
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Nonlinear State Estimation with FMI: Tutorial and
Applications

Laughman, Christopher R.; Bortoff, Scott A.

TR2020-031 March 26, 2020

Abstract
One of the key uses enabled by the functional mockup interface (FMI) standard is the ability
to combine Modelica models governed by differential-algebraic equations with measurement
data to systematically estimate unmeasured quantities in physical systems. While it is clear
how this might be done in theory, many implementation challenges can make this difficult in
practice. This paper provides a tutorial connecting the mathematical formulation of two dif-
ferent estimators, the extended Kalman filter (EKF) and the ensemble Kalman filter (EnKF),
to an FMIbased Modelica implementation of these estimators. The efficacy of these methods
are demonstrated on an example of a small motor model and a larger thermodynamic model
of a building, and some of the advantages and disadvantages of this FMI-based approach to
estimation are discussed, as well as limitations of FMI associated with constraint management
for these estimation methods. The code for the motor example is publicly available and is
attached to this publication.

American Modelica Conference

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in
whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all
such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric
Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and all
applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall require
a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Copyright c© Mitsubishi Electric Research Laboratories, Inc., 2020
201 Broadway, Cambridge, Massachusetts 02139

Nonlinear State Estimation with FMI: Tutorial and Applications

Christopher R. Laughman Scott A. Bortoff

Mitsubishi Electric Research Laboratories, Cambridge, MA, USA
{laughman,bortoff}@merl.com

Abstract
One of the key uses enabled by the functional mockup
interface (FMI) standard is the ability to combine Mod-
elica models governed by differential-algebraic equations
with measurement data to systematically estimate unmea-
sured quantities in physical systems. While it is clear
how this might be done in theory, many implementation
challenges can make this difficult in practice. This paper
provides a tutorial connecting the mathematical formula-
tion of two different estimators, the extended Kalman filter
(EKF) and the ensemble Kalman filter (EnKF), to an FMI-
based Modelica implementation of these estimators. The
efficacy of these methods are demonstrated on an exam-
ple of a small motor model and a larger thermodynamic
model of a building, and some of the advantages and dis-
advantages of this FMI-based approach to estimation are
discussed, as well as limitations of FMI associated with
constraint management for these estimation methods. The
code for the motor example is publicly available and is
attached to this publication.

Keywords: observers, state estimation, extended Kalman
filter, ensemble Kalman filter, functional mockup interface
(FMI)

1 Introduction
Information about unmeasured physical quantities is of-
ten desired when designing complex engineered systems
to improve system control, implement performance moni-
toring, or perform fault detection and analysis. Data about
such variables may not be available for a variety of rea-
sons, such as sensor cost or the fact that quantities of inter-
est may be very difficult or impossible to measure directly.
As an example, measurements of the amount of heating or
cooling energy delivered by an HVAC system to an oc-
cupied space in a building would be useful in the design
of improved air temperature controllers, but accurate esti-
mates of this variable are difficult to obtain because they
depend on local temperature differences and airflow rates
that cannot be easily characterized.

This problem is commonly addressed by combining
sensor data with a model of the system, thereby leverag-
ing knowledge about the system structure which cannot be
directly inferred from a given set of sensor data. Though
a wide variety of modeling approaches can be used de-
pending on the type of system under study, models of
physical systems often benefit from the use of equation-

oriented tools such as Modelica (Modelica Association,
2017) because their physics-based structure allows the in-
ternal states to have a meaningful interpretation, and their
first-principles construction tends to produce good extrap-
olative performance over high-dimensional range of po-
tential operating conditions.

A variety of estimation and observer-based techniques,
including the range of Kalman filters and particle filters,
have been developed since the mid-twentieth century to
solve the problem of estimating unknown system quanti-
ties of interest given a model and a set of observations.
These methods can be more precisely described by con-
sidering a system model described by a set of ordinary
differential equations

ẋ =M(x,u, t; µ)+W (1)
y =H(x,u, t; µ)+V (2)
z = G(x,u, t; µ), (3)

whereM is the forward model operator, H is the obser-
vation operator, G is the map from the states and inputs
to the performance variables of interest, x represents the
system state, u represents the system input including both
the control inputs and the unmeasured or measured dis-
turbances, µ represents the system parameters (which we
will assume for the present work are known), andW and
V represent the process and observation noise with covari-
ances Q and R, respectively. We assume that the physi-
cal system is governed by the model (M,H), while the
noise terms are included in our approximate model repre-
sentation to describe model and measurement errors. In
this context, these methods are designed to produce an es-
timate x that minimizes a metric related to the error be-
tween the model output y and the measured system output
ym, with the expectation that the estimated system state is
sufficiently close to that of the plant that the performance
variables will accurately describe the variables of interest.

Unfortunately, the Modelica language is not designed
to implement these state estimation methods, as it can-
not readily update the state vector for the compiled model
to incorporate additional measurement information. The
functional mockup interface (FMI) standard (Modelica
Association, 2019) was thus created, in part, to enable
the use of Modelica models in this setting. The co-
simulation interface provides an efficient method to eval-
uate the right-hand sides of Equations 1-3 at a given time
step and correct the state vector to assimilate updated sen-
sor data, which enables the implementation of these state

estimation methods on top of the existing Modelica mod-
els.

Early work in using FMI 1.0 to implement state estima-
tion methods was presented by Brembeck et al. (2011),
which demonstrates the use of weighted least-squares
and Kalman filters to estimate the state-of-charge for a
lithium-ion battery. This work was significantly extended
by Brembeck et al. (2014) to cover a draft implementa-
tion of FMI 2.0 standard for co-simulation, and test im-
plementations of an extended Kalman filter and a moving
horizon estimator are demonstrated on an electric vehi-
cle application. Brembeck (2019) further develops this
work and implements a number of practical refinements
on the state-of-charge estimator. Other recent work done
by Vytvytskyi and Lie (2019) compares the performance
of unscented Kalman filters and ensemble Kalman filters
for state estimation in hydropower plants and finds that
these methods work well in this application. The present
paper is an extension of the work presented by Bortoff and
Laughman (2019), in which we demonstrated the use of
a model-exchange functional mockup unit (FMU) to con-
struct an extended Luenberger observer (ELO) with output
injection to estimate the heat capacity of a water-cooled
fan coil unit in a building.

While this prior work demonstrates the potential and
some of the capabilities of using FMI to construct esti-
mators based on Modelica models, an engineer with an
interest in implementing these methods is faced with the
daunting task of understanding the details of the FMI stan-
dard, as well as the API for the standard in a given lan-
guage (e.g., Modelica, Python, or C++), before an esti-
mator can be implemented for a given FMU. Moreover, a
host of practical issues must be addressed in the process
of this implementation that depend on the type of estima-
tion method that is used. Larger Modelica models (tens
to hundreds of states) are also associated with a variety of
challenges that are not encountered for smaller models.

In this paper, we provide a tutorial-oriented descrip-
tion of two different types of estimators: an extended
Kalman filter (EKF) (Simon, 2006) and a stochastic en-
semble Kalman filter (EnKF) (Evensen, 2009a), so that
a reader might obtain an improved understanding of the
theory and process behind the implementation of these
methods using the FMI. The EKF represents a traditional
Kalman filter formulation for a nonlinear model, while the
EnKF represents a particle-based approach which is sim-
ilar to the EKF, but seeks a reduced computational effort
by avoiding the integration of the covariance matrix. Both
of these methods are first implemented in this paper on a
simple model of an electrical machine, and then on a much
larger model that describes the thermofluid dynamics of a
building application, to provide an indication of the differ-
ences inherent in using them for practical Modelica mod-
els. While we could conceivably instantiate the FMU via
any available API (e.g., pyFMI, FMPy, or other tools), we
choose to instantiate the FMUs back into Modelica using
the Dymola 2020 compiler (Dassault Systemes, 2019) be-

cause of the extensive Modelica support of the FMI in-
terface and because this framework can easily be used to
interface these estimators to other Modelica models.

The remainder of this paper is organized as follows: in
Section 2, we will describe the theory of both the EKF and
the EnKF in the context of the simple motor example, and
connect the mathematical description of these estimators
to the code listings provided in this paper. A complete im-
plementation of this motor example is also available and is
attached to this paper. Issues relating to the practical im-
plementation of these estimators, as well as the simulation
results from their application to the motor problem, will
be discussed in Section 3. These same estimation meth-
ods will then be used in Section 4 to estimate the cooling
capacity on a larger building model. Conclusions and di-
rections for future development and work will briefly be
discussed in Section 5.

2 Tutorial: EKF & EnKF with FMI
2.1 Extended Kalman Filter
As described in (Simon, 2006), the Kalman filter updates
the state of a system model whenever measurements are
available, and is the optimal variance-minimizing algo-
rithm for linear systems with Gaussian process and mea-
surement noise. While this state estimation method is
thoroughly documented in many textbooks, it is helpful
to review it because it is closely related to both the EKF
and the EnKF. Assume a linear system model

xk = Axk−1 +Buk−1 +wk (4)
yk =Cxk + vk, (5)

where wk and vk are the zero-mean, independent, and
identically distributed Gaussian process and measurement
noise with covariances Q and R. As a result we can char-
acterize the statistical properties of the state by its mean
and variance, e.g.,

x̂k = E[xk] (6)

Pk = E[(x̂k− xk)(x̂k− xk)
T]. (7)

The Kalman filter proceeds in two phases to update and
correct the state at time k given the state at k− 1 and a
set of measurements yk. The first of these phases is re-
ferred to as the forecast step, which predicts the state at
the next time step without the knowledge of any additional
measurements, and the second phase is the analysis step,
which corrects the state forecast using the received mea-
surements. In the forecast step, we update the state from
k− 1 at time k by propagating forward the state and the
covariance via the original system model, e.g.,

x̂ f
k = Ax̂a

k−1 +Buk−1 (8)

P f
k = APa

k−1AT +Q, (9)

where the covariance matrix P can be derived by explicitly
calculating the variance from Equation 7. Now that the

state of the system has been propagated forward during the
forecast step, we can correct the state during the analysis
step using the measurements. This formulation minimizes
the trace of the estimation error covariance at each time
step.

x̂a
k = x̂ f

k +Kk(yk−Cx̂ f
k) (10)

Pa
k = (I−KkC)P f

k (11)

Kk = P f
k CT (CP f

k CT +R)−1 (12)

The state is corrected at each time step k to optimally
tradeoff between predictions of the model forecast and the
information obtained from the measurements. The state
will be biased towards the forecasts if the errors in the
measurements are large, while the state will be corrected
towards the measurements if the errors are small.

Because this estimator is designed for linear systems,
it must be modified to work on the nonlinear models of-
ten studied in Modelica. The EKF represents perhaps the
most straightforward modification of the basic Kalman fil-
ter equations for this purpose, which is to linearize the
nonlinear system model at each time step, and correct
the state based upon the predictions from the linearized
model. Given the original system description in Equa-
tions 1-3, we can linearize the system at each time step
k,

ẋ =M(x,k)x+M(u,k)u (13)

y =H(x,k)x (14)

where M(x,k) = ∂ M/∂x|k, M(u,k) = ∂ M/∂u|k, and
H(x,k) = ∂ H/∂x|k. This model can then be discretized for
a system with sample time Ts using the matrix exponential,
e.g., A = eM(x,k)Ts , which yields the linear system at this
operating point represented by Equations 4 and 5. Once
in this discrete-time representation, the previous Kalman
filter equations (8-12) can be implemented.

In order to describe the implementation of the EKF as
explicitly as possible, we present a simple nonlinear model
of a two-phase permanent magnet machine from Simon
(2006) to provide context for the derivation of these mod-
ifications, and to provide a concrete example for which
we can develop the EKF and EnKF code listings of Fig-
ures 1 and 2. This model consists of four coupled ODEs
that describe the electrical and mechanical dynamics of
the machine, e.g.,

L
dia
dt

=−Ria +ωλ sinθ + va (15)

L
dib
dt

=−Rib−ωλ cosθ + vb (16)

J
dω

dt
=

3
2

λ (−ia sinθ + ib cosθ)−Bω (17)

dθ

dt
= ω, (18)

where i represents electrical current, v represents voltage,
R is the winding resistance, L is the winding inductance,

λ is the flux linkage of the coil, J is the rotational inertia
of the shaft, and B is the damping factor of the load.

In general, electrical variables can be observed easily
and reliably, whereas the mechanical variables are more
expensive to measure. We consequently assume that we
have observations of the the input voltages va and vb, as
well as the currents ia and ib, but want to obtain esti-
mates of the shaft speed ω . This model can thus be writ-
ten down in the form of Equations 1-3, where the state
x = [ia ib ω θ]T and the input u = [va vb]. Equations 15-18
are straightforward to implement as a model in Modelica;
we chose to avoid the specification of the phase voltages as
explicit inputs, and instead defined them as time-varying
real variables.

We create an estimator from a Modelica model on the
basis of the above theory by first exporting the underly-
ing Modelica model (representing (M,H)) from a Mod-
elica tool as an FMU, reimporting the same FMU back
into Modelica as a co-simulation FMU, and then imple-
menting the EKF by modifying the Modelica code that is
autogenerated upon reimportation. The co-simulation for-
mat is needed because of the discrete-time formulation of
the EKF. This autogenerated code contains a wide vari-
ety of helper functions (often encapsulated in their own
package, such as fmiFunctions in Dymola) that are
needed to interface with the FMI API and run the FMU in
the Modelica tool, and which are the building blocks from
which the estimators are built. These helper functions do
not necessarily have the same API as that which is de-
scribed in the FMI standard because they provide an inter-
face between the specific tool and the functions defined by
the standard. However, the functions used in the estimator
are relatively straightforward, and would be expected to
be found in most complete FMI implementations.

Two aspects of this reimported FMU are of par-
ticular note. First, the variables in the Modelica-
instantiated FMU are referred to by 9-digit integer
labels, rather than by their original names. The
modelDescription.xml file included in the FMU
lists the correspondence between these labels and their
names, but use of particular variable names in the estima-
tor requires explicitly re-establishing this correspondence
in the estimator code (Brembeck et al., 2014). Second,
though the derivative variables are separately enumerated
in the XML file in the element modelStructure, the
FMU does not maintain an easily parsed list of the integer
labels corresponding to the state variables. The set of state
variable integer labels can instead be obtained by import-
ing the FMU in the model-exchange format for this ex-
press purpose, though this model-exchange FMU must be
unloaded so that it can be reimported in the co-simulation
format to create the estimator code. Once loaded, the ini-
tialization section of the model-exchange FMU contains
a list of the state variables selected during compilation as
well as their associated integer labels. Because the pro-
cess of reading and correcting the state in the EKF requires
the manipulation of these integer labels (which are often

sequential for the state variables), this is of major impor-
tance when implementing the estimator.

The essential code implementing the EKF is provided
in Figure 1, while the complete code is provided in an
attachment to this paper. To make this code more read-
able, certain simplifications were adopted with the hope
that they do not obfuscate the overall intent. Some boil-
erplate code, such as variable definitions, was eliminated
when the information about the variable could be inferred
from its context. In addition, some sections of code that
were autogenerated during the FMU import were also
commented out. Finally, integer labels were shortened to
improve readability.

This code excerpt begins in lines 1-13 with the defini-
tion of the fmiFunctions section (fmiF), which is auto-
generated upon FMU import, and the user-specified def-
inition of a number of important variables for the EKF,
such as the number of states and outputs Nx and Ny, the
process noise covariance matrix Q, and the measurement
noise covariance R. We also create a new set of inputs
and outputs y and yhat (lines 15-16), since we will be
reading the measurements of the actual plant that will be
assimilated by the estimator in variable y, and we want to
study the performance variables yhat. Once these vari-

ables are set up, the FMU enters a when loop that will
step through the stimulation and is initialized in an auto-
generated block of code represented by line 21.

Lines 23-41 create of the linearized forward model
operator M(x,k) and linearized observation operator
H(x,k). The fmiGetDirectionalDerivative
function takes the directional derivative of the integer la-
bels corresponding to the derivatives of the state variables
(in the array of the second argument) with respect to the
dot product of the integer labels corresponding to the state
variables (the third argument) and the column of the iden-
tity matrix INx×Nx corresponding to the number of the col-
umn (the fourth argument). While this function could be
used to take the mixed derivative with respect to multi-
ple variables, the array IdentityMatrixA is used in
this case to construct the Jacobian by computing the gra-
dient of the state vector with respect to each individual
state variable. Note thatM(x,k) is of size Nx×Nx, whereas
H(x,k) is of size Ny×Nx, and the entries of the output vec-
tor in lines 37-38 are the same as the state vector because
the states ia and ib are assumed to be measured.

Once these linearized Jacobians have been created for
the current time step, we apply the correction terms cal-
culated at the end of the last time step and step the simu-

1 import MSL.Math.Matrices.exp;
2 import MSL.Math.Matrices.inv;
3

4 package fmiF
5 ...
6 end fmiF;
7 public
8 parameter Integer Nx=4, Ny=2;
9 parameter Real Hz[1,Nx]=cat(2,

10 {{1}}, {{1}}, zeros(1,2));
11 parameter Real Q[Nx,Nx]=transpose(Hz)*Hz;
12 parameter Real R[Ny,Ny]=identity(Ny);
13 // {Other variable declaration code}
14

15 MSL.Blocks.Interfaces.RealInput y[2];
16 MSL.Blocks.Interfaces.RealOutput yHat[2];
17

18 algorithm
19 when {initial(),
20 sample(startTime, stepSize)} then
21 // {Initialization/slave-mode code}
22

23 for i in 1:Nx loop
24 dz := fmiF.fmiGetDirectionalDerivative(
25 fmi,
26 {560, 561, 562, 561},
27 {432, 433, 434, 435},
28 IdentityMatrixA[i,:]);
29 dF[:,i] := dz;
30 end for;
31

32 F := exp(dF*stepSize);
33

34 for i in 1:Ny loop
35 dh := fmiF.fmiGetDirectionalDerivative(
36 fmi,
37 {432, 433},
38 {432, 433, 434, 435},
39 IdentityMatrixC[i,:]);
40 H[:,i] := dh;
41 end for;
42

43 PPred := F*PCorr*transpose(F) + Q;
44 K := PPred*transpose(H)*inv((H*PPred*

transpose(H)) + R);
45

46 // Apply state correction after 5 steps
47 if time >= (startTime + 5*stepSize) then
48 fmiF.fmiSetReal(fmi,
49 {432, 433, 434, 435}, xCorr);
50 end if;
51

52 // {Step forward with fmiDoStep()}
53

54 xPred := fmiF.fmiGetReal(
55 fmi, {432, 433, 434, 435});
56 yPred := fmiF.fmiGetReal(
57 fmi, {432, 433});
58 xCorr := xPred + K*(y - yPred);
59 PCorr := (identity(4) - K*H)*PPred;
60

61 // {Variable allocation code}
62 equation
63 yHat[1] = ’x[1]’;
64 yHat[2] = ’x[2]’;

Figure 1. Extended Kalman filter (EKF) code.

lation forward. The Kalman gain matrix and the forecast
for the covariance matrix are calculated in lines 43-44, and
the state correction is applied to the state integer labels in
lines 46-50 by using fmiSetReal. The if statement in
line 47 is used to allow the values of the covariance matrix
to accumulate before applying the corrections to the state
variables. Once the state vector has been corrected, the
FMU is stepped forward to compute the forecast step us-
ing fmiDoStep() auto-generated code. After this step,
the corrections to the state vector x̂ and the covariance ma-
trix P for the analysis step are computed in lines 54-61 for
application to the next cycle. Finally, we need to add two
equations in line 63-64 to assign the outputs to be the state
estimates that we want to examine.

2.2 Ensemble Kalman Filter
While the EKF is a popular estimation technique because
it embodies a logical extension of the Kalman filter to non-
linear systems, it has been shown to have a few drawbacks.
First, the entire covariance matrix Nx×Nx matrix P must
be integrated at each time step; while this does not present
a burden for small systems, the quadratic growth of the
size of this matrix with the length of the state vector poses
significant computational barriers for large-scale problems
involving thousands of states. Second, the development of
the EKF as an extension of the linear KF uses a linearized
equation to describe the propagation of the error covari-
ance matrix. This may not be a valid assumption, and can
result in unbounded linear instabilities of the error evolu-
tion (Evensen, 2009b).

An alternative approach created to address the size limi-
tations of the EKF is called the ensemble Kalman filter, or
EnKF (Evensen, 2009b). Rather than directly propagate
all of the covariances forward at each time step, the EnKF
uses a sequential Monte Carlo approach to propagate for-
ward an ensemble of statistically sampled state vectors, or
particles, through the system dynamics and directly esti-
mate the covariance matrix from this distribution. This
avoids the computation of the Jacobians for the forward
model and the observation operator. This algorithm is
summarized with a range of variants by Vetra-Carvalho
et al. (2018), and will be briefly presented here.

As indicated above, the essential distinction between
the EKF and the EnKF can be seen by examining the for-
mulation of the covariance matrices. Whereas the EKF
formulates the covariance matrix P as

Pk = E[(x̂k− xk)(x̂k− xk)
T], (19)

the EnKF uses the fact that it propagates forward an en-
semble of particles to define the ensemble covariance ma-
trices around the ensemble mean rather than the true mean,
e.g.,

Pk = E
[
(x̂k−E[x̂k]) (x̂k−E[x̂k])

T
]
. (20)

This allows us to approximate the error covariance matri-
ces by using simple multiplications, rather than integrat-
ing the full set of differential equations for the covariance

matrix forward at every time step. This method has been
successfully used in numerical weather prediction models
with more than 106 states, which would not be generally
feasible with an EKF.

Because the ensemble of particles evolves forward with
time, it is also necessary that we formulate the problem
in terms of the ensemble mean and the ensemble perturba-
tions. Taking Xa as Ne particles sampled from a state space
of Nx so that Xa has dimension Nx×Ne, we construct the
analysis mean and perturbation ensemble by

Xa = Xa
+X ′a. (21)

As a result, the covariance matrix Pa can be written as

Pa =
X ′a(X ′a)T

Ne−1
. (22)

We summarize the construction of the filter as follows,
emphasizing the similarity to the linear Kalman filter. The
ensemble forecast is constructed by propagating the non-
linear forward operator and observation operator by a step,
e.g. integrating forward the model equations

X f
k =M(Xa

k−1,uk−1, tk−1; µ) (23)

HX f
k =H(Xa

k , tk; µ) (24)

where HX f
k indicates the integation of the nonlinear ob-

servation operator forward on the ensemble by one time
step. We then calculate the output error covariance HPHk
and the innovation term Ck by computing

HX ′ fk = HX f
k −HX f

k (25)

HPHk =
HX ′ fk (HX ′ fk)T

Ne−1
(26)

Ck = (HPH +R)−1
(

Yk−HX f
k

)
(27)

We construct the ensemble perturbation matrix X ′ fk =

X f
k −X f

k and compute the correction ensemble

Xa
k = X f

k +
1

Ne−1
X ′ fk (HX ′ fk)TCk (28)

which completes the calculation of the analysis step for
the EnKF.

As was the case for the EKF, much of the imple-
mentation of the EnKF using the FMU is relatively
straightforward. Many of the specific modifications
needed to implement the EnKF by using the autogener-
ated Modelica code pertain to the generation and prop-
agation of the particles used to characterize the esti-
mator’s statistical properties, as well as the computa-
tion of the ensemble mean. While random number
generation code from the Modelica Standard Library
(MSL) (included in Modelica.Math.Random and
Modelica.Math.Distributions) was used in the

creation of the perturbations, separate implementations of
the noise generation functions were required because the
models in Modelica.Blocks.Noise could not be in-
cluded in the algorithm sections of the FMU.

The EnKF code described in Figure 2, and which is
also available in its entirety in the attachment, bears many
similarities to the EKF code discussed previously. Many
of the variables are first defined in lines 1-21, with some
of the variable definitions commented out for the sake of
brevity. The random number generation code imported
from the MSL is abbreviated as MSL* for similar reasons,
though these functions can be quickly found through a
search. Two variables (initState and nextState)
were also required to maintain and evolve the state of the
random number generator. The inputs and outputs are de-

fined in lines 20-21, and the model is initialized using the
autogenerated code in lines 23-26.

The initial ensemble of particles is generated in lines
28-35 during the initialization phase of simulation by us-
ing the MatrixPerturbation function. This function
takes a set of initial guesses for the state variables and cre-
ates Ne perturbed instances of this Nx× 1 state vector by
adding zero-mean noise with a standard deviation based
upon the order of magnitude of the initial guesses. This
scaling of the particle perturbations is important, as per-
turbations that are too small will not provide sufficient di-
versity to estimate the covariance, while perturbations that
are too large could result in incorrect model behavior or
otherwise reduce the information provided by these initial
guesses.

1 import distribution=MSL*.quantile;
2 import generator=MSL*.Xorshift128plus;
3 import MSL*.impureRandomInteger;
4 package fmiF
5 ...
6 end fmiF;
7 public
8 parameter Integer Nx=4, Ne=5, Ny=2;
9 parameter Real R[Ny,Ny]=[0.01, 0; 0, 0.01];

10 parameter Real[Nx] x_init={0, 0, 0, 0};
11 parameter Real[Nx,Ne] X_init=[x_init,

x_init, x_init, x_init, x_init];
12 parameter Real mu=0, sigma=0.1;
13

14 MSL.Blocks.Noise.GlobalSeed globalSeed;
15 parameter Integer actualGlobalSeed=

globalSeed.seed;
16 final parameter Integer localSeed=

impureRandomInteger(
globalSeed.id_impure)

17 Integer initState[generator.nState];
18 Integer nextState[generator.nState];
19 // {Other variable declaration code}
20 MSL.Blocks.Interfaces.RealInput y[Ny];
21 MSL.Blocks.Interfaces.RealOutput yHat[Ny];
22

23 algorithm
24 when {initial(),
25 sample(startTime, stepSize)} then
26 // {Initialization/slave-mode code}
27

28 if initial() then
29 // Create particle distribution
30 initState := generator.initialState(
31 localSeed, actualGlobalSeed);
32 (X, nextState) := MatrixPerturbation(
33 X_init, initState);
34 initState := nextState;
35 end if;
36

37 if time >= startTime + (5*stepSize) then
38 X := XCorr;
39 end if;

40

41

42 for i in 1:Ne loop
43 fmiF.fmiSaveFMUState(fmi);
44 fmiF.fmiSetReal(fmi,
45 {432, 433, 434, 435}, X[:,i]);
46 // {Step ensemble member with fmiDoStep}
47 X[:,i] := fmiF.fmiGetReal(fmi,
48 {432, 433, 434, 435});
49 HX[:,i] := fmiF.fmiGetReal(fmi,
50 {432, 433});
51 if i<Ne then
52 fmiF.fmiRestoreFMUState(fmi);
53 else
54 continue;
55 end if;
56 end for;
57

58 // EnKF computations
59 X_bar := MatrixMean(X,1);
60 HX_bar := MatrixMean(HX,1);
61

62 for i in 1:Ne loop
63 X_prime[:,i] := X[:,i]-X_bar;
64 HX_prime[:,i] := HX[:,i]-HX_bar;
65 end for;
66

67 HPH:=1/(Ne-1)*HX_prime*transpose(HX_prime);
68 A := HPH + R;
69 (Y, nextState) := MatrixPerturbation(
70 [y, y, y, y, y], initState, sigma=0.01);
71 initState := nextState;
72

73 D := Y - HX;
74 C := MSL.Math.Matrices.solve2(A,D);
75 E := transpose(HX_prime)*C;
76 XCorr := X + (Ne-1)*X_prime*E;
77 yHat := HX_bar;
78

79 // {Variable allocation code}
80 equation
81 yHat[1] = ’x[1]’;
82 yHat[2] = ’x[2]’;

Figure 2. Stochastic ensemble Kalman filter (EnKF) code.

0.5

0.0

0.5

v a
(V

)

plant
EKF

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
time (sec)

0.5

0.0

0.5

v a
(V

)

plant
EnKF

Figure 3. Estimated and measured phase A currents for the EKF
and EnKF experiments.

After creating this ensemble, the corrected state vector
is applied to the system in lines 37-39; this is performed
after 5 time steps as was the case for the EKF. Lines 42-
56 then use this ensemble and the corrected state vector
during model integration to evolve each particle forward
according to the dynamics of the nonlinear model. This is
accomplished by

1. Saving the state of the FMU using
fmiSaveFMUState,

2. Setting the integer labels of the state variables to the
values of the current particle,

3. Stepping the system dynamics forward with this par-
ticle using fmiDoStep(),

4. Saving the results of the integration step to the vari-
ables X and HX, and

5. Resetting the state of the FMU using
fmiRestoreFMUState so the next particle
can be integrated forward.

Note that the evolution of the model does not depend on
the evaluation of the Jacobians, which can potentially re-
duce the amount of computation required. However, the
requirement that each particle be individually stepped for-
ward in time can also present significant computational
requirements, depending on the implementation of the in-
tegrator and the relative scales of the state variables.

The analysis phase of the EnKF is completed in lines
59-77 of the EnKF example. This implementation fol-
lows Vetra-Carvalho et al. (2018) closely, and culminates
in the computation of the corrected state vector in line 76.
The outputs of interest are then assigned in lines 81-82 to
complete the construction of this estimator.

3 Simple Motor System
The construction of these estimators was based upon a
Modelica model of the simple motor described in Equa-
tions 15-18, with model parameters set to the values pro-
vided in Table 1. After generating a co-simulation FMU
for this model, we saved the model into a separate folder

0.00 0.25 0.50 0.75 1.00 1.25
time (s)

8

6

4

2

0

2

4

6

8

(ra
d/

s2)

plant
EKF
EnKF

Figure 4. Shaft speed.

that was expressly set up for the storage of FMUs, as
FMUs cannot be stored within the package directory struc-
ture. This imported Modelica model was then duplicated
and modified to create the EKF and the EnKF estimators,
which remained distinct from the original imported FMU.
Note that the path to the FMU DLL is stored as a text
string in the autogenerated Modelica code, and must be
changed manually if the FMU is moved after it is reim-
ported.

We evaluated these estimators by creating a test model
that included both the original Modelica motor model and
the new estimator. Zero-mean noise with a standard devia-
tion of 0.05 A was added to the motor current observations
before feeding these signals into the estimator to evaluate
the robustness of the estimates. In addition, the states of
the initial motor model were each initialized to zero, but
the states of the estimator model were each initialized to 1
to test the estimator’s robustness to initial state errors. The
EnKF was configured to use 5 particles in its ensemble; we
found that the performance and convergence of this filter
was dependent upon the number of particles used.

One minor observation that merits a highlight is that the
simulation time is set in the FMU when it is reimported,
and is not set by the annotations usually used to capture in-
formation in Modelica models. As such, if the user wants
to change the start or end time of a simulation, or the num-
ber of time steps used, this must be done both in the sim-
ulation window, as usual, and by setting the appropriate
parameters of the FMU.

Figure 3 demonstrates the ability of both estimators to
construct good estimates of state ia from noisy observa-

µ Value µ Value
va sin(2πt) λ 0.1 V · s
vb cos(2πt) J 1.8e-4 kg ·m2

R 1.9 Ω B 1e-3 kg ·m/s
L 3 mH

Table 1. Motor parameters.

Figure 5. Two zone (room/plenum) model including a fan coil unit.

tions of the original motor model. The upper plot in this
figure shows the performance of the EKF, while the lower
plot shows the performance of the EnKF; the state esti-
mate for both systems can be seen to be close to the mean
of the input signal.

Figure 4 illustrates the estimates of the motor speed
state ω as well as the estimates produced by the EKF and
EnKF. It is clear from a comparison between the original
plant signal and the estimates that both filters can produce
good estimates of this state without its measurement. It is
interesting to note that the estimate for this state from the
EKF is somewhat noisier than those estimates from the
EnKF, but that the mean of both of these estimates is quite
close to the state of the original plant.

4 Building System
Though we can gain significant insights into the process
of designing and implementing estimators by using the
previous simple motor model, our primary interest in this
technology lies in the ability to leverage large-scale Mod-
elica system models for use in estimation problems. As a
case study of this application, we constructed a two-zone
model of one floor of a commercial office building, in-
cluding both the occupied space and a plenum above, by
using the models provided by the Modelica Buildings li-
brary (Wetter et al., 2014) with the objective of estimating
the sensible heat load in the occupied space. This model
is very similar to that which was used by (Bortoff and
Laughman, 2019).

A schematic diagram of this building model is illus-
trated in Figure 5, which shows the two zones as well
as a water-source dry-coil fan coil model that is used to
manage the room air temperature. The use of the dry
coil model is somewhat atypical, and will be elaborated
later in this section. This fan coil is connected to a fixed
temperature water source (10 °C) and sink (16 °C), and

the room temperature is regulated by a PI controller that
adjusts the mass flow rate of water through the coil to
maintain the set point. The area of the floor is 415 m2,
while the room height is 2.6 m and the plenum height is
1.3 m; there is also a total of 83.6 m2 of window area
on the external walls. The heat load varies between 1.66
kW (4 W/m2) between the hours of 7pm and 8am, and
4.15 kW (10 W/m2) between the hours of 8am and 6pm,
with smooth ramps during the transition hours. The Tokyo
TMY3 weather file is used to provide the ambient condi-
tions, and this simulation is run for 5 days from June 12-17
to study its behavior over a practical duration of time.

The connections between the building model and the es-
timator are illustrated in Figure 6, which illustrate the use
of the original Modelica plant model and the FMI-based
estimator. This estimator is based on four measurements

Figure 6. Estimator.

22

24

26

28

30

T p
le

nu
m

(d
eg

C) plant
EKF

0 20 40 60 80 100 120
time (h)

22

24

26

28

30

T p
le

nu
m

(d
eg

C) plant
EnKF

Figure 7. Estimated and measured plenum air temperatures.

from the plant: a measurement of the water flow rate pro-
vided by the control signal for the fan coil unit, the room
air temperature, the plenum air temperature, and the re-
turn water temperature. We then designed an EKF and an
EnKF to estimate the heat load on the room. This objective
necessitated a small modification of the model used for the
estimator; while the sensible load is customarily specified
as an input to the model, we added an integrator driven
by a constant value to the sensible load input for the es-
timator model. By incorporating this integrator, we force
the compiler to include the heat load as a state which can
then be estimated. The scales of the states also required
specific attention in the construction of the EnKF. In gen-
eral, the states in these thermodynamic models are poorly
scaled; for example, the internal energy of the water is on
the order of 107 J/kg, while the humidity ratio of the room
is on the order of 10−3 kg w/kg da. Perturbations of the
state vector therefore must be carefully designed so they
do not dominate its mean, which tends to be constructed
carefully in consideration of physical intuition.

We tested the EKF by adding 0.01 °C of quantization
noise to the measured outputs of the plant; while this
amount of quantization is small, it was chosen to ensure
that the observed variations in room and return water tem-
peratures (which were small due to the large coil capacity)
would not be hidden by the quantization. In using these
quantized inputs, we examined the ability of the EKF to
properly estimate both the states characterized by the in-
puts as well as the heat load. The upper plot of Figure 7 il-
lustrates the measured and estimated plenum temperatures
for the EKF, and it is clear that the estimator can accurately
capture the dynamics of the original plant. Moreover, Fig-
ure 8 demonstrates the rapid convergence of the estimates
to the imposed heat load, suggesting that the EKF is effec-
tive for solving this estimation task.

In comparison, the estimates of both the plenum air
temperature and the sensible heat load from the EnKF
are relatively poor. While the EnKF captures the general
shape of the plenum air temperature dynamics, there are
significant errors; moreover, the errors in the heat load

0 20 40 60 80 100 120
time (h)

3

4

5

6

7

8

9

10

11

12

Q
se

ns
ib

le
(W

/m
2)

plant EKF EnKF

Figure 8. Imposed and estimated heat loads.

estimates are substantial, and completely miss the time-
varying behavior of the heat load towards the end of the
simulation.

The poor performance of the EnKF is fundamentally
related to interactions between the ensemble perturbations
and the state and output constraints of the model. Many
models of thermodynamic systems have limits of validity
on their variables; for example, the dry air model used in
the Buildings library is only accurate down to tempera-
tures of 200 K, while the humidity ratio in a space cannot
physically go below zero. However, the ensemble pertur-
bations in the EnKF are not designed to satisfy these con-
straints in a statistically valid manner. We found many
circumstances in which small perturbations in the ensem-
ble led to constraint violations either of the state variables
directly (e.g., humidity ratio), or of algebraically related
output variables (e.g., temperatures), causing the simula-
tions to crash. The need to place stringent limits on the
dispersion of the particles thus prevented the covariance
matrix from accurately characterizing the system dynam-
ics and producing an accurate estimate of the heat load.

This behavior was apparent in all of the experiments
with the EnKF. We found that there were effectively no
useful perturbations that could be applied to a wet-coil
fan coil model that would not violate the constraint that
the humidity ratio needs to be positive, and that even the
room with the dry coil model often had problems in which
the the mixed air humidity ratio would tend toward zero.
While the EnKF does demonstrate promise for problems
in which a suitably large ensemble can be used, it appears
to have significant limits when used in an FMI-based con-
text with constraints on state and output variables.

While the design of the FMI standard is suited to de-
scribe sets of differential equations for the purpose of
simulation as well as estimation using Kalman filters and
EKFs, the fact that it does not provide a direct association
between variables and their constraints imposes a crucial
limitation in the practical implementation of constrained
estimators (Simon, 2010) or particle filters for large-scale
problems (Van Leeuwen et al., 2019). For example, an

estimator designed for the system

dx1

dt
= f1(x1,x2,x3; µ) (29)

dx2

dt
= f2(x1,x2,x3; µ) (30)

x3 = f3(x1,x2; µ) (31)
a1 ≤ x1 ≤ b1 (32)
a3 ≤ x3 ≤ b3 (33)

must take the state and inequality constraints imposed by
Equations 32 and 33 into account when generating the per-
turbation ensembles for the state vector [x1 x2]. While
these constraints could be incorporated manually into an
estimator for a small system when modifying the Mod-
elica code generated upon import of the co-simulation
FMU, the application of these estimation methods would
be much more practical if the FMU included the infras-
tructure needed to systematically associate the variables
with their constraints.

5 Conclusions & Discussion
While the basic infrastructure used to construct FMI-
based system models might not always have the most intu-
itive interface, their capabilities make them excellent can-
didates for use in a variety of estimation problems. We
found that the implementation of the extended Kalman fil-
ter is relatively straightforward once the FMI API is fully
understood, and that these filters demonstrated good per-
formance on both a small test problem and a larger esti-
mation problem that utilized the capabilities of Modelica
for building models of complex physical systems. We also
found that the FMI interface also enabled the construction
of other types of estimators, such as the ensemble Kalman
filter, suggesting that there is potential in the further in-
vestigation of other FMI-based interfaces for estimation
applications.

However, this study also revealed some important lim-
itations of FMI for the application of constrained estima-
tion approaches, such as ensemble Kalman filters or other
particle filtering methods. The lack of a direct association
between a state variable and its constraints posed signifi-
cant difficulties in the implementation of ensemble-based
methods. Future work on systematically accommodating
such constraints in FMI could have a significant impact on
FMI’s use on the range of estimation problems, especially
for the large-scale applications to which Modelica models
are so well-suited.

References
S.A. Bortoff and C.R. Laughman. An extended Luenberger ob-

server for HVAC application using FMI. In Proceedings of
the 13th International Modelica Conference, pages 149–155,
2019. doi:10.3384/ecp19157149.

J. Brembeck. A physical model-based observer framework for
nonlinear constrained state estimation applied to battery state
estimation. Sensors, 19, 2019. doi:10.3390/s19204402.

J. Brembeck, M. Otter, and D. Zimmer. Nonlinear observers
based on the Functional Mockup Interface with applica-
tions to electric vehicles. In Proceedings of the 8th In-
ternational Modelica Conference, pages 474–483, 2011.
doi:10.3384/ecp11063474.

J. Brembeck, A. Pfeiffer, M. Fleps-Dezasse, M. Otter, K. Wern-
ersson, and H. Elmqvist. Nonlinear state estimation with an
extended FMI 2.0 co-simulation interface. In Proceedings
of the 10th International Modelica Conference, pages 53–62,
2014. doi:10.3384/ECP1409653.

Dassault Systemes. Dymola 2020, 2019.

G. Evensen. Data Assimilation: The Ensemble Kalman Filter.
Springer, 2 edition, 2009a.

G. Evensen. The ensemble Kalman filter for combined state
and parameter estimation. IEEE Control Systems Magazine,
pages 83–104, 2009b. doi:10.1109/MCS.2009.932223.

Modelica Association. Modelica specification, Version 3.4,
2017. URL www.modelica.org.

Modelica Association. Functional Mockup Interface for Model
Exchange and Co-Simulation, Version 2.0.1, 2019. URL
www.fmi-standard.org.

D. Simon. Optimal State Estimation: Kalman, H-∞, and Non-
linear Approaches. John Wiley & Sons, 2006.

D. Simon. Kalman filtering with state constraints: A survey
of linear and nonlinear algorithms. IET Control Theory
and Applications, 4(8):1303–1318, 2010. doi:10.1049/iet-
cta.2009.0032.

P. J. Van Leeuwen, H. R. Künsch, L. Nerger, R. Potthast,
and S. Reich. Particle filters for high-dimensional geo-
science applications: a review. Quarterly Journal of the
Royal Meteorological Society, 145(723):2335–2365, 2019.
doi:10.1002/qj.3551.

S. Vetra-Carvalho, P.J. Van Leeuwen, L. Nerger, A. Barth,
M.U. Altaf, P. Brasseur, P. Kirchgessner, and J.-M. Beck-
ers. State-of-the-art stochastic data assimilation methods for
high-dimensional non-Gaussian problems. Tellus A, 70:1–43,
2018. doi:10.1080/16000870.2018.1445364.

L. Vytvytskyi and B. Lie. Combining measurements
with models for superior information in hydropower
plants. Flow Measurement and Instrumentation, 69, 2019.
doi:10.1016/j.flowmeasinst.2019.101582.

M. Wetter, W. Zuo, T. Nouidui, and X. Pang. Modelica buildings
library. Journal of Building Performance Simulation, 7(4):
253–270, 2014. doi:10.1080/19401493.2013.765506.

https://doi.org/10.3384/ecp19157149
https://doi.org/10.3390/s19204402
https://doi.org/10.3384/ecp11063474
https://doi.org/10.3384/ECP1409653
https://doi.org/10.1109/MCS.2009.932223
www.modelica.org
www.fmi-standard.org
https://doi.org/10.1049/iet-cta.2009.0032
https://doi.org/10.1049/iet-cta.2009.0032
https://doi.org/10.1002/qj.3551
https://doi.org/10.1080/16000870.2018.1445364
https://doi.org/10.1016/j.flowmeasinst.2019.101582
https://doi.org/10.1080/19401493.2013.765506

	Title Page
	page 2

	/projects/www/html/my/publications/docs/TR2020-031.pdf
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10

