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Integer Ambiguity Resolution by Mixture Kalman
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Abstract—Accurate carrier-phase integer ambiguity resolution
is fundamental for high precision global navigation satellite
systems (GNSSs). Real-time GNSSs typically resolve the am-
biguities by a combination of recursive estimators and integer
least squares solvers, which need to be reset when satellites
are added or cycle slip occurs. In this paper we propose a
mixture Kalman filter solution to integer ambiguity resolution.
By marginalizing out the set of ambiguities and exploiting a
likelihood proposal for generating the ambiguities, we can bound
the possible values to a tight and dense set of integers. Thus, we
extract the state and integer estimates from a mixture Kalman
filter. The proposed approach yields an integrated method to
detect cycle slip and initialize new satellites. A numerical analysis
and experimental results indicate that the proposed method
achieves reliable position estimates, repeatedly finds the correct
integers in cases when other methods may fail, and is more
robust to cycle slip.

I. INTRODUCTION

Global navigation satellite systems (GNSSs), such as GPS,
Galileo, and, in the future, QZSS, are used in many positioning
and navigation applications world-wide. GNSS receivers can
be found in airplanes, cars, and cell phones. A GNSS receiver
determines its position using two types of range measurements
from several satellites orbiting the earth: pseudorange (or code)
measurements and carrier-phase measurements. The code mea-
surement is determined by multiplying the signal travel time
from the satellite to the receiver with the speed of light. Code
measurements are inexact because they include several sources
of errors, such as satellite clock timing error, ionospheric and
tropospheric refraction effects, receiver tracking noise, and
multipath error. To reduce these errors, differential corrections
are used in many GNSS applications [1]. The carrier-phase
measurement is obtained by integrating a reconstructed carrier
of the signal as it arrives at the receiver. The carrier-signal
observations are more precise than the code measurements
and can be tracked within a percent or less of the wavelength
(λ ≈ 0.19m for the L1 frequency band). However, because of
the unknown number of wave periods in transit between the
satellite and the receiver, when the receiver starts tracking the
carrier phase of the signal, there is an integer ambiguity in the
carrier phase measurement. Furthermore, cycle slip, which is
a sudden loss of lock of the carrier signal, for example due to
a power loss or receiver failure, causes a jump in the carrier-
phase measurements and is a common error source in GNSSs.

A standard approach to resolve the ambiguities, at start and
after a cycle slip has occurred, is to use a recursive estimator
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such as an extended Kalman filter (EKF) combined with
the least-squares ambiguity decorrelation method (LAMBDA)
method, which first relaxes the ambiguity to be real valued (by
EKF) and then obtains an integer solution for the ambiguity
by a local search around such real value (by LAMBDA)
[2]. An overview of traditional approaches for ambiguity
resolution can be found in [3], and a summary of integer
estimation theory is presented in [4]. Many GNSS ambiguity
resolution methods are based on two-stage approaches. First an
estimation of a real-valued ambiguity by an augmentation of
the receiver state vector with the ambiguities, using recursive
methods such as the extended Kalman filter (EKF) [5] or
least squares [4], which forms the basis for an integer least
squares (ILS) solution based on the real-valued estimates. An
established example of this is the LAMBDA method [2], [6],
[7]. The LAMBDA method has been further developed into the
modified LAMBDA (MLAMBDA, also denoted LAMBDA
version 3) [8], and related approaches can be found in [9],
[10].

In this paper, we formulate the GNSS ambiguity resolution
problem in a Bayesian framework as a joint GNSS receiver
state and ambiguity parameter estimation problem. By ex-
ploiting marginalization, we can solve for the GNSS receiver
state using a mixture Kalman filter, where each Kalman filter
(KF) is conditioned on a unique fixed ambiguity for each
satellite. Thus, based on the previous estimates of position
and ambiguities, the proposed method produces the likely
values for the ambiguities, which are used in the mixture
Kalman Filter to update the position estimate. The approach
employs the marginalized particle filter [11] to determine the
ambiguities, which leads to a dimension reduction in the
particle filter, resulting in a computationally tractable method.

Bayesian approaches have previously been considered in
the context of GNSS ambiguity resolution, see for example
[12], which presents a solution similar to the case of fixed
multiple models, and [13], which uses Bayesian statistics to
derive confidence regions for a GPS application. An overview
of multiple-model methods for GNSS ambiguity resolution
can be found in [14]. The work in [15] uses fixed multiple-
model KFs, where the ambiguities are the integers the models
depend on. A similar approach is found in [16], where each
of the filters uses a different set of ambiguities, and switched
multiple-model estimators for detection of cycle slip are found
in [17]. A difficulty with the multiple-model approaches is that
the ambiguities can take any integer value, and straightforward
application of a multiple-model approach is therefore compu-
tationally intractable. In [14], a procedure using the LAMBDA
method to search for the integers to use in the different models



is mentioned, starting from the real-valued solution. However,
this procedure needs to be restarted as soon as a cycle slip or
loss of contact with the satellite occurs.

Particle filters have also been considered in relation to
GNSS ambiguity resolution. An early work is [18], which,
however, does not employ marginalization. In [19], [20] the
integer estimates are formed using the position samples gen-
erated in the particle filter by manipulations of the likelihood.
The work in [21] applies particle filtering for estimating the
joint GNSS receiver state and ambiguities. However, estimat-
ing the joint state and ambiguities in a particle filter, and
not utilizing marginalization, leads to an unnecessarily high-
dimensional estimation problem, which is problematic in a
real-time application because of the curse of dimensionality
in the considered particle-filter implementations.

Any motion model of the ambiguities is highly uncertain
due to the unboundedness of the ambiguity set and lack
of knowledge of how and when the ambiguities change. In
our approach, by leveraging the optimal proposal density for
the ambiguities, which for the uncertain ambiguity model
corresponds to likelihood sampling, we can statistically bound
the possible range of ambiguities and execute a mixture KF.
The number of KFs is made adaptive on the possible range
of ambiguities. Hence, as the estimator narrows the ambiguity
set, the number of particles decrease. Owing to the proposal
sampling, our method can handle cycle slip automatically,
which gives increased robustness to the position estimate. The
specific contribution of this paper that distinguishes it from
prior work is that we leverage marginalization, implying that
the particle filter only estimates the ambiguities, whereas the
receiver state is estimated conditioned on the ambiguity trajec-
tories. This enables estimating a range of possible ambiguities,
while keeping the computational requirements manageable.

Both the combined EKF/LAMBDA and multiple-model
estimators need an additional cycle-slip detection scheme to
make these methods work in practice, since the methods are
restarted as soon as a cycle slip occurs. While EKF/LAMBDA
works well in many situations, it still suffers from performance
limitations. These are especially evident when cycle slip
occurs, as this may result in a degraded position estimate
for several seconds, or even minutes. In contrast, our method
can, at least partially, handle cycle slip through the proposal
sampling in the particle filter, but can also be used in con-
junction with a cycle-slip detection scheme. We validate both
approaches in our evaluation.

Notation: For a discrete time signal x with sampling period
Ts, xk = x(tk) = x(kTs). For a vector-valued discrete
time signal x, xm:k = {xm, . . . ,xk} is the sequence of
values of x between sampling instants m and k, and x̂h|k
denotes the estimated value of x at time step h, based on
data up to time step k. With p(x0:k|y0:k), we mean the
posterior density function of the state trajectory x0:k given
the measurement sequence y0:k. R denotes the set of real
numbers and Z is the set of integer numbers. The jth element
of a vector x is detoned with xj . The notation I denotes the
identity matrix of appropriate dimensions. With N

(
xk;µ,Υ

)
we mean the Gaussian probability density function given mean
µ and covariance matrix Υ.

Outline: Sec. II gives the problem setup and modeling
aspects. Sec. III presents the proposed method for integer
ambiguity resolution. Sec. IV contains a numerical analysis
and the experimental results are found in Sec. V. Finally,
Sec. VI concludes the paper.

II. PROBLEM SETUP

We consider the code and carrier-phase measurements from
the jth satellite to the receiver r at each time tk, that is, at
step (epoch) k, using a standard measurement model [1], [4],
[18], [21], [22],

P jk = ρjk + c(δtr,k − δtjk) + Ijk + T jk + εjk, (1a)

Φjk = ρjk + c(δtr,k − δtjk)− Ijk + T jk + λnj + ηjk, (1b)

where P j is the code measurement ρj is the distance between
the receiver and the jth satellite, c is the speed of light, δtr is
the receiver clock bias, δtj is the satellite clock bias, Ij is the
ionospheric delay, T j is the tropospheric delay, εj is the code
observation noise, Φj is the carrier-phase observation, λ is the
carrier wavelength, nj is the ambiguity, and ηj is the carrier
observation noise. The code and carrier-phase noise sources
are assumed Gaussian distributed according to εk ∼ N (0, σ2

ε ),
ηk ∼ N (0, σ2

η), where the actual values will depend on several
factors (e.g., the elevation angle of the satellite). The distance
between the receiver and the jth satellite is

ρj =

√
(pjX − pX,r)2 + (pjY − pY,r)2 + (pjZ − pZ,r)2, (2)

where pj = [pjX pjY pjZ ]T and pr = [pX,r pY,r pZ,r]
T

are the coordinates of the jth satellite and the receiver r,
respectively. By utilizing a base receiver (reference) b mounted
at a known location broadcasting to the target receiver r, most
of the error sources can be removed or mitigated. Single and
double differences (DD) between satellites and the receivers
reduce the error sources, either explicitly or approximately. By
forming the difference of the observation equation (1) for the
two receivers, the error due to the satellite clock bias can be
eliminated. For very short baselines (the distance between r
and the base receiver b) the DD, that is, the single difference
between receivers differenced again between two satellites,
eliminates the ionospheric and tropospheric delays [21], [22].
For longer baselines (e.g., above 10 km) DD suppresses the
errors, and other established methods can be used [23], [24]
to reduce the effects further.

Denote the single-differenced observation equations be-
tween the receivers b and r with ∆P jbr,k = P jb,k − P

j
r,k and

∆Φjbr,k = Φjb,k − Φjr,k, respectively, and the DD between
a reference (pivot) satellite l and satellite j with ∇∆(·)jlbr,k.
Then, for short baseline conditions and/or using a priori delay
estimators [23], [24],

∇∆P jlbr,k ≈ ∇∆ρjlbr,k +∇∆εjlbr,k, (3a)

∇∆Φjlbr,k ≈ ∇∆ρjlbr,k + λ∇∆njlbr +∇∆ηjlbr,k. (3b)

We assume M sets of observation equations of the form (3),1

where M can vary over different time steps, and introduce

n =
[∇∆nl1br,k · · · ∇∆nlMbr,k

]T ∈ ZM . (4)

1For a single-frequency setting, this implies M + 1 visible satellites.



Without loss of generality, the last satellite is assumed to be the
reference satellite (i.e., l = M + 1). We form the observation
equations at each time step k from the double-differenced
measurements (3)

yk =
[
∇∆P l1

br,k · · · ∇∆P lM
br,k ∇∆Φl1

br,k · · · ∇∆ΦlM
br,k

]T
,

(5)
yielding the corresponding measurement model

yk = h(xk) + g(nk) + ek, (6)

where

h(xk) =



∇∆ρl1br,k
...

∇∆ρlMbr,k
∇∆ρl1br,k

...
∇∆ρlMbr,k


, g(nk) = λ


0
...
0
nk

 , e =



∇∆εl1br,k
...

∇∆εlMbr,k
∇∆ηl1br,k

...
∇∆ηlMbr,k


.

(7)
As the proposed method is to be used for receivers employed

in different types of environments, we model the receiver
motion using the linear general-purpose state-transition model

xk+1 = Fkxk +Bkwx,k, (8)

where Fk is the state-transition matrix and Bk is the noise-
transition matrix. The motion model (8) includes general-
purpose kinematic motion models where little is known about
the moving object. While here we focus on (8), note that since
we rely on particle filtering our proposed approach can handle
models that are more general than (8). In the evaluation of our
method in Sec. IV, we use a constant-velocity (CV) model
with the state vector

xk =
[
pr,k vr,k

]T ∈ R6, (9)

where vr is the receiver velocity. Using zero-order hold
sampling with sampling period Ts, the CV model is [25]

xk+1 =

[
I TsI
0 I

]
xk +

[
T 2
s

2 I
TsI

]
wx,k, (10)

where wx,k ∼ N (0,Qx,k).
The estimation problem includes the state vector xk, which

for the CV model xk ∈ R6, and the ambiguity vector
nk ∈ ZM . The objective in this paper is to resolve the
unknown receiver state xk and as a consequence the set of
unknown integer ambiguities nk at each time step k from the
measurements y0:k = {y0, . . . ,yk}. The integer ambiguities
are typically constant for extended periods of time, but may
change abruptly as soon as a loss-of-lock of tracking of the
satellite occurs, for instance, due to shadowing effects in urban
areas or cycle slip.

III. GNSS INTEGER AMBIGUITY AND POSITION
RESOLUTION

This section presents the proposed method for joint position-
ing and integer ambiguity resolution. We approach the problem
in a fully Bayesian context and rely on a mixture KF approach
where the number of KFs is adapted to the uncertainty in the
ambiguity estimates.

The estimation model consisting of (6) and (8) is non-
linear in the position due to the observation equations. The
observations are linear in the ambiguity vector. However,
formulating a dynamic model that properly describes the time
evolution of the ambiguities is difficult, since the ambiguities
are approximately constant over lapses of time but there can
be abrupt and usually unpredictable changes in the ambiguity
values from one time step to another. To reflect the uncertainty
in the time evolution of the ambiguities, we describe them with
a random-walk model

nk+1 = nk +wn,k, wn,k ∼ N (0,Qn). (11)

In a Bayesian formulation, we write (11) as

nk+1 ∼ p(nk+1|nk). (12)

A. Bounding the Range of Ambiguities

The method is based on estimating the ambiguities in the
particle filter and resolving the receiver state in the EKF,
where each particle is a hypothesis of the integer vector (4).
We leverage marginalized particle filtering for bounding the
possible range of the ambiguities. Based on the bounded
ranges, we fix the set of integer vectors and execute one EKF
for each value in the set. The ambiguity is linear in both
the motion model and observation equations, and estimating
the ambiguities in the particle filter may on the outset seem
counterintuitive. However, introducing the ambiguities in the
particle filter makes it possible to efficiently move around them
in the ambiguity space according to the fit of the observation
model to the measurements.

To bound the range of ambiguities, we start with the joint
density p(xk,n0:k|y0:k) of receiver state xk and ambiguity
trajectory n0:k, which we decompose as

p(xk,n0:k|y0:k) = p(xk|n0:k,y0:k)p(n0:k|y0:k). (13)

To resolve (13), we first estimate p(n0:k|y0:k) with a particle
filter using a set of N weighted particles, which results in the
approximation

p(n0:k|y0:k) ≈
N∑
i=1

qikδ(n
i
0:k − n0:k). (14)

In (14), δ(·) is the Dirac delta mass and qik is the associated
weight for the ith particle given the measurements y0:k.

Given the ambiguity set {ni0:k}Ni=1, we execute constrained
EKFs to determine the first term on the right-hand side of
(13), which results in the Gaussian approximation

p(xk|n0:k,y0:k) ≈ N (xk; x̂k|k(n0:k),Pk|k(n0:k)) (15)

for each particle. In (15), x̂k|k(n0:k) is the state estimate
constrained to the ambiguity trajectory n0:k, and Pk|k(n0:k)
is its associated covariance. For brevity, in what follows we
make the dependence on the ambiguity implicit (i.e., Pk|k :=
Pk|k(n0:k)) for all variables. The mean and covariance of the



conditional probability density function (15) using the EKF is
given by [11]

x̂k|k = x̂k|k−1 +Kk(yk − h(x̂k|k−1)− g(n)k), (16a)
Pk|k = Pk|k−1 −KkHkPk|k−1, (16b)

Sk = HkPk|k−1H
T
k +Rk, (16c)

Kk = Pk|k−1H
T
k S
−1
k , (16d)

Hk =
∂h(x)

∂x

∣∣∣∣
x=x̂k|k−1

, (16e)

and the one-step prediction of the mean and covariance are

x̂k|k−1 = Fk−1x̂k−1|k−1, (17a)

Pk|k−1 = Fk−1Pk−1|k−1F
T
k−1 +Qx,k−1. (17b)

The weight update in the particle filter is given by

qik =
p(yk|nk,y0:k−1)p(nk|nik−1)

π(nk|nik−1,y0:k)
qik−1, (18)

where
π(nk|nik−1,y0:k). (19)

A key design choice in the particle filter is the proposal
density (19). The standard choice is to use the prior (12),
that is, π(nk|nik−1,y0:k) = p(nk|nk−1). However, this would
demand an unnecessarily large amount of particles, since the
prediction model (12) of the ambiguities is uninformative.
Instead, we choose the conditional distribution as proposal
density,

π(nk|nik−1,y0:k) = p(nk|nik−1,y0:k). (20)

Inserting (20) into (18) and using the identity

p(nk|nik−1,y0:k) =
p(yk|nk,y0:k−1)p(nk|nik−1)

p(yk|nik−1,y0:k−1)
(21)

leads to the weight update

qik ∝ p(yk|nik−1,y0:k−1)qik−1. (22)

The proposal (20) is optimal in the sense that it minimizes the
effect of the sampling on the weights, that is, the weights will
be unaffected by nik, whereas other alternatives add variance
among the weights [25]. It is generally difficult to sample
from (20). However, the observation equation (6) is linear and
Gaussian in the ambiguity vector n, which is one of the few
cases where exact sampling is possible [26]. For a linear and
Gaussian observation equation, the optimal proposal (20) for
a marginalized particle filter is

p(nk|nik−1,y0:k) = N
(
nk; n̂ik,Σ

i
k

)
(23a)

n̂ik = nik−1 +Ki
k(yk − ŷik|k−1), (23b)

Ki
k = Qn(Gi

k)T(Gi
kQn(Gi

k)T + Sik)−1,
(23c)

Σi
k =

(
(Sik)−1 + (Gi

kQn(Gi
k)T)−1

)−1
,

(23d)

Gi
k =

∂g(n)

∂n

∣∣∣∣
n=ni

k−1

, (23e)

where Sik is obtained from (16c), conditioned on the ith
ambiguity trajectory. In this paper we choose Qn large such
that the ambiguity prior (12) is uninformative, which means
that most information about the ambiguities is contained in
the measurements. For the proposal (23),

lim
Qn→∞

Σi
k =

(
(Sik)−1 + (Gi

kQn(Gi
k)T)−1

)−1 → Sik, (24)

that is, by increasing the process noise of the ambiguities,
the optimal proposal approaches sampling from the EKF
likelihood (16c). With the optimal proposal (23), the likelihood
for the weight update (22) is

p(yk|nik−1,y0:k−1) =

∫
p(yk,xk|nik−1,y0:k−1) dxk

=

∫
p(yk|nik−1,xk)p(xk|y0:k−1) dxk

≈ N
(
yk|ŷik|k−1,Gi

kQn(Gi
k)T + Sik

)
. (25)

Note that although the optimal proposal (23a) and therefore
also the likelihood (25) are linear in the ambiguities, the
covariance Sik is obtained from the EKF recursion, which is
approximate.

The generated ambiguities are real valued when using the
optimal proposal (23). However, we can bound the range of
possible integer ambiguities as follows. We apply particle
replacement by resampling according to their importance
weights qik. After resampling with replacement, all particles
have weight qik = 1/N and the particle-filter approximation
(14) becomes

p(nk|y0:k) ≈ p̂(nk|y0:k) =
1

N

N∑
i=1

δ(nik − nk). (26)

To get a measure of the tails of the distribution for a finite
number of particles, we convert the discrete representation (26)
to a continuous density using a kernel density smoother [27],

p̂K(nk|y0:k) =
1

N

N∑
i=1

Kh(nik − nk), (27)

where Kh(·) is the kernel density and h is the bandwidth.
We truncate (27), resulting in the continuous truncated density
p̂K,tr(nk|y0:k). Based on p̂K,tr(nk|y0:k) we fix the ambigui-
ties, which gives a finite set S of NS possible integer vectors
{niI}NSi=1 contained in the support of p̂K,tr, that is,

S = {nI ∈ ZM : p̂K,tr(nI|y0:k) > 0}. (28)

The weight update (22) of the particle filter and (26)–
(28) do not need to be performed at every time step. In
practice, we measure the difference between the predicted
real-valued ambiguities according to some distance measure
dist({nik}Ni=1, {nik−1}Ni=1), and execute (22), (25), (26)–(28)
only if the distance is larger than some threshold γ.

B. Ambiguity Resolution by Mixture Kalman Filter

Provided the NS possible integer vectors in (28), we execute
a bank of NS EKFs to find the state vector xKF

k , where each



EKF is conditioned on a unique integer ambiguity vector
contained in (28).

The state posterior is expressed using the law of total
probability as a Gaussian mixture of NS components,

p(xKF
k |y0:k) =

NS∑
i=1

p(niI,x
KF
k |y0:k)

=

NS∑
i=1

p(niI|y0:k)p(xKF
k |niI,y0:k)

=

NS∑
i=1

ωikN (xKF
k |x̂KF,i

k|k ,P
i
k|k), (29)

where
ωik = p(niI|y0:k) (30)

is the posterior probability of niI. The recursions for
x̂KF,i
k|k ,P

KF,i
k|k are in (16) with n̄k replaced with n̄iI =

[0 · · · niI]T. Note that niI in (29) is fixed for each EKF, hence
the omission of index k. The posterior probabilities (30) can
be computed from Bayes’ rule,

ωik = p(niI|y0:k) = p(yk|niI,y0:k−1)
p(niI|y0:k−1)

p(yk|y0:k−1)

∝ ωik−1N (yk|ŷik|k−1,Sik), (31)

where the mean and covariance predictions ŷik|k−1,S
i
k are

given from the corresponding EKF. From (31), we choose
the maximum-likelihood (ML) estimate nML to resolve the
ambiguity,

nML = arg max
nI∈S

ωik. (32)

The state estimate and corresponding covariance can either
be obtained by the corresponding ML or by the minimum-
variance (MV) estimate [11]

x̂MV
k|k =

NS∑
i=1

ωikx̂
KF,i
k|k , (33a)

P MV
k|k =

NS∑
i=1

ωik

(
P i
k|k + (x̂KF,i

k|k − x̂MV
k|k)(x̂KF,i

k|k − x̂MV
k|k)T

)
.

(33b)

Note that the particular choice of how to extract the estimate
does not carry any importance to the algorithm, since it
estimates the distribution for each time step. In our imple-
mentation we have chosen to select n from ML and x from
MV, while noting that in general, nML will not be used as what
the algorithm carries forward is the ambiguity distribution, not
its current estimate.

C. Algorithm Implementation

With the fixed finite set of integers (28) and the mixture
KF solution (29) based on such set, an algorithm for joint
ambiguity resolution and positioning can be formulated as
in Algorithm 1. The method is initialized with N states and
ambiguities (particles), with placeholders also for the mixture
EKF states (Line 1). We execute a prediction step of the
ambiguities using (23a) (Line 7). If the predicted ambiguities

differ from the previous ones more than some threshold γ
(Line 9), we compute the weights (Line 12), from which
we construct a continuous representation (27) (Line 15). The
range of ambiguities is then bounded and the method fixes
NS integer vectors (Line 16) and executes EKFs (Line 22)
to compute the ML estimate (32) (Line 25) and MV state
estimates (33) (Line 26). Finally, we sample a new set of
indices J(i) ∈ N, i = 1, ...N to be used in the prediction
of ambigities in the subsequent time step. If N = NS , then
J(i) = i. However, if N 6= NS , we need to determine a set of
N indices reflecting the updated weights from the filter bank.
Note that (16) and (17) are used several times in Algorithm 1,
for example, (16) is used both on Line 11 and Line 22 and
(17) is used on Line 4 and Line 19. The superscripts on the
variables being updated indicate what variables (16) and (17)
are applied to.

There are a few design choices available in Algorithm 1.
The number of particles N used in the prediction when
determining whether the ambiguities have changed (Lines 3–
8) is a design choice that in the current implementation is fixed
a priori, but there are other alternatives, such as using NS . In
determining whether the ambiguities have changed (Line 9),
the distance function can be implemented in several ways. In
our implementation, we simply check the largest difference
in {‖nik − nik−1‖}Ni=1. However, this may trigger unncessary
reinitialization of the entire Kalman filter bank in case of
cycle slip. Hence, this check can be improved. The reason
for large changes in the ambiguity set between consecutive
time steps can be come large due to, for example, cycle slip
and that unrealiable measurements were not removed properly
before transmitting the measurement vector to the estimator. In
computing the continuous density p̂K , then truncated to obtain
(28), we use a Gaussian kernel (Line 15), but other alternatives
can also be used. The initialization at Line 17 can be done in
several ways. At Line 28, we draw new indices to determine
the ambiguity difference in the next iteration. Here, the number
of particles can be related to NS instead of fixing it to N .
Moreover, the number N used at Line 27 can depend on NS .
The ambiguity process noise covariance Qn is an important
design parameter, since it will affect the search space explored
by the method. From (24), letting Qη → ∞ implies that we
are effectively sampling from the likelihood. Hence, the search
space will be adjusted to the measurements instantaneously,
which implies that effects such as cycle slip are accounted for
immediately. However, the ambiguities to explore will also be
sensitive to the measurement noise and will rely heavily on
unhealthy satellites being properly discarded at each time step.
A proper tuning of Qn is therefore such that the convergence
is fast, yet does not fluctuate too much with the measurement
noise at each time step. Since this is a single parameter that
can be set equal for all ambiguities, tuning involves a simple
search on a single dimensional space which is in general not
very time consuming.

IV. NUMERICAL ANALYSIS

We present a numerical study with three double-differenced
satellite measurements, that is, six measurements and three



Algorithm 1 Proposed method
1: Initialize: Generate {ni−1}Ni=1 ∼ p0(n0), {x̂i0|−1}Ni=1 ∼
p0(x0), {P i

0|−1}Ni=1 = P0, {x̂KF,i
0 }NSi=1 ∼ p0(x0),

{P KFi
0|−1}NSi=1 = P0 and set {wi−1}Ni=1 = 1/N .

2: for k = 0 to T do
Predict the ambiguities:

3: for i = 1 to N do
4: Update {x̂ik|k−1,P i

k|k−1} using (17).
5: Set ŷik|k−1 = h(x̂ik|k−1) + λnik.
6: Compute Sik from (16c).
7: Generate nik ∼ p(nk|nik−1,y0:k) from (23a).
8: end for

Bounding the range of ambiguities:
9: if dist({nik}Ni=1, {nik−1}Ni=1) > γ then

10: for i = 1 to N do
11: Update {x̂ik|k,P i

k|k} from (16).
12: Update qik using (22) and (25).
13: end for
14: Resample particles to get equally weighted parti-

cles and distribution (26).
15: Compute p̂K(nk|y0:k) using (27).
16: Determine {niI}NSi=1 using (28).
17: Initialize {x̂KF,i

k|k−1}
NS
i=1, {P KF,i

k|k−1}
NS
i=1.

18: else
19: Update {x̂KF,i

k|k−1,P
KF,i
k|k−1}

NS
i=1 using (17).

20: end if
Update filter bank:

21: for i = 1 to NS do
22: Update {x̂KF,i

k|k ,P
KF,i
k|k } using (16).

23: Update weight ωik using (31).
24: end for
25: Optionally, resample filter bank according to the

weights {ωik}i=1NS .
Determine estimates:

26: Compute nML using (32).
27: Compute {x̂MV

k|k,P
MV
k|k} using (33).

Set indices for prediction of ambiguities (for N 6= NS ):
28: for i = 1 to N do
29: Draw index J(i) with probability ωJ(i)k .
30: end for
31: Set {nik, x̂ik|k,P i

k|k}Ni=1 = {nlI, x̂KF,l
k|k ,P

KF,l
k|k }

J(N)
l=J(1).

32: end for

ambiguities. The satellites measure the distance to a moving
rover with sampling time Ts = 0.1 s. The positioning target is
a rover that travels on the Earth-ground plane (pZ = 0) with
nominal speed 5 m/s.

We compare the method presented in this work with that of a
two-stage approach based on first executing an EKF to find the
real-valued ambiguities and then, using the LAMBDA method
to find the integer ambiguities [4], [5], [21]. We denote this
filter with EKF. We also compare with an idealized (oracle)
implementation of the EKF that knows the correct ambiguities
at each time instant. Hence, this method is impossible to
implement in practice, but serves as ground-truth of what
can be achieved in terms of tracking performance when the

ambiguities are known. The purpose of the numerical analysis
is to illustrate the transient behavior of the proposed method
in the ideal conditions when the model and noise covariances
are known and we have ground truth. Hence, neither of
the methods incorporate additional schemes such as explicit
cycle-slip detection, which would be incorporated in a real-
world implementation, but may shadow the effect of the
core estimation algorithm. We defer to the next section to
actual validation in real-world conditions, that include inexact
models, unknown covariances, and introduction of cycle slips.
The ambiguities in both filters are initialized to zero, and
the state/particles are set to the true rover state with initial
covariance

P0 =
[
100 100 1 1 1 0.1

]T
. (34)

The noise parameters are the same in both filters. The code and
phase measurement standard deviations are set to 0.5 m and
0.1 m, respectively. All satellites are assumed to have the same
elevation angle, such that the measurement covariance is diag-
onal with the nominal code and phase standard deviation. Fur-
thermore, the motion model (8) and associated process-noise
covariance are modeled with respect to the Earth-centered
earth-fixed (ECEF) frame, with Q = diag(12, 12, 0.12), where
diag(·) is the diagonal matrix with the arguments on the
diagonal.

We present results for two scenarios. The first scenario
illustrates how the method performs under large initial position
and ambiguity uncertainty, and the second scenario considers
cycle-slip detections. The root-mean-square-error (RMSE) at
each time step is used as a performance measure. Let xk,j
and x̂k,j denote the true and estimated quantity, respectively,
at time index k of the jth of K Monte-Carlo simulations. The
RMSE at time step k is then computed as

RMSEk =

√√√√ 1

NMC

NMC∑
j=1

‖xk,j − x̂k,j‖2. (35)

A. Transient Performance

Fig. 1 shows the position error of the longitudinal position
for the first 50 s for one realization, and Fig. 2 displays
the corresponding ambiguity estimation error for one of the
ambiguities. The results are similar for the other positions and
ambiguities, respectively. The convergence of the proposed
method ALG 1 is faster than that of EKF. Furthermore, whereas
ALG 1 chooses the correct integer estimates after the transients,
EKF fluctuates around the correct value. In the simulations,
the initial position is generated from a Gaussian distribution
with covariance (34). The true ambiguities are {n1, n2, n3} =
{−220, 210, 175} but the initial estimates are set to zero. Still,
ALG 1 produces a position estimate with error less than one
wavelength (λ ≈ 0.2 m for L1) within a few seconds.

Fig. 3 shows the position RMSE for NMC = 100 Monte-
Carlo executions. The convergence is faster for Algorithm 1
compared to EKF. Furthermore, the lower bounds set by
EKFIDEAL are attained within a few epochs.
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Fig. 1. Position errors of the longitudinal position for a 50 s excerpt from
one realization for the numerical analysis in Sec. IV-A.
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Fig. 2. Ambiguity errors for one of the satellites corresponding to Fig. 1.
The true ambiguity is n1 = −220 and the initial ambiguity estimate is set to
zero. The correct ambiguity is attained within 8 s in this realization for our
proposed method (red).

B. Cycle-Slip

Fig. 4 displays the ambiguities and Fig. 5 shows the
corresponding position error for the longitudinal position when
a cycle-slip in the satellites occur, one at a time. The proposed
method (ALG 1) detects the cycle-slip almost immediately
owing to the proposal used in the particle filter, and the
filter tracks the correct ambiguities throughout. Moreover, the
results also indicate one of the shortcomings with a two-stage
approach where both rover states and ambiguities are estimated
with the EKF. When there is a cycle slip in n1, EKF estimates
for n2 and n3 deviate from the true values, with similar
behavior for the other cycle-slip occasions. The reason for this
unwanted behavior is the coupling in the covariance matrix
amongst the different ambiguities, which gives a Kalman gain
that is nonzero in the elements corresponding to the cross
terms. This causes the EKF to erroneously correct n2 and
n3 for changes in n1. Clearly, from Fig. 5, the position
error grows rapidly as a result of this. This behavior is not
present in the particle-filter approach, where the marginal-
ization and subsequent handling of the ambiguities by the
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Fig. 3. Position RMSE for 100 Monte-Carlo executions for the numerical
analysis in Sec. IV-A. The proposed method (red) reaches steady state faster
than EKF due to the fast convergence of the ambiguities, see Fig. 2.
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Fig. 4. Ambiguities for single-satellite cycle-slip for the numerical analysis
in Sec. IV-B.
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Fig. 5. Position error of the longitudinal position for single-satellite cycle-slip,
corresponding to Fig. 4.

particle filter decorrelates the effects of the ambiguities of
different satellites. Note that although it is not clear from the
figure, EKF will eventually correct the positioning, but only
after a long transient. In a production implementation, any
ambiguity resolution method would be accompanied with add-
on detection schemes, such as an explicit cycle-slip detection.
In the simulations we have intentionally set the cycle slips
to be significant, to clearly see the transient behavior of the
two estimators. However, comparing against experimental data
at our disposal and reported in the next section, the order of
magnitude of the cycle slips is not unrealistic.

C. Computation Time

Fig. 6 shows how the computational requirements scales
with the number of satellites used in the estimation. The
figure indicates that the method gives real-time feasibility
for 12 satellites with the current chosen sampling period
(Ts = 100ms), and for more satellites than that for a larger
discretization time. As the number of satellites grows larger,
the computational time becomes increasingly larger. However,
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Fig. 6. Average computation time for one iteration of Algorithm 1 (Lines 2–
32) for varying number of satellites used in the estimation. The computation
times are caluclated on an i7 2.7 GHz laptop with a nonoptimized MATLAB
implementation.

there are major speedup possiblities, since the current imple-
mentation is in MATLAB and nonoptimized.

V. EXPERIMENTAL EVALUATION

The numerical analysis in Sec. IV shows the performance
under ideal conditions, where the model and noise assumptions
are correct. To see how the proposed method performs on
real data, in this section we present an evaluation from
an experimental data set obtained using a low-cost u-blox
antenna and receiver and provided by the open-source package
GoGPS [28], which is employed in the evaluation. GoGPS is
a positioning software application designed to process single-
frequency L1 code and phase observations for positioning.
GoGPS focuses on the treatment of observations by low-cost
receivers, with relative positioning using double-differenced
observations with respect to a known reference station, in
accordance with (3). Atmospheric delays, which are present in
(1), are suppressed with well-established methods [23], [24].
GoGPS contains several algorithms for GNSS positioning,
such as single epoch least squares algorithm or recursive EKFs
combined with ILS solvers, such as LAMBDA version 2,
[6], [7] and MLAMBDA (LAMBDA version 3, [8]). GoGPS
handles changes in the satellite configurations, that is, satellite
additions/ losses or switching of reference (pivot) satellites
used for the double differences, and cycle slips are managed
for all EKF modes. GoGPS can apply different observation-
weighting strategies; either based on satellite elevation or
weight functions that exploit the known signal-to-noise ratio
characteristics of low-cost receivers. Furthermore, the software
package also includes means to discard satellites with too low
of an elevation angle.

A. Preliminaries

Similar to the numerical analysis, we use a constant velocity
motion model that we define in geodetic coordinates and
use a diagonal covariance matrix Q̄x ∈ R3×3 acting on the
velocity according to Q̄x = diag(0.52, 0.52, 0.12). However,
in contrast to the simplified study in Sec. IV, Q̄x is at each
time step transformed to the global, Earth-fixed coordinate
system in which the estimation is performed, which results in

a process-noise covariance matrix with cross-terms. The noise
variances for code and phase measurements are σε = 0.42 m
and ση = 0.012 m, respectively, which are weighted according
to a model available in GoGPS that is based on the elevation
angle of the observations. This results in a time-varying
nondiagonal measurement noise matrix Rk. Furthermore, a
satellite is removed from the measurement equation if the
elevation angle is below 10 deg. The data sets are recordings
from GPS data, and in one of the data sets there are several
additions and losses of satellites, and numerous detection of
cycle slips. When a new satellite is added and/or cycle slip is
detected, the initial estimate is determined from a least squares
initialization given old data. The threshold for determining
when to reinitialize the filter bank (Line 9 in Algorithm 1) is
set to γ = 10.

We compare Algorithm 1 with an EKF/MLAMBDA method
(EKF), similar to the ones we have implemented for the
simulations in Sec. IV, described in [8], [28] and packaged
as LAMBDA version 3, as a MATLAB implementation in
GoGPS. The implementation internally determines the quality
of the integer estimates, by utilizing the residual errors from
the real-valued estimate. Depending on the quality of the
estimate, EKF occasionally outputs the real-valued estimates
instead, together with the corresponding state estimate. We
use the same process noise and measurement noise in both
EKF and our proposed method, and both methods execute at
1 Hz.

We implement both filters in two versions, one without
cycle-slip detection and one including explicit cycle-slip detec-
tion. The purpose is to show the respective method’s ability
to handle cycle slip intrinsically, compared with aiding the
estimators with explicit cycle-slip detection. For both methods,
we utilize a standard cycle-slip detection scheme available
in GoGPS in determining which ambiguities need to be
reinitialized. In theory, our method intrinsically handles cycle-
slip detection and such a detection scheme is therefore not
needed when the assumptions of the estimator hold, as vali-
dated in simulation in Sec. IV-B. However, explicit cycle-slip
detection may still be essential to incorporate in a real-world
experiment where various modeling errors are present, which
may violate the assumptions of the algorithm. Essentially, the
employed cycle-slip detection scheme in GoGPS is based on
comparing the double-differenced code and phase observations
and estimating an ambiguity from that estimate,

∇∆nlj =
∇∆Φlj −∇∆P ljbr,k

λ
. (36)

A cycle slip is detected if the estimated ambiguity (36) differs
more than a predefined number of cycles from the estimate at
the previous time step. In this paper, the threshold is set to 10
cycles, that is, roughly corresponding to a 2 m error between
the estimated position and the position inferred from the phase
observation assuming constant ambiguity. It is worth noting
the the algorithm proposed here does not pose restrictions on
the cycle-slip detection method used, and that methods other
than (36) are applicable.



B. Experimental Results

Fig. 7 shows the estimated path for EKF without cycle-
slip detection (red dashed), Algorithm 1 without cycle-slip
detection (black dashed), EKF with cycle-slip detection (red
solid), and Algorithm 1 with cycle-slip detection (black solid).
The results are with respect to a known base station. The
true path is rectangular, with the initial estimate indicated
by a green cross. We do not have ground-truth coordinates
for the data set. However, it is still possible to draw a
few conclusions. When investigating the 2D path, it is clear
that Algorithm 1 exhibits a smoother path compared to the
EKF/MLAMBDA method for the respective variants. The path
for EKF without cycle-slip detection is largely biased, and
the path is nonsmooth and shows jumps, indicating unreliable
estimates. Algorithm 1 without cycle-slip detection (i.e., as
it is described in Algorithm 1) is much smoother, although
there are a few glitches in its performance, most notably
in the upper right corner. The implementations with proper
cycle-slip detection naturally produce more reliable estimates
for both methods. However, EKF exhibits several large jumps
between two consecutive time steps, indicating that the cycle-
slip detection cannot fully compensate for the effects due to
the cycle slip.

From the 3D path (right plot), Algorithm 1 exhibits con-
siderably less variations in Z-estimates, even without cycle-
slip detection. For instance, EKF without cycle-slip detection
varies about 40 m, EKF with cycle-slip detection differs about
5 m, our proposed method without cycle-slip detection varies
with roughly 2 m, and the proposed method with cycle-slip
detection stays within 0.5 m.

Fig. 8 displays the ambiguities corresponding to the esti-
mated path in Fig. 7 and positions in Fig. 9 for the implemen-
tations with add-on cycle-slip detection. In this experiment,
there are seven satellites visible to the receiver for most of
the experiment, resulting in six ambiguities to estimate. For
Algorithm 1, the set of possible ambiguities for each satellite is
indicated by the gray area. There are numerous detected cycle
slips for the fourth satellite and one cycle slip for the eighth
satellite (at t = 115 s). Except for the time instants when cycle
slips are detected, the ambiguities are mostly constant for our
approach, whereas the estimates produced by EKF for most of
the satellites fluctuate more. In Fig. 8, one can see the effects
of the correlation in the covariance matrix between receiver
state and ambiguities in EKF. For example, at approximately
t = 45 s, there is a cycle-slip detection for satellite 4. However,
this also leads to large jumps in the ambiguity estimates for
some of the other satellites (e.g., satellites 7, 13, and 25).
Although there are at times also changes in the ambiguity
estimates for Algorithm 1 (see Satellite 10), these are often
minor adjustments (1–2 cycles) except for when a cycle slip
is detected.

Fig. 9 displays the distance between estimated positions for
consecutive time steps, which gives a measure of the jumps
that the different estimators produce The distances in Fig. 9
correspond to the 3D path in Fig. 7. The true path is generated
by an approximately constant velocity, except for a ramp-
up from zero velocity in the beginning of the experiment.

Hence, ideally the distances between two consecutive posi-
tion estimates should be approximately constant throughout.
The time instants of the detected cycle slips are indicated
by the vertical dashed lines. Since, according to (36), the
detection of cycle slip is dependent on the current estimate
of the ambiguity, different algorithms generally have different
detections. We therefore plot all of the detected cycle slips for
the two algorithms, which overlap for 9 out of the 12 cycle-slip
detections.

The impact the cycle slips have on the estimation perfor-
mance can be seen in the large jumps in the estimates in Fig. 9
for EKF, that often occur at the time of the cycle slips. The
detection of cycle slip most often leads to much improved
position estimates for EKF. However, as discussed in relation
to the results in Fig. 4, the correlation between the positions
and ambiguities introduced by considering the ambiguities as
additional states in EKF causes changes in ambiguities for
satellites where a cycle slip does not occur. This leads to jumps
in the estimates and hence decreased estimation performance.
Furthermore, when comparing Figs. 8 and 9, it is clear that
there are many jumps in the position estimates larger than
1 m for EKF, even with add-on cycle-slip detection (red solid)
that are caused by the fluctuations in ambiguity estimates.
For Algorithm 1 without cycle-slip detection (black dashed in
Fig. 9), for most of the time, similar estimates as when using
explicit cycle-slip detection are obtained, and there are only 4
occasions of a difference between two consecutive estimates
larger than 1 m, which is a large improvement compared to
EKF. For Algorithm 1 with explicit cycle-slip detection, there
is only one time instant when the position estimate jumps more
than 1 m.

The number of ambiguity combinations (i.e., the number of
EKFs) needed in the method is shown in Fig. 10. After the
initial transients, the number of combinations is around 729
(36, i.e., 3 possible ambiguities for each of the 6 satellites),
which results in a computation time of about 50 Hz in a pure
Matlab-code implementation (i.e., 50 times faster than real
time). For a closer account of the scaling of the computational
requirements with the number of satellites, see Fig. 6.

VI. CONCLUSION

We addressed the GNSS positioning and ambiguity resolu-
tion problem by proposing a method based on particle filtering
and mixture KFs. By modeling the ambiguities as part of
the nonlinear state in a marginalized approach, we can use
proposal sampling to guide the ambiguities to their statistically
correct values and fix the ambiguities in such a way that the
set of possible integer values contains the true ambiguities.
This allows for directly finding the integer ambiguities from
a mixture of KFs.

The numerical analysis showed that the method handles
cycle slip automatically, and that the ambiguity estimation
is error free, resulting in improved tracking performance
over conventional algorithms. Furthermore, cross-correlation
between the ambiguities, which is apparent in Kalman-type
methods and leads to periods of degraded estimation perfor-
mance, is avoided.
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Fig. 9. Distance between two consecutive receiver position estimates as a
function of time, with same color scheme as in Fig. 7, using experimental
data available in the goGPS package [28]. The occurrences of cycle slips are
indicated by the gray vertical dashed lines.
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The experimental results carried out using publicly available
data in the GoGPS package indicate that our method gives
reliable and smooth tracking, and the ambiguity estimates are
robust to cycle slip. In particular, for situations when there are
major external disturbances on the measurement signals, such
as in urban areas where the reception is poor, the proposed
method shows significantly improved robustness, owing to its
capabilities to handle multiple ambiguity hypotheses simulta-
neously.
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