(τ) =
∑
ω

|Xω,τ −
n∑
i=1

Ŝi,ω,τ |, (2)

where |.| denotes the modulus operator. Using the information pro-
vided by weak labels, we can enforce that only the sum over ac-
tive sources should be equal to the mixture, and all inactive sources
should be silent. Moreover, we can locate mixture frames where no
sources are active and exclude them from loss computation. In our
experiments, these refinements to the separation loss proved very
important for obtaining good mask estimates.



The classifier should correctly identify the sound classes,
whether it is applied to the input mixture or any of the source
estimates. This can be achieved by including a binary cross-entropy
term between the classifier output for each source and the true source
label. Let H(l, p) = −l log(p) − (1 − l) log(1 − p) be the binary
cross-entropy function where l ∈ [0, 1] and p ∈ [0, 1] respectively
denote the true and estimated activation probabilities.

When pre-training the classifier, it is only applied to the mix-
tures. In this case, the classification loss at frame τ is the weighted
sum of binary cross-entropy terms over all sources,

Lclass(X, τ) =

n∑
i=1

Wi,τH(li,τ , pi,τ (X)), (3)

where li,τ , pi,τ (.), and Wi,τ respectively denote the true label, es-
timated class probability, and the loss weight for the i-th source at
time frame τ . The reason for weighting the loss terms is that there
may be sound classes with very different activity levels in a dataset.
For instance, a dataset of urban sounds might include rare sound
events (e.g., gun shots) as well as sounds that are active over long
periods of time (e.g., street music). In such scenarios, the weights
should balance the class contributions to the total loss. We define the
weights as

Wi,τ =

{
γ−1
i for i ∈ Aτ ,

(1− γi)−1 for i /∈ Aτ ,
(4)

where γi is the activation probability for the i-th source and Aτ the
set of active source indices at time frame τ . We compute γi from
training data as the ratio of the total number of frames where the i-
th source is active to the total number of frames in the dataset. In
the case with clip-level labels, a max-pooling operation is applied
to the output of the frame classifier to map frame labels to clip la-
bels. In this scenario, we do not have access to the frame-level prior
knowledge regarding sound class activities, which hinders the use
of class-related weights. The classification loss given the clip-level
labels is thus formulated as

Lclass(X) =

n∑
i=1

H(li, pi(X)) (5)

where li and pi(.) are the clip-level true label and estimated class
probability for the i-th source.

In training the separator, the classifier is applied to the source
estimates (not to the mixture). The frame-level classification loss
for each source estimate includes the associated true class label and
zeros as true labels for all other sources:

Lclass(Ŝi, τ)=Wi,τH(li,τ , pi,τ (Ŝi)) +
∑
j 6=i

Wj,τH(0, pj,τ (Ŝi)),

(6)
which takes the following form for the clip-level case:

Lclass(Ŝi) = H(li, pi(Ŝi)) +
∑
j 6=i

H(0, pj(Ŝi))). (7)

The overall loss when training the separator is obtained by com-
bining the mixture magnitude and classification losses. The com-
bined loss for the the frame-level labels is computed as

Ltotal =
∑
i,τ

Lclass(Ŝi, τ) + α
∑
τ

Lmix(τ), (8)

and for the clip-level labels as

Ltotal =
∑
i

Lclass(Ŝi) + α
∑
τ

Lmix(τ), (9)

where α ≥ 0 is a tunable parameter controlling the contribution of
the mixture magnitude term to the total loss.

Fig. 2. Architecture of the 2D-CRNN classifier. Nτ and Nω respec-
tively denote the number of time frames and frequency bins in the
input representation. n is the total number of sound classes.

2.3. Network Architecture

The separator block in our model consists of a 3-layer bidirectional
long short-term memory (BLSTM) network, with each layer includ-
ing 600 nodes in each direction. A fully connected layer maps the
output of the BLSTM network to n masks with the same size as the
input mixture. Activation functions of all BLSTM units are tanh,
while the fully connected layer outputs go through sigmoid func-
tions, so that the mask values are always in [0,1].

To design a frame-level classifier, we explored a number of ar-
chitectures, ranging from very simple, such as a small stack of fully
connected layers, to increasingly more sophisticated ones, such as
convolutional recurrent neural networks (CRNNs). The clip-level
classifier in this work is a simple extension of the frame-level classi-
fier. It is built by adding a max-pooling operator to the output of the
frame-level classifier for each sound class to perform frame-level to
clip-level mapping of class probabilities. We leave the investigation
of separation performance for some of the more advanced temporal
pooling operations explored in [16] and [17] to future work.

Here, we present the architecture that performed best in our ex-
periments: A CRNN architecture composed of a 3-layer 2D convolu-
tional network including max-pooling after each layer, followed by a
BLSTM layer, and a fully connected layer which maps the BLSTM
output to class probabilities. Activation functions of convolutional,
BLSTM, and fully connected layers are relu, tanh, and sigmoid, re-
spectively. The output of each convolutional layer is batch normal-
ized prior to the application of the activation function. Figure 2 illus-
trates this architecture in detail. This network is a slightly modified
version of the SED model proposed in [17]. Note that the second and
third pooling operations in the convolutional network are applied
across both frequency and time axes, which results in a downsam-
pled version of frame-level predicted probabilities. To match this
coarser time resolution while computing the frame-level loss values,
we also downsample the true weak labels via max-pooling.

3. EXPERIMENTS

In this section, we present the results of our experiments and com-
pare our method to the common approach using strong labels.

3.1. Dataset

UrbanSound8K1 [28] is a dataset of 8732 sound excerpts of length
≤ 4 s, taken from field recordings. The excerpts are labeled based on
the sound event types and their salience in the auditory scene (fore-
ground or background). The dataset contains 10 sound classes, from
which we selected 5: car horn, dog bark, gun shot, jackhammer, and

1https://urbansounddataset.weebly.com/urbansound8k.html
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Table 1. Mean SDR values (dB) ± standard deviation for all sound classes and separators trained using various labels. ∆SDR indicates the
SDR improvement. The last column shows the results averaged over all samples and all classes.

Sound class
Car horn Dog bark Gun shot Jackhammer Siren Overall

Input SDR −5.8± 5.1 −5.4± 4.8 −5.5± 4.4 −2.9± 4.8 −3.0± 4.6 −4.5± 4.9
∆SDR-strong 9.9± 10.1 10.0± 7.1 12.5± 8.0 7.8± 6.6 4.9± 8.9 9.0± 8.6
∆SDR-frame 7.0± 7.4 8.3± 5.6 9.7± 5.4 5.7± 4.2 3.1± 6.4 6.8± 6.3
∆SDR-clip 6.5± 6.1 6.4± 4.4 8.8± 5.5 4.6± 3.8 1.8± 6.7 5.6± 5.9

siren. The class selection was made based on two criteria: i) ex-
amples in one class should contain mostly the sound corresponding
to the class label, with a reasonable salience level, and ii) examples
from different classes should be acoustically distinct enough so that
they are at least recognizable as different sounds by humans.

Audio mixtures in our dataset are 4 seconds long and sampled
at 16 kHz. Each mixture includes at least one sound event (i.e., a
single occurrence of a sound class) from one of the five selected
classes. Sound events are of arbitrary lengths, ranging from 0.5 s to 4
s, with a random (uniform) start time, all sound classes are sampled
uniformly, and the level of each event ranges between -30 to -25
LUFS [29]. The total number of events per mixture is sampled from
a zero-truncated Poisson distribution with an expected value of λ.
Note that this number can include multiple sound events from one
class, which are grouped together as one source while generating the
weak labels from metadata. For instance, λ = 5, the value used in
all our experiments, means that there are on average 5 sound events
(from any class) per mixture. Our training, validation, and testing
sets include 20K, 5K, and 5K mixtures, respectively.

3.2. Training Setup

The input to the separator is the log-magnitude STFT of a mixture.
The input to the classifier is the linear magnitude STFT of a mixture
or a source estimate. The features are generated using the square
root of a hann window of length 32 ms and a hop size of 8 ms. The
STFT parameters are the same for the separator and classifier inputs.

To provide an upper bound for the separation performance, we
trained the separator network on strong labels (i.e., target sources).
The joint separation-classification model was trained on either
frame-level or clip-level weak labels, using α = 100 based on a
grid search for the best results. In all training sessions, we used
the ADAM optimizer, with a learning rate of 10−4, β1 = 0.9, and
β2 = 0.999. The batch size was set to 10 in all experiments. We
train the networks until the loss on the validation set stops improving
for 5 consecutive epochs, with a maximum of 50 epochs.

3.3. Results

We evaluate the performance of the classifier in terms of F-measure
F = 2PR

P+R , the harmonic mean of precision P = TP
TP+FP

and
recall = TP

TP+FN
, where TP , FP , and FN respectively denote

the number of true positives, false positives, and false negatives in
classification results. Table 2 presents the average F-measure for
frame-level and clip-level sound classification when the classifier is
trained and tested on the mixtures.

To measure the quality of separated sources, we use the scale-
invariant source to distortion ratio (SI-SDR) [30], which has been
shown to be more appropriate for single-channel instantaneous sep-
aration evaluation than the original SDR [31]. Figure 3 shows the
distribution of input and output SDRs for all classes and label types.
The least and most amount of overlap between input and output SDR

Table 2. Sound source classification results in terms of F-measure.

Sound class
Label Car horn Dog bark Gun shot Jackhammer Siren

Frame-level 0.948 0.870 0.856 0.940 0.876
Clip-level 0.958 0.924 0.949 0.922 0.914

values are observed for the gun shot and siren classes, respectively.
The siren class in our dataset contains a more diverse set of sounds
compared to other classes (e.g., police siren versus ambulance siren),
which is likely the reason it is the most difficult sound type to sep-
arate even when strong labels are used (see also Table 1). Although
frame-level labels yield better results than clip-level labels in gen-
eral, the distribution of output SDRs for these two label types appear
highly overlapped in all cases. Furthermore, both weak-label distri-
butions overlap reasonably well with the strong-label distributions
and provide significant SDR improvement over the noisy mixtures.

car horn dog bark gun shot jackhammer siren
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Fig. 3. Distribution of separation results for all sound classes. All
boxes cover the values in the range of the first and third quartiles,
with the middle notch indicating the median. For each source, box
plots from left to right respectively correspond to the input SDR, and
output SDRs using clip-level, frame-level, and strong labels.

4. CONCLUSION

We presented an approach to audio source separation using weak
sound class labels. In our proposed model, an SED classifier is em-
ployed as the principal metric for loss calculation while training the
separator. The model is trained to minimize an objective function
that requires the classifier to identify the sound sources in the mix-
ture as well as their isolated versions estimated by the separator. The
objective function also enforces the estimated sources to sum to the
mixture. Our experiments yielded promising results and showed sig-
nificant SDR improvement even when using weak labels on a very
coarse-resolution time grid.
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