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Abstract
Generating video descriptions automatically is a challenging task that involves a complex
interplay between spatio-temporal visual features and language models. Given that videos
consist of spatial (frame-level) features and their temporal evolutions, an effective captioning
model should be able to attend to these different cues selectively. To this end, we propose
a Spatio-Temporal and TemporoSpatial (STaTS) attention model which, conditioned on the
language state, hierarchically combines spatial and temporal attention to videos in two dif-
ferent orders: (i) a spatiotemporal (ST) sub-model, which first attends to regions that have
temporal evolution, then temporally pools the features from these regions; and (ii) a temporo-
spatial (TS) sub-model, that first decides a single frame to attend to, then applies spatial
attention within that frame. We propose a novel LSTM-based temporal ranking function,
which we call ranked attention, for the ST model to capture action dynamics. Our entire
framework is trained end-toend. We provide experiments on two benchmark datasets: MSVD
and MSR-VTT. Our results demonstrate the synergy between the ST and TS modules, out-
performing recent stateof-the-art methods
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Abstract

Generating video descriptions automatically is a chal-
lenging task that involves a complex interplay between
spatio-temporal visual features and language models.
Given that videos consist of spatial (frame-level) features
and their temporal evolutions, an effective captioning model
should be able to attend to these different cues selectively.
To this end, we propose a Spatio-Temporal and Temporo-
Spatial (STaTS) attention model which, conditioned on the
language state, hierarchically combines spatial and tempo-
ral attention to videos in two different orders: (i) a spatio-
temporal (ST) sub-model, which first attends to regions that
have temporal evolution, then temporally pools the fea-
tures from these regions; and (ii) a temporo-spatial (TS)
sub-model, that first decides a single frame to attend to,
then applies spatial attention within that frame. We pro-
pose a novel LSTM-based temporal ranking function, which
we call ranked attention, for the ST model to capture ac-
tion dynamics. Our entire framework is trained end-to-
end. We provide experiments on two benchmark datasets:
MSVD and MSR-VTT. Our results demonstrate the synergy
between the ST and TS modules, outperforming recent state-
of-the-art methods.

1. Introduction
The recent advances enabled by deep neural networks

in computer vision, audio, and natural language process-
ing have stimulated researchers to look beyond these as
isolated domains, instead tackling problems at their in-
tersections [50, 15, 75, 10]. Automatic video caption-
ing is one such multimodal inference problem that has
gained attention in recent years [28, 58, 59], thanks to the
availability of sophisticated CNN models [8, 17, 4, 49]
and massive training datasets for video activity recogni-
tion [22, 32, 23, 30], audio classification [20], and neural
machine translation [42, 5]. However, learning to describe
video data is still a challenging problem, as generating good
captions requires inferring the intricate relationships and
interactions between subjects and objects in a video. De-
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Figure 1. Our overall spatio-temporal and temporo-spatial atten-
tion architecture.

spite recent progress [11, 28, 58, 59], this task remains dif-
ficult. This may be due to the high dimensionality of spatio-
temporal data, which can generate large volumes of features
of which only a few may be correlated to the way humans
describe videos.

Taking inspiration from neural translation models, one
promising way to approach the video captioning problem
is to leverage visual attention [51, 71, 3, 62]. Such tech-
niques use the compositional nature of language models
to attend to specific visual cues in order to generate sub-
sequent words in a caption. Attention has also been ex-
plored for multimodal fusion using image, audio, and mo-
tion cues [59, 28]. However, these works consider frame-
level or clip-level representations of videos, which may not
capture specific details of the scene or may represent too
much information that is unrelated to the primary content.

There have been efforts to address such granularity is-
sues by using spatial attention, as for example in image cap-
tioning [3, 64]. Such schemes usually use a pre-trained ob-
ject detector, e.g., Fast RCNN [44], which may be useful
for detecting specific objects in the scene but may miss out
on the scene context or visual cues related to human actions
or interactions. One could also use schemes such as action
proposals [34, 66], but they may be computationally expen-
sive. This paper is similar in vein to these works, in that we
also explore video captioning using spatial and temporal at-
tention. However, we apply and combine these attentions in
a novel way.



Our main contribution is an attention model that we
call STaTS (Spatio-Temporal and Temporo-Spatial). Our
model, illustrated in Figure 1, hierarchically combines spa-
tial and temporal attention in two different orders, which
we call spatio-temporal (ST) attention and temporo-spatial
(TS) attention. For ST attention, we first apply spatial at-
tention and linear pooling on deep features derived from
each video frame, then apply a temporal attention over these
features. The ST model’s composition of spatial and tem-
poral attention modules helps reduce the size of the spa-
tial/temporal attention space from multiplicative to additive.

Further, to ensure that temporal pooling captures the dy-
namic nature of actions in videos, we introduce a novel
LSTM-based ranking formulation that attends to consecu-
tive pairs of frames in a way that preserves their temporal
order. We call this ranked attention. Our key idea is to use
an LSTM to emulate a rank-SVM [19] such that the repre-
sentation this module generates captures the temporal evo-
lution of video features. Such a technique avoids the oth-
erwise computationally challenging implicit differentiation
that one needs to use for rank-pooling [18, 21].

One weakness of the ST model may be that not all words
in a caption rely on such temporally varying holistic fea-
tures. Words for the subject or object, for example, might be
more directly obtained by considering more localized fea-
tures from a single representative frame. To this end, we
propose a novel temporo-spatial (TS) attention model that
provides a shortcut for visual relationship inference, with-
out going through the ST pipeline described above. Specif-
ically, the TS pipeline first applies temporal attention to
frame-level representations to (softly) select specific frames
to attend to, then applies spatial attention to their spatial fea-
ture representation.

Our STaTS model generates two attention-weighted
video representations (ST and TS), which we combine via a
weighted average, conditioned on the state of the language
model (sentence generator), where these weights are com-
puted by passing the two representations through a further
attention scheme across the ST and TS models.

In Section 4, we present experiments evaluating the ben-
efits of each of the above modules. We base our experiments
on two frequently used video captioning benchmarks: the
MSVD (YouTube2Text) [24] and MSR-VTT [61] datasets.
For the spatial features, we explore the advantages of us-
ing 3D CNN features from the recent Inflated 3D (I3D)
activity recognition model [8], as well as features from a
Fast RCNN object detection model [44]. Our experiments
clearly demonstrate the advantages of our STaTS model,
leading to state-of-the-art results on the MSVD dataset on
all evaluation metrics. On MSR-VTT, we achieve the best
performance on some metrics and are competitive with the
recent state of the art on others.

We now summarize the main contributions of this work:

1. We present a novel spatio-temporal and temporo-
spatial attention model, in which each of the two sub-
models selectively attends to complimentary visual
cues required to generate sentences.

2. We propose a novel temporal attention scheme, ranked
attention, by formulating an LSTM-based objective
that emulates a rank-SVM algorithm for temporally-
ordered feature aggregation.

3. We present extensive experiments and analysis on two
benchmark datasets, using varied 2D and 3D CNN-
based feature representations, while also demonstrat-
ing state-of-the-art performance.

2. Related Work
Video Captioning. Traditional methods for video cap-

tioning are usually based on pre-defined language tem-
plates [24, 33, 46, 35, 50, 67, 13, 29, 60], which reduce
a freeform caption generation model into one of recogniz-
ing the categories to fill in for various attributes and key-
words in the template (such as the subject, verb, and ob-
ject). For example, in Rohrbach et al. [46], a conditional
random field is proposed to model the correlation between
activities and objects in the video; Markov models are also
adopted to produce semantic features for sentence gener-
ation [67, 13, 29, 60]. Such models disentangle the need
for the language model to learn grammar, thereby simpli-
fying the problem. However, the captions generated are
limited by the syntactical structure, which limits their di-
versity and the system’s ability to generalize. In contrast to
these prior works, there have been recent efforts at lever-
aging deep recurrent architectures such as long short-term
memory (LSTM) for sequence learning tasks, starting with
the seminal work of Karpathy et al. [31]. Venugopalan et
al. [55] propose an LSTM-based model to generate cap-
tions from temporally average-pooled CNN visual features.
Since the average pooling will destroy the temporal dy-
namics of the sequence, Yao et al. [65] present a temporal
attention mechanism to associate a weighting for the fea-
ture from each frame and fuse them using a weighted aver-
age. Along similar lines, Venugopalan et al. [54] introduce
S2VT, which utilizes LSTMs in both encoder and decoder
and includes optical flow to incorporate temporal dynam-
ics. Zhang et al. [72] propose a two-stream feature encoder
to aggregate both spatial and temporal cues jointly using 3D
CNN features. Hori et al. [28] extend temporal attention by
attending to different input modalities such as image, mo-
tion, and audio features. We differ from these methods in
the way we disentangle the video features. Our approach
allows simultaneously hierarchical and coupled extraction
of spatio-temporal video cues in a simple framework.

Spatio-Temporal Attention. As mentioned above, tem-
poral attention has been widely used in recent video cap-
tioning work to decide which frame(s) in the video are im-



portant for generating the next word in a caption. How-
ever, these systems usually map the raw video frames into
high-level CNN features (via a suitable spatial pooling op-
erator), which marginalizes away important spatial infor-
mation (such as location and class of specific objects or ac-
tions) that are important for captioning. Spatial-temporal
video feature learning has been widely used in several video
applications, such as video classification [41, 16, 69] and
video super-resolution [63]. Related work in image cap-
tioning includes [3], which applies top-down and bottom-up
attention to Fast RCNN features, and [40], which applies
an attention-based LSTM to generate a spatially weighted
feature map. In video captioning, Yang et al. [64] localize
regions of interest in every frame using attention, however
not every frame may have have such a region, and they need
additional semantic supervision to attend to informative re-
gions. Zanfir et al. [71] propose a spatial-temporal attention
model that assigns a weighting to both spatial and tempo-
ral CNN visual features from optical flow, RGB frames,
and detected objects in each frame. Tu et al. [51] and
Yu et al. [68] propose hierarchical attention schemes that
conditions on the current caption word and visual features.
They first generate spatial attention weights, conditioned on
which a similar attention scheme is adopted temporally; the
weighted features are used to generate the word. While
this scheme shares a similar motivation to ours, their at-
tention model must select from a much larger number of
features—a harder attention problem that demands larger
datasets for training. We avoid this difficulty by attending to
spatial and temporal features in stages, each stage reducing
the data complexity. More recently, Aafaq et al. [1] explore
using spatio-temporal feature engineering to improve cap-
tioning performance. In [73], object saliency is combined
with bidirectional temporal graph reasoning; this is related
to our proposed ranked attention model, but our formulation
is much simpler.

Reinforcement Learning (RL). There are two key ways
a video captioning problem can be cast in an RL setting: (i)
selecting informative features or frames, and (ii) optimizing
the training on evaluation metrics that are usually not differ-
entiable (such as BLEU, CIDER, METEOR, etc.). For the
former setting, several recent works have achieved promis-
ing results [11, 58] by picking suitable frames to encode
based on a pre-designed reward function. Chen et al. [11]
incorporate visual diversity and Cider score into the reward
function. Similarly, [58] models a manager and a worker
within a hierarchical LSTM to achieve better feature encod-
ing. When using RL to optimize non-differentiable losses,
prior works typically use the policy-gradient algorithm [11].
While we believe our sophisticated attention scheme can
pick visual features without needing an RL engine, we do
use policy gradients to optimize our model for losses de-
fined over METEOR and BLEU metrics (as in [45]).

3. Proposed Method
In this section, we introduce our Spatio-Temporal and

Temporo-Spatial (STaTS) attention model for video cap-
tioning, illustrated in Figure 1. First, we describe our spatio-
temporal (ST) attention model, which consists of a spa-
tial attention model (Section 3.1) followed by our proposed
ranked temporal attention model (Section 3.1.2). Next, we
explain our temporo-spatial model in Section 3.2. Finally,
we describe how the ST and TS models are combined into
our full STaTS attention model in Section 3.3.

Before proceeding, let us review our notation. Sup-
pose we are given a training set of N videos,
S = {(S1,Y1), (S2,Y2), · · · , (SN ,YN )}. Here, Sk is a
temporally ordered sequence of frame-level features for
video k, and each Yk is a textual description of the video
(caption), the words of which are encoded using their in-
dices in a predefined dictionary. Let each video sequence
Sk = 〈x1, x2, · · · , xT 〉 be a sequence of T temporally or-
dered video frames. For each video frame t, we have n fea-
tures, denoted xtj for t = 1, 2, . . . , T and j = 1, 2, . . . , n,
where each xtj ∈ Rd. For each j, xtj encodes visual in-
formation from a different region (out of n regions of the
image). Such spatial features could be produced, for ex-
ample, from each cell of a non-overlapping grid as from the
intermediate spatial pooling layers of a CNN, or regions ob-
tained from an RCNN object detector. To encode captions,
we assume each Yk = 〈y1, y2, · · · , ym〉 is an ordered se-
quence of word embeddings, where the ith word in the cap-
tion, yi ∈ BD, is a one-hot vector encoded using a language
dictionary of size D.

Given that the size of the language dictionary D is usu-
ally enormous, learning a neural network model to generate
a caption with m words would demand exploring a space of
Dm sentences, which may be computationally challenging.
Fortunately, however, the language model is highly struc-
tured and compositional, so one can generate each word se-
quentially conditioned on the previously generated words.
This idea is usually implemented via a long short-term
memory (LSTM), which takes as input the current word yi
in a sentence Yk and a state representation hi−1 of the pre-
vious words in the sentence, and produces a new state as
output: hi = LSTM(hi−1, yi). Apart from the language
model, an integral part of the caption generation process is
selecting informative visual features from the videos to be
fed to the language model (which is also the main contri-
bution of this paper). A standard approach to this problem
is to use visual attention. Mathematically, let e ∈ ∆T be a
probability vector in the T -dimensional simplex; its tth di-
mension et captures the probability that visual feature xt is
useful for generating the ith word, typically given by:

et = softmax (att (hi−1, xt)) , (1)

where att is a suitable nonlinear attention function, usually
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Figure 2. Our spatio-temporal (ST) network with the ranked temporal attention module.

chosen as

att(hi−1, xt) = wT tanh (Whhi−1 +Wxxt + b) . (2)

Here, b is a learned bias, while Wh and Wx are learned ma-
trices transforming the respective features into an attention
space, in which they are linearly combined using the w vec-
tor after passing through the nonlinear tanh function. The
score e is projected onto the simplex via the softmax oper-
ator in (1), thereby generating a probability vector over the
visual features. The visual features xt are linearly combined
using weights et to produce the attended visual feature.

3.1. Spatio-Temporal (ST) Attention

In this section, we present the Spatio-Temporal module
of our attention framework. As may be noted, using mul-
tiple spatial (region-based) features (for every frame) intro-
duces an additional degree of freedom in the visual domain
(as against using only a single feature per frame), which
needs to be attended to effectively. A straightforward way
to extend temporal attention in (1) to the spatio-temporal
setting would be to ignore the spatial nature of these addi-
tional features and treat all nT features as if they were the
temporal features of the standard temporal attention model.
However, given that each spatial feature could be noisy (i.e.,
containing features irrelevant or redundant to the end task),
increasing the number of features to be attended may am-
plify the noise, thus diluting the attention paid to useful fea-
tures. Further, there is temporal continuity in these features
that should be incorporated in the method, for example to
capture actions that span across frames. However, attend-
ing to all frames at once may ignore such temporal evolu-
tion. To circumvent such issues, we propose to compose
the spatial and temporal attention one after the other. We
explain the spatial aggregation in this section, then explain
the subsequent temporal attention in Section 3.1.2. Figure 2
illustrates our pipeline.

3.1.1 ST Model: Spatial Attention

A direct way to implement spatial attention is to use (1) on
each frame. That is, let eSt denote the spatial attention for
frame t:

eStj = softmax (att(hi−1, xtj)) , where
n∑
j=1

eStj = 1. (3)

However, such a formulation makes no assumption on the
temporal relationships of the attended features from frame-
to-frame. For example, when one needs to reason about the
temporal evolution of video regions, say for generating the
verb part of a caption, a temporally-consistent spatial at-
tention is preferred; i.e., we would like to attend to regions
that contain the same entity over the frames. But how could
we generate such consistent attentions in a computationally
cheap way? We propose a simple way to achieve this by
making some practical assumptions on the way the spatial
regions are organized in the videos. Specifically, we as-
sume these regions form a fixed non-overlapping grid (see
Figure 2 input), and each spatial feature summarizes the se-
mantics in that grid location. Such an arrangement is a nat-
ural output of standard CNN pooling layers; e.g., the I3D
model generates a 7 × 7 grid of spatio-temporal features.
This grid is assumed to be consistent across all frames; as
a result, when camera motion (and scene changes) are ab-
sent in the video, the features from the same grid cell across
the frames are temporally consistent. However, when cam-
era moves or scene changes, such an assumption no-longer
holds.

We circumvent this problem via overestimating the spa-
tial attention region. Specifically, we propose a three step
process. First, we aggregate the spatial features at each
grid cell across the temporal dimension, i.e., compute x̃j =
1
T

∑T
t=1 xtj . Next, we use x̃ (which only contains n fea-

tures) in (3) to compute spatial attention ẽS . Finally, we
replicate this attention to all frames: eSt = ẽS for all



t = 1, 2, . . . , T (see Figure 2 middle block).
Given that our proposed spatial attention is an approx-

imate union of attentions per frame, feature noise due to
short scene changes or camera motions may be diluted when
averaging the spatial features over all the frames. When
training the framework end-to-end alongside the temporal
ranked attention scheme (discussed in the next section), our
overestimated attention will be guided to be correlated with
regions in the video that have dynamics, thereby pruning
away non-action-related cues. Further, our heuristic also
reduces the inference time linearly as the number of atten-
tions to compute in this module is now independent of the
number of frames in the sequence. Once the spatial atten-
tion eStj is computed, it is used to linearly average pool the
spatial features for every frame (using (2)), thus producing
T temporally-ordered features x̂1, x̂2, . . . , x̂T for the next
module.

3.1.2 ST Model: Ranked Temporal Attention

In this section, we detail our temporal pooling scheme,
ranked temporal attention (also see Figure 2). Using the
spatially-attended features x̂1, x̂2, . . . , x̂T produced by the
spatial attention module described above, our goal is to cap-
ture the action dynamics in the input features. While there
are several choices for modeling such dynamics popular in
action recognition literature [8, 70, 17], we decided to use a
model that is simple, effective, and lightweight. A standard
way is to use an LSTM for this task, but it is not guaran-
teed to capture the action dynamics unless it is trained with
a suitable loss.

To this end, we take inspiration from recent work on
ranking-based dynamic feature pooling [7, 19, 12]. For
temporally-ordered inputs 〈x̂1, x̂2, . . . , x̂T 〉, these methods
propose to compute a feature w by solving the following
rank-SVM formulation:

arg min
w

[
1

2
‖w‖22 + λ

T−1∑
t=1

softplus(ζt)

]
, (4)

where ζt = 〈w, x̂t〉+ β − 〈w, x̂t+1〉, (5)

where λ > 0 is a regularizer, and softplus(z) = log(1+ez)
is a soft variant of the popular ReLU activation function.
The rank pooling formulation seeks to find a direction
w ∈ Rd (same dimension as the input features) such that
projecting the inputs to this direction will preserve their
temporal order (under a margin of β > 0), as enforced by
the softplus function. Intuitively, the minimization encour-
ages the projection of each frame’s input feature, 〈w, x̂t+1〉,
to be larger than the projection of the previous frame’s input
feature, 〈w, x̂t〉. Thus, the intuition is that this direction w,
which lies within the input space, captures the temporal or-
der (temporal dynamics), and can be used as an aggregated
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Figure 3. Our temporo-spatial (TS) attention module.

video feature for subsequent tasks. This has been found to
be empirically useful in several recent works [7, 12].

However, there is an important caveat for directly using
rank pooling within a deep CNN framework: namely, (4) in-
volves computing an arg min function, which is not differ-
entiable. While, there are workarounds for computing the
derivative of this function [21], they lead to second-order
gradients, which can be computationally expensive or may
be even infeasible when the feature dimensionality is high.
To circumvent this problem, we propose a simple scheme in
this paper, which we call ranked attention.

Our key idea is backed by the well-known theoretical re-
sult that a recurrent neural network can approximate any
algorithm (Turing machine) [48]. Motivated by this result,
we propose to emulate the ranking SVM solution described
above within an LSTM setting such that it takes as input
the sequence of features and produces a feature w as out-
put while also minimizng the softplus loss specified by (4).
Specifically, suppose LSTM is an abstract function [27]
parametrized by weights θ. Then, using the above notation,
we define our temporal pooling module (during training) as
one that generates a representation x̂ST by learning θ that
optimizes the following loss:

min
θ

∑
t

softplus(ζt), (6)

where ζt = 〈x̂ST , x̂t−1〉+ β − 〈x̂ST , x̂t〉, (7)

and x̂ST =

T⊕
t=1

LSTM
θ

(x̂t). (8)

In (6), x̂ST denotes the final output of the LSTM after it has
seen all T features. (The notation ⊕ denotes the sequential
nature of inputting the features x̂1, . . . , x̂T to the LSTM,
one frame at a time, while updating its internal state.) Intu-
itively, the formulation (8) learns to produce a feature rep-
resentation that preserves the temporal order of the input
features; these features were output by our spatial attention
model. Since the entire system is trained end-to-end, min-
imizing the softplus loss in turn trains the spatial attention
to attend to temporally varying features, viz. action dynam-
ics. In (8), we avoid optimizing through arg min as in (5),
instead optimize the LSTM parameters θ alongside other
STaTS parameters, while respecting the order constraints.



3.2. Temporo-Spatial Attention Model

The ST attention model may benefit generating caption
words for dynamic visual features (e.g., verbs), but atten-
tion to such temporal cues may not be necessary when gen-
erating words for the subject or object in a caption. For
example, consider the sentence a boy is playing with a ball.
Here, the verb playing may benefit from ST attention, how-
ever using the ST attention framework for generating words
such as boy or ball may be an overkill and inefficient, and
we need a more direct way to infer them.

To this end, we propose a separate attention-over-
attention model, which we call temporo-spatial attention.
In this model, we first use the standard temporal attention
scheme described (1), then greedily select a single frame
(or a few frames) to attend to (see Figure 3). Next, we
apply spatial attention only to the features within these
frames. Mathematically, suppose x̄t represents an agglom-
erated feature representation for frame t (here x̄t could be
the average of all the spatial features for this frame, or a
MaxPool-ed vector). Our temporo-spatial attention is thus:

τ = arg max
t

att(hi−1, x̄t), (9)

eTSj = att(hi−1, xτj), where
∑
j

eTSj = 1. (10)

We define the temporo-spatial attention feature as:

x̂TS =
∑
j

eTSj xτj . (11)

Note that while we write the frame selection via an func-
tion, we implement it via a softmax using a high tempera-
ture, as otherwise the model is non-differentiable.

3.3. Spatio-Temporal and Temporo-Spatial Model

For our full STaTS model, we combine the two
models defined above via a further language attention-
based weighting (see Figure 1). Let β1 and β2 be
weight scalars: β1 = wST tanh(WST x̂ST + Whhi−1)
and β2 = wTS tanh(WTS x̂TS + Whhi−1), where
WTS ,WST , wST , wTS are learned parameters. Our STaTS
model produces a combined feature representation:

x̂ = tanh

(
exp(β1)x̂ST + exp(β2)x̂TS

exp(β1) + exp(β2)

)
, (12)

which is another level of attention conditioned on the lan-
guage state, selecting which attention branch is to be se-
lected to generate the next caption word.

3.4. Model Training

Our STaTS model is trained end-to-end against the
ground truth video captions. A natural question in this

regard is what loss should we use? While, softmax-
crossentropy loss is the standard loss to consider, it is often
argued that the crossentropy may be weakly correlated with
the evaluation metrics we typically use on captions (such
as METEOR or BLUE score). However, these metrics are
non-differentiable, and thus cannot be directly used. To this
end, we follow [43, 38] to consider these metrics as re-
ward functions in a reinforcement learning setup, and use
policy gradients via the REINFORCE algorithm for opti-
mizing against them. Specifically, following [43], we first
optimize our STaTS model to minimize the cross-entropy
loss (for about 10 epochs), and then subsequent iterations
are optimized using combination of cross-entropy loss and
METEOR+BLEU rewards. We also use teacher forcing via
scheduled sampling [6] to reduce exposure bias when train-
ing the model.

4. Experiments
To validate the effectiveness of our STaTS architecture,

we present experiments on the MSVD [9] and the MSR-
VTT datasets [61], two popular benchmarks for video cap-
tioning. The MSVD dataset includes 1970 videos, split
into 1200 videos for training, 100 for validation, and 670
for test, which is the recommended evaluation. Each video
has about 40 ground truth (human-generated) captions, and
13010 distinct words. MSR-VTT is has 10K training and
2990 test sequences and nearly 200K captions.

4.1. Implementation and Evaluation

As the primary contribution of this work is our spatio-
temporal attention model, we mainly use two state-of-the-
art CNN architectures for generating such features: (i) the
Inflated 3D architecture (I3D) proposed in [8], which has
shown state-of-the-art performance on activty recognition
benchmarks; and (ii) Faster RCNN algorithm [44] using a
ResNet-101 architecture. The I3D features are generated
for two modalities: (i) temporal chunks of 16 RGB frames
at a temporal stride of 16, and (ii) temporal chunks of 16 op-
tical flow frames at stride of 16. The I3D model implicitly
uses the Inception-V3 architecture; we extract the spatial
features from the ‘Mixed 5c’ layer of this network, which
are 2 × 7 × 7 × 1024 dimensional, which we reshape to
7×7×2048, where the first two dimensions capture a 7×7
spatial grid. We use the same for the flow features. For
the Faster-RCNN features, we pass each frame (at a stride
of 16) through a region-pooled ResNet-101 network [26].
We detect a fixed 10 bounding boxes per frame and extract
features from the last fully-connected layer of the network,
resulting in 10× 2048 spatial features. However, unlike the
grid-structured I3D features, the RCNN features are region-
pooled without any fixed grid. On the MSR-VTT dataset,
we provide results using ResNet-152 features as well, to
understand the differences in our performances against the



Dataset Scheme Feature CIDEr B4 ROGUE METEOR
MSVD ST I3D 0.742 0.502 0.68 0.325

TS I3D 0.521 0.391 0.646 0.289
STaTS I3D 0.802 0.526 0.695 0.335

ST FRCNN 0.686 0.477 0.69 0.33
TS FRCNN 0.439 0.376 0.633 0.274

STaTS FRCNN 0.709 0.492 0.68 0.319
MSR-VTT ST I3D 0.429 0.397 0.600 0.271

TS I3D 0.427 0.380 0.595 0.273
STaTS I3D 0.434 0.401 0.604 0.275

Table 1. Combinations our method on the MSVD and MSR-VTT
datasets using the I3D (RGB) and Fast RCNN features.

Scheme CIDEr B4 ROGUE METEOR
Mean Pool 0.389 0.362 0.580 0.263
LSTM 0.385 0.347 0.578 0.261
Mean + LSTM 0.388 0.364 0.575 0.259
Temp Att 0.382 0.368 0.580 0.258
Mean + Temp Att 0.385 0.368 0.58 0.26
Ranked Att (ours) 0.387 0.376 0.589 0.264
Mean + Ranked Att (ours) 0.404 0.376 0.592 0.268

Table 2. Study on the benefits in using Ranked Attention. The
results are on the MSR-VTT dataset using the I3D (RGB) features.

Scheme CIDEr B4 ROGUE METEOR
PickNet [11] 0.765 0.523 0.696 0.333
M3 [57] N/A 0.520 N/A 0.321
LSTM-LS [39] N/A 0.511 N/A 0.326
MA-LSTM [62] 0.704 0.523 N/A 0.336
MAM-RNN [36] 0.539 0.413 0.688 0.322
RecNet [56] 0.803 0.523 0.698 0.341
GRU-EVE [2] 0.781 0.479 0.715 0.350
STaTS(FR+FL) 0.747 0.495 0.694 0.334
STaTS (I3D+FL) 0.835 0.548 0.711 0.350

Table 3. Comparisons to the state of the art on MSVD dataset. FR
standds for FRCNN models, I3D and FL stands for the I3D RGB
and optical flow models respectively.

feature type. Note that for either dataset, there is no stan-
dard feature type to compare to prior methods on, e.g., Pick-
Net [11] uses ResNet-152, while DenseCap [47] uses C3D.

We use PyTorch software to implement our models. The
CNN features are pre-computed and are embedded into
512-dimensions, while the words are embedded in 256 di-
mensions. We use single-head self-attention on the previous
words before combining them with the LSTM state for vi-
sual attention. We use an additive attention scheme with
the query and key combined in an attention space of 128
dimensions [52]. The models are trained using RMSprop
algorithm with a learning rate of 0.0001. The training usu-
ally converges in about 20 epochs. We use a batch size of
32 for I3D or FRCNN features. The scheduled sampling
uses a teacher forcing ratio of the form η/ (η + exp(p/η)
where η = 24 and p is the epoch. To evaluate the perfor-
mance of our models, we use BLEU4 [25], METEOR [14],
ROUGE-L [37] and CIDEr [53]. For fair comparisons with
previous work, we compute scores using the code released
on the Microsoft COCO evaluation server [10].

Scheme CIDEr B4 ROGUE METEOR
Dense-Cap [47] 0.489 0.414 0.611 0.283
PickNet [11] 0.441 0.413 0.598 0.277
OA-BTG (R200) [74] 0.469 0.414 – 0.282
M3-VC [57] – 0.381 – 0.266
GRU-EVE (C3D+IVR2) [2] 0.481 0.383 0.607 0.284
RecNet [56] 0.427 0.391 0.593 0.266
STaTS (R152) 0.445 0.392 0.597 0.279
STaTS (R152+C3D) 0.465 0.416 0.615 0.284
STaTS (I3D) 0.434 0.401 0.604 0.275
STaTS (I3D+FL) 0.438 0.410 0.611 0.276
STaTS (I3D+FL+C) 0.451 0.417 0.612 0.280

Table 4. Comparisons to the state of the art on MSR-VTT dataset.
I3D and FL stands for the I3D RGB and optical flow models re-
spectively, while C stands for using the class annotations supplied
with the dataset (which is also used by other methods).

4.2. Results

In the following, we first conduct an ablative study of the
various components in our framework.
ST Spatial Attention: Table 1 shows the performance on
MSVD and MSR-VTT datasets using I3D and FRCNN fea-
tures with various attention schemes. We show the perfor-
mance when using only our spatio-temporal (ST) model,
only temporo-spatial (TS), and our combined STaTS model.
TS is usually the weakest model, likely due to its greedy at-
tention scheme. The table shows that there is significant
synergy between the ST and TS models as substantiated
on both the datasets. The table also compares our heusitic
choice of our approximate ST attention model as against
the alternative of attending to different image regions per
frame (as is done in FRCNN). This comparison (first two
meta-rows of Table 1 shows that our heuristic performs sig-
nificantly better on CIDER and B4 against FRCNN, which
are measures capturing the exact match of parts of gener-
ated caption with the ground truth. Also, comparing the full
STaTS model using I3D and FRCNN shows that our model
is substantially better (0.802 against 0.709 on CIDER).
Ranked Attention: In Table 2, we demonstrate the ben-
efits of our ranked temporal attention scheme against sev-
eral other plausible choices on the MSR-VTT dataset us-
ing the I3D RGB features. We compare to (i) using mean
pooling of the spatially-pooled temporal features, (ii) us-
ing an LSTM, (iii) combining LSTM with average pooling,
(iv) temporally attending over all spatio-temporal features
(no ST-attention or ranked attention), and (v) using aver-
age pooling of spatial features and then temporal pooling of
them. We see that while the ranked-attention by itself is not
significantly better than other choices, combining ranking
with average pooling demonstrates the best performance.
This is unsurprising, given that the ranking attention consid-
ers only the ordering of the features, however discards fea-
tures that are temporally-permutation-invariant, which are
captured by mean pooling; they both capture complimen-
tary cues. To this end, we use the combination of mean-
pooling + ranked attention in our subsequent model.



Figure 4. Qualitative results using our attention model.
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Figure 5. Words distribution analysis for generated captions in
MSR-VTT testing set.

Figure 6. Attention Visualization: first two rows are the video
frames and the last row shows the frames selected by our TS
model.
Qualitative Comparisons: Figure 4 shows improvements
provided by each module. We find that the ST model cap-
tures more of action-related cues and provide caption verbs,
while the TS model better captures the appearances predict-
ing the right nouns. The STaTS module absorbs the ben-
efits from both ST and TS, yielding the best video cap-
tioning. To assert these qualitative observations, Figure 5
provides more insight into how different attention modules

affect the resulting caption. In the bar chart, we sort all
the words from the generated captions for the testing set
of MSR-VTT according to their frequency. First, we re-
move the top 5 most frequent words from each chart (such
as “man” and “woman”). Each bar chart shows the top 20
verbs and nouns, from which it can be seen that the ST mod-
ule generates more verbs (13 verbs out of 20) while the TS
module generates more nouns (12 nouns out of 20). A sim-
ilar phenomenon is shown in the adjacent pie charts, which
indicate the total percentage of verbs, nouns, and adjectives
in the generated captions. Notably, the ST model generates
nearly 27% verbs (8% higher than the TS model), while
the TS model generating more nouns (10% higher than the
ST model), demonstrating their complementary nature. The
combination of ST and TS, the STaTS module, provides a
balance between the two. In Figure 6, we visualize an exam-
ple of how STaTS attention is localized spatially and tem-
porally in the sequence (more examples in the supplemen-
tary materials). The first two rows illustrate the sequence
of video frames, and the third row visualizes the attention.
For each word in the generated caption, we chose the frame
with highest temporal attention and overlaid the respective
spatial attention.

Comparisons to the State of the Art: In Table 3, we
show the results of our STaTS method with various feature
combinations and compare it against state-of-the-art meth-
ods on the MSVD dataset. Our model fares by more than
3.5% on the CIDEr and 2% better on B4 against the next
best method (RecNet [56]). In Table 4, we provide com-
parisons on the MSR-VTT dataset. We outperform sev-
eral recently proposed methods. Specifically, we improve
RecNet on all the four metrics, while outperforming more
recent GRU-EVE [2] and OA-BTG [73] on most metrics.
Note that these are powerful deep models that combine vi-
sual saliency with dynamics learning, and our results clearly
demonstrate the superiority of our approach.

5. Conclusions
We proposed novel attention models for video caption

generation combining spatio-temporal and temporo-spatial
(STaTS) attentions. We also presented ranked temporal
pooling using an LSTM that emulates a rank-SVM. Our
method can be seen as stage-wise attention, in which spatial
and temporal cues are explored hierarchically. Our scheme
yields state-of-the-art results on two benchmark datasets.
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