
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

DynamicsExplorer: Visual Analytics for Robot Control
Tasks involving Dynamics and LSTM-based Control Policies

He, Wenbin; Lee, Teng-Yok; van Baar, Jeroen; Wittenburg, Kent B.; Shen, Han-Wei

TR2020-011 January 24, 2020

Abstract
Deep reinforcement learning (RL), where a policy represented by a deep neural network is
trained, has shown some success in playing video games and chess. However, applying RL to
real-world tasks like robot control is still challenging. Because generating a massive number of
samples to train control policies using RL on real robots is very expensive, hence impractical,
it is common to train in simulations, and then transfer to real environments. The trained
policy, however, may fail in the real world because of the difference between the training and
the real environments, especially the difference in dynamics. To diagnose the problems, it is
crucial for experts to understand (1) how the trained policy behaves under different dynamics
settings, (2) which part of the policy affects the behaviors the most when the dynamics setting
changes, and (3) how to adjust the training procedure to make the policy robust. This paper
presents DynamicsExplorer, a visual analytics tool to diagnose the trained policy on robot
control tasks under different dynamics settings. DynamicsExplorer allows experts to overview
the results of multiple tests with different dynamics-related parameter settings so experts can
visually detect failures and analyze the sensitivity of different parameters. Experts can further
examine the internal activations of the policy for selected tests and compare the activations
between success and failure tests. Such comparisons help experts form hypotheses about the
policy and allows them to verify the hypotheses via DynamicsExplorer. Multiple use cases
are presented to demonstrate the utility of DynamicsExplorer.

IEEE Pacific Visualization Symposium (PacificVis)

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in
whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all
such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric
Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and all
applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall require
a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Copyright c© Mitsubishi Electric Research Laboratories, Inc., 2020
201 Broadway, Cambridge, Massachusetts 02139

DynamicsExplorer: Visual Analytics for Robot Control Tasks involving
Dynamics and LSTM-based Control Policies

Wenbin He* †

The Ohio State
University

Teng-Yok Lee‡

Mitsubishi Electric
Research Labs (MERL)

Jeroen van Baar§

Mitsubishi Electric
Research Labs (MERL)

Kent Wittenburg¶

Mitsubishi Electric
Research Labs (MERL)

Han-Wei Shen||

The Ohio State
University

Saved Sub-Episodes ViewQuantile: Sort by:Isovalue:Clustering Threshold:Clusters View

Match:5.0Threshold: Episode View

Percentage Friction Distance Frames Speed

0.0µ

0.2µ

0.4µ

0.6µ

0.8µ

1.0µ

1.2µ

1.4µ

1.6µ

1.8µ

40

50

60

70

80

90

100

110

120

100

150

200

250

300

350

400

4

6

8

10

12

14

16

18

20

cluster friction distance frames speed

SaveLSTMTrajectoryHidden State Max Action X+ X- Y+ Y- No Action

0 11 22 33 44 55 66 77 88 99 110 121 132 143 154

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

x+ x-
y+ y-
no action

3.2
2.1
1.1
0.0
-1.1
-2.1
-3.2

cluster:
friction: 670n
distance: 14
frames: 30
speed: 470m

cluster:
friction: 0.0
distance: 24
frames: 30
speed: 820m

friction: 220n
distance: 17
frames: 22
speed: 780m

SUBDTW: 2.1
cluster:
friction: 440n
distance: 12
frames: 16
speed: 770m

SUBDTW: 2.4
cluster:
friction: 440n
distance: 15
frames: 20
speed: 770m

SUBDTW: 2.6
cluster:
friction: 1.1µ
distance: 15
frames: 21
speed: 700m

a

b
Rendered 25/25Pattern Matching View Clean

c

d

a1 a2

b1

b3
b2

b4

d1 d2 d3

Figure 1: Overview of DynamicsExplorer, a visual analytics tool to diagnose trained policies on robot control tasks involving
dynamics. (a) the Cluster view presents the overview of the testing episodes as clusters of ball trajectories (a1) and the
corresponding statistical summaries of each cluster in a parallel coordinate plot (a2); (b) the Episode view shows the relationship
between the hidden states of the LSTM and the status of the environment for selected episodes. We present the hidden states
over an entire episode as a heatmap (b1). The dark grey region represents a sub-episode selection. The trajectory of the selected
sub-episode is displayed on the maze (b2) and the corresponding hidden states are shown in the heatmap exploration area (b3). The
ball location and maze tilt for the sub-episode are shown below the heatmap exploration area, see (b4); (c) the Saved Sub-Episodes
view shows the sub-episodes that have been saved by users for comparison; (d) the Pattern Matching view shows the matches to a
pattern query specified by users in the Episode view. For example, the selected hidden states channels, shown as green bounding
boxes in the heatmap exploration area (b3), were queried using the LSTM query button in the Episode View bar. Each match
displayed in (d) contains information about matching scores and dynamics parameters (d1), the matched sub-trajectory drawn on
the maze (d2), and the corresponding LSTM hidden states (d3). DynamicsExplorer is described in detail in Section 5.

ABSTRACT

Deep reinforcement learning (RL), where a policy represented by
a deep neural network is trained, has shown some success in play-
ing video games and chess. However, applying RL to real-world
tasks like robot control is still challenging. Because generating a
massive number of samples to train control policies using RL on

*The first author started this work when interning in MERL.
†e-mail: he.495@osu.edu
‡e-mail: teng-yok.t.lee@ieee.org
§e-mail: jeroen@merl.com
¶e-mail: kentwitt@gmail.com
||e-mail: shen.94@osu.edu

real robots is very expensive, hence impractical, it is common to
train in simulations, and then transfer to real environments. The
trained policy, however, may fail in the real world because of the
difference between the training and the real environments, especially
the difference in dynamics. To diagnose the problems, it is crucial
for experts to understand (1) how the trained policy behaves under
different dynamics settings, (2) which part of the policy affects the
behaviors the most when the dynamics setting changes, and (3) how
to adjust the training procedure to make the policy robust.

This paper presents DynamicsExplorer, a visual analytics tool to
diagnose the trained policy on robot control tasks under different
dynamics settings. DynamicsExplorer allows experts to overview
the results of multiple tests with different dynamics-related param-
eter settings so experts can visually detect failures and analyze the
sensitivity of different parameters. Experts can further examine the
internal activations of the policy for selected tests and compare the

activations between success and failure tests. Such comparisons
help experts form hypotheses about the policy and allows them to
verify the hypotheses via DynamicsExplorer. Multiple use cases are
presented to demonstrate the utility of DynamicsExplorer.

1 INTRODUCTION

Since the success of AlphaGo [22], deep reinforcement learning
(RL) has attracted an increasing amount of attention and become a
very active research topic. With carefully-designed reward functions,
well-trained deep RL models (deep neural networks representing
control policies) are able to play chess and video games surpassing
human-level performance. Recently, a major focus in the machine
learning field is to utilize RL to solve tasks in real environments such
as robot control that are difficult to annotate [25]. However, as deep
RL requires many samples for training, it is impractical to directly
apply them to areas like robotics due to cost and safety concerns.
Hence, training deep RL models on simulations and subsequently
transferring the models to real environments, dubbed Sim2Real, is
often employed.

The major goal of Sim2Real is to transfer the trained RL model
to real environments with as little fine-tuning as possible, which is
challenging for the following reasons. First, real-world tasks often
involve dynamics (i.e., mechanics that deals with the motion and
equilibrium of systems under the action of forces), which cannot
be fully simulated even with advanced physical engines, e.g., Mu-
JoCo [24]. One major reason is that simulations are often controlled
by different dynamics parameters (such as frictions), whose value
in real environments is unknown to the domain experts. Second,
because deep RL models are often highly complex and difficult to
interpret, it is challenging to adjust the model directly to cope with
new environments. As a result, transferring deep RL models to
real-world tasks often requires a considerable amount of fine-tuning,
which is time-consuming and sometimes impractical.

To address the aforementioned challenges, it will be ideal if do-
main experts could understand how the model reacts to different
dynamics settings using simulations, so more stratified approaches
could be developed to fine-tune the network. Even better, if the
experts can analyze the network activations and understand how
information is encoded in the network, they may be able to ad-
just the encoding to obtain desired behavior or substantially reduce
the amount of fine-tuning time. While various visual analytics ap-
proaches have been successfully applied to interpret and diagnose
deep learning models [14, 23, 27], visualizing and understanding
deep RL models under different dynamics settings is non-trivial for
the following reasons. First, the dynamics are often encoded in high
dimensional vectors that change over time. Second, the dynamics
corresponding to the status update of the 3D environment has a very
complex relation to the behavior of the RL model.

In this work, we propose DynamicsExplorer, a visual analyt-
ics system to assist domain experts to visualize, understand, and
explore the behavior of RL models under various dynamics set-
tings such that the amount of fine-tuning can be reduced. Given
a trained deep RL model that is tested with different dynamics
settings, DynamicsExplorer first provides an overview of the test
results, which allows experts to not only detect failure cases but also
examine whether the failure cases are correlated to certain dynamics
parameters. Experts can then further visualize and compare the
change of environment and model activations over time for selected
cases. Based on the visual comparison of success and failure cases,
experts can form hypotheses about which part of the model con-
tributes to the abnormal behaviors, and then use DynamicsExplorer
to verify the hypotheses by examining all the test cases.

This paper is structured as follows. Section 2 reviews a specific
robot control task and the corresponding RL model that motivates
DynamicsExplorer. Section 3 lists the requirements for the visual an-
alytics tool, and Section 4 discusses prior research and notes where

they fall short of satisfying the requirements. Section 5 describes
DynamicsExplorer in detail. Section 6 lists various use cases of
DynamicsExplorer, including the exploration of dynamics parame-
ters, the guidance of fine-tuning, and the understanding of how the
dynamics are encoded. After the discussion of experts’ feedback
and the future work in Section 7, Section 8 concludes this paper.

a b c

d
Conv Conv FC

ReLU ReLU ReLU

Time-independent Time-dependent

LSTM

FC argmax Action

h
x

LSTM

x0

h0

LSTM

x1

h1

LSTM

x2

h2

LSTM

xT-1

hT-1e

LSTM

xT-2

hT-2

...

Figure 2: Overview of our robot control task [25]. (a) The ball-
in-maze game, whose goal is to move a ball from the outermost
ring to the maze center. (b) The ball-in-maze game on a robot
arm. An overhead camera provides observations of the maze. (c)
A rendered image of our simulation to mimic the real maze in (a).
(d) Architecture of our neural network, which represents a control
policy for the robot. (e) Unrolled representation of the LSTM layer
in our model, which is used to encode the dynamics of the game.

2 BACKGROUND: BALL-IN-MAZE GAME

DynamicsExplorer is motivated by a specific robot control task [25],
which is developed as a test bed to study more general Sim2Real
algorithms. The task is to train a robot to solve a circular ball-in-
maze game from only image observations as input. The goal is to
move the ball from the outermost ring through a series of gates into
the innermost ring, by tilting the maze. The maze is placed on a
robot arm, and an overhead camera captures images of the tilting
maze and resulting ball motion. See Figures 2(a) and (b).

A deep RL model is trained to play the game by mapping states
of the game to actions, whose architecture is shown in Figure 2(d).
The model takes images from the camera as inputs in sequence and
outputs a sequence of discrete actions to tilt the maze using the
robot arm. At each frame, the captured image is passed through two
convolutional layers and one fully connected layer to extract image
features such as the ball location and encode them into a latent vector
x. ReLU activations are used to introduce nonlinearity to the model
by clamping negative values to 0. The latent vectors x0,x1, . . . ,xT−1
are then fed into a long short-term memory (LSTM) layer [5] in
sequence. At each timestep, the LSTM layer takes the latent vector
and the output of the previous timestep as inputs and passes the
output to the next timestep. Essentially, a LSTM layer recursively
fuses the image features over time and generates a sequence of
hidden states h0,h1, . . . ,hT−1 as shown in Figure 2(e). Each hidden
state h is a high dimensional vector that encodes the dynamics of the
game, and each dimension is named a channel of the hidden state.
The hidden states are then input to a fully connected layer, and an
argmax operation finally determines which action to take. There
are five discrete actions to control the maze: tilting clockwise or

counterclockwise around the x- or y-axis, denoted as X+, X-, Y+,
and Y-, respectively. The fifth action is No-Op, i.e., do nothing.

Arguably this task can be trained by a method other than RL.
However, RL is very general and can be used to train a variety of
tasks, for both discrete and continuous action spaces [19, 20]. The
network architecture is based on [18], which showed that LSTMs
with prior action and reward as additional input tend to outperform
non-recurrent models.

Since training the model on the real robot is not practical due
to cost and safety concerns, the domain experts developed a 3D
simulation to mimic the physics of the ball rolling in the maze using
MuJoCo [24] and render the maze as shown in Figure 2(c). The
simulation also allows for mimicking of multiple robots in parallel,
which is not affordable with real robots due to the cost. While the
model can be trained efficiently on simulations, transferring the
model to the real world settings requires additional training, i.e.,
fine-tuning, to cope with real environments [25]. In particular, the
LSTM layer of the model is harder to transfer to the real world than
the time-independent convolution layers. In a preliminary study [11],
the researchers found it was sufficient to only fine-tune the layers
after the LSTM layer. They also confirmed that the convolution
layers can highlight the ball locations with both rendered images
and captured video frames. In contrast, the LSTM layer is sensitive
to (unknown) changes in dynamics between the simulation and the
real world, making the fine-tuning unavoidable.

The goal of this work is to develop a visual analytics system to
help experts explore and analyze the testing runs (i.e., episodes) of
a trained model with different dynamics settings on the simulation.
With the system, we aim to help experts understand (1) how the
model, especially the LSTM layer, reacts to different dynamics set-
tings such as the friction of the maze surface, (2) how the dynamics
impact the result of the game, which is represented by the ball trajec-
tories, and (3) how the dynamics are encoded in the LSTMs to guide
fine-tuning and ultimately to directly intervene the models behavior.

3 SYSTEM REQUIREMENTS

Based on the challenges described in the previous section, we
identify a set of requirements in order to build a powerful analytics
tool. Our goal is for the tool to afford insights for domain experts so
that failure cases can be identified; hypotheses can be formed as to
the cause of the failures; hypotheses can be verified; and the RL
model can be improved. Here is our proposed set of requirements:

R1: Provide summaries of testing runs. To understand the
behavior of the model with respect to various parameters (e.g., initial
ball locations, friction), 100s of testing runs are conducted. The
target system needs to effectively summarize the testing results with
respect to the input parameter settings as well as measurable output
parameters (distance, time of ball travels). Experts should be able to

• R1.1: identify success and failure sequences through parame-
ters within a large number of testing runs;

• R1.2: filter on the basis of these parameters to focus on cases
of interest;

• R1.3: correlate the testing results with the parameter settings
to analyze the sensitivity of the parameters.

R2: Present changes in the environment and the model acti-
vations over time. Visualizing how the model reacts to the changes
of environment and how the decisions made by the model in turn
change the environment is crucial for domain experts to understand
the relationship between the model and the dynamics. In detail, the
target system should fulfill the following requirements.

• R2.1: Characterize the change of the model activations (i.e.,
LSTM hidden states) over time, which are high-dimensional
vectors (256 in our application) with subtle interactions.

• R2.2: Characterize the changes in the environment over time in
a compact and comprehensible way. Robotics applications in-
volve an environment that changes in a multidimensional space.
Only the most significant changes should be represented.

• R2.3: Associate the environment and the model with a common
temporal reference such that experts are able to correlate the
change of the environment with the model’s internal states and
identify patterns.

• R2.4: Compare differences of the environment and model
activations between different testing runs with elastic time
windows, such that experts can have better understanding of
how the differences of the environment influence the model’s
internal states and vice-versa. Comparable sequences may
have slightly different time windows. (This requirement is
particularly useful when it comes to comparing successful
sub-episodes to failures.)

R3: Verify hypotheses regarding the association of patterns
in the model activations and the environment. Once experts have
come up with hypotheses regarding the role of the model in influenc-
ing the environment and vice-versa, the user of the system should
be able to

• R3.1: search over all testing run sub-sequences using specified
patterns in the model activations;

• R3.2: search over all testing run sub-sequences using specified
patterns in the environment.

The goal is to determine whether hypotheses involving an association
of sub-sequence patterns in the environment with patterns in the
hidden states hold true in general.

4 RELATED WORK

Visual analytics approaches [1,15] have been playing an increasingly
important role in interpreting and diagnosing various deep learning
models, such as supervised [8, 14, 23], unsupervised [13, 28], and
reinforcement learning models [6, 27]. In the following, we review
previous work in visualization of deep RL models and recurrent
neural networks (RNNs), which are closely related to this study.

Visualization of Deep RL Models Several visual analytics
approaches have been proposed to interpret deep RL models. A
commonly used technique [18, 20, 29] is to project and visualize the
model activations with t-SNE [26]. Although the t-SNE projection
is effective in providing an overview of the model activations, it
is difficult to correlate the model activations with the environment.
Recently, Wang et al. [27] proposed DQNViz to visualize the train-
ing process of DQN-based reinforcement learning, but DQNViz
focuses on models that are not dependent on dynamics, which play
an important role in our application. Jaunet et al. [6, 7] proposed
visual analytics tools to interpret the internal states of RL models
and correlate them with the environment. However, their approaches
do not consider the change of simulation parameters and how the
parameters influence the internal states of the model.

Visualization of RNN Models Most of the visual analytics ap-
proaches for RNN models focus on applications in natural language
processing. Karpathy et al. [9] overlaid the LSTM hidden states
with the input sentences to interpret the LSTM models. Li et al. [12]
compared different RNN models by visualizing the change of hidden
states over time with heatmaps. Ming et al. [17] proposed RNNVis
to understand the relations between the hidden states and the input
sentences with biclustering. Hendrik et al. [23] proposed LSTMVis,
a visual analytics tool to help experts identify patterns in LSTM
hidden states and verify hypotheses on those patterns. Compared
with these previous approaches, this study focuses on more complex
input sequences (i.e., images that represent the changes in a 3D
environment). Moreover, in our application, the environment (i.e.,

the input to the model) can be influenced by the output actions of
the model. This makes our application more complicated than in the
previous work because in their applications the input texts are not
dependent on the outputs of the model.

5 VISUAL ANALYTICS SYSTEM: DYNAMICSEXPLORER

Following the requirements described in Section 3, we designed and
developed DynamicsExplorer with multiple coordinated views as
shown in Figure 1 and detailed below.

5.1 Clusters View
The Clusters view (Figure 1(a)) provides an overview of the testing
episodes by clustering of the ball trajectories and the corresponding
statistical summaries of each cluster (R1). This view contains two
juxtaposed sub-views, as shown in Figure 1(a1) and 1(a2).

5.1.1 Trajectory Variability Plot View

a b c

creating

lobes

clustering

Figure 3: Process of creating the trajectory variability plot. Ball
trajectories (a) are first grouped into clusters (b) with agglomer-
ative hierarchical clustering. Then, the clusters are visualized as
confidence lobes (c).

The Trajectory Variability Plot view (Figure 1(a1)) shows the
clusters of the ball trajectories and visualizes the clusters as con-
fidence lobes [4]. This view provides a quick overview of all the
trajectories and enables users to identify failure cases effectively
(R1.1). In the following, we discuss how to cluster the trajectories
and create the confidence lobe for each cluster in detail.

Given a set of ball trajectories as shown in Figure 3(a), we first
compute the distance between each pair of trajectories. Because
the trajectories may start from different locations and have different
lengths, point-wise distances such as the L2-norm are not directly
applicable. In this work, we measure the distance between trajecto-
ries using the mean of closest point distance dM [2], which is widely
used to compare flowlines [16] and fibers [2]. Given two trajectories
Ti and Tj , dM computes the minimal distance from each point of one
trajectory to the other, and then computes the distance between Ti
and Tj as the average of all minimal distances, which is defined as

dM(Ti,Tj) = mean(dm(Ti,Tj),dm(Tj,Ti))

with dm(Ti,Tj) = meanpl∈Ti minpk∈Tj ‖pl − pk‖ ,
(1)

where p are sample points on the trajectories. Then, we group the
trajectories into clusters (Figure 3(b)) using agglomerative hierarchi-
cal clustering with average linkage, which is often used to cluster
flowlines [4]. Users can adjust the clustering threshold via a slider
to decide how similar the trajectories of a cluster should be.

After clustering, we visualize each cluster of trajectories as a
confidence lobe (Figure 3(c)) instead of spaghetti plots (Figure 3(b))
to reduce visual clutter and convey the variability of the trajectories
to users. Given a cluster of trajectories, we follow the method
proposed in [4] to create the confidence lobe. We first discretize the
2D space with a regular grid and create a visitation map by counting
for each grid cell the number of trajectories that have passed through
it. Then, we smooth the visitation map with a Gaussian kernel and
extract the confidence lobe from the visitation map as an isocontour.
Users can adjust the isovalue to change the size of the confidence
lobes interactively.

5.1.2 Parallel Coordinates Plot (PCP) View

The PCP view (Figure 1(a2)) aims to provide the statistical sum-
maries of each cluster, including the input parameters used to gener-
ate the testing episodes (e.g., the starting position and the friction)
and the characteristics of the testing episodes (e.g., the distance the
ball moves and the number of frames) (R1.2). Each attribute in the
statistical summary is represented as one coordinate in the PCP, and
each cluster is represented as a band across the coordinates. The
range of a band on each coordinate covers certain percentages of
the data around the median of the cluster, which could be adjusted
by users. Note that the Trajectory Variability Plot view and the
PCP view are linked such that selecting a cluster on one view can
highlight the corresponding cluster in the other view (R1.3).

With the two sub-views in the Clusters view, users can quickly
identify failure cases and form hypotheses about the cause. For
example, in Figure 1(a2), the selected episodes took a small number
of frames but the ball moved a relatively longer distance, which
indicates overshooting failure cases as shown in Figure 1(a1). By
checking the input parameters, users can further hypothesize that
these failure cases may be caused by low friction values. Then, users
can select the median of the failure cases and do further analysis as
detailed in the following sections.

5.2 Episode View

The Episode view (Figure 1(b)) is the main view of the system,
which visualizes and compares episodes in terms of the hidden states
of the LSTM and the status of the environment (i.e., the ball location
and the tilt of the maze) (R2). In the following, we first discuss
the visualizations of the LSTM hidden states and the status of the
environment with respect to a single episode. Then, we extend the
visualizations to compare two episodes.

5.2.1 Visualization of the LSTM Hidden States

Visualizing the change of hidden states along the time dimension
(R2.1) is crucial to understand how the dynamics are encoded in
the model. Previous work typically visualizes the raw hidden state
vectors directly with either heatmaps [9,17] or line charts [23]. How-
ever, there are two limitations in the previous work. First, as the
dimensionality of the hidden state vectors gets higher, visualizing
the raw vectors directly does not scale well. The heatmaps will
become too big to interact with and the line charts will become
cluttered as the number of lines increases. Second, each channel in
the hidden states is treated equally without considering its contri-
bution to the final actions, which can obscure the significant data
and lead to imprecise findings. To address these limitations, we first
perform dimensionality reduction on the hidden states with principal
component analysis (PCA) and then calculate the contributions of
each principle component (PC) to the final actions.

a b

Figure 4: LSTM hidden states in the original space (a) and PCA-
space (b). A small subset of PCs is sufficient to perserve the variance.

Dimensionality Reduction with PCA We collect the hidden
state vectors h0,h1, . . . ,hN−1 from all the testing episodes and treat
each hidden state vector as a point in the high dimensional space
(256 dimensions in our application). Then, we perform PCA on the

data points and transform each hidden state vector into the PCA-
space by subtracting the mean vector h̄ and then multiplying with
the rotation matrix M as

h′i = (hi− h̄)M. (2)

In the PCA-space, a small subset of PCs is often sufficient to preserve
the variance of the data. For example, Figure 4(a) shows the LSTM
hidden states of an episode using a heatmap and Figure 4(b) shows
the hidden states in the PCA-space, where each row represents one
channel/PC. We can see that only a small subset of PCs on the
top have values with high variance in Figure 4(b). While there are
various dimensionality reduction techniques, we use PCA in this
work for the following reasons:

• PCA preserves the structure of the data as it just applies linear
transformations (translation and rotation) on the data without
changing the overall shape of the data.

• PCA minimizes the correlation between PCs such that different
PCs are more likely to encode different dynamics information.

• Points in the PCA-space can be transformed back to the orig-
inal space, which plays an important role in computing the
PC-wise contribution to the actions.

After the PCA-based dimensionality reduction, users can focus on
the change of the hidden state over time with a relatively small
number of PCs to identify patterns effectively.

Computation of PC-wise Contribution To interpret the LSTM
hidden states, visualizing the hidden state values alone is not suf-
ficient because of the lack of connections to the actual actions. In
this work, the mapping from the LSTM hidden states to the action
scores is achieved via a fully connected layer with a na×nl weight
matrix W , where na and nl denote the number of actions and LSTM
channels, respectively. Hence, given a hidden state h, its contribution
to the actions can be computed by multiplying it with W . As we
are visualizing the hidden states in the PCA-space, it is important to
understand how each PC contributes to the actions. Given a hidden
state h′ in the PCA-space, we compute the contribution c j of the
j-th PC as follows. First, we set the values of other PCs to 0, which
gives us a new vector denoted as h′(j) and then transform it back to
the original space by multiplying it with the inverse of the rotation
matrix M−1. In the end, we transform the resulting vector with the
weights W to compute the contribution of the PC to the actions. In
summary, the PC-wise contribution computation can be written as

c j = h′(j)M−1W. (3)

Visual Design We visualize the hidden state values or contribu-
tions in the PCA-space as heatmaps using the PCs that explain more
than 90% variance of the data, as shown in Figure 1(b1). We use
heatmaps instead of other visual designs such as line charts because
the scalability issue is alleviated with a reduced number of dimen-
sions and heatmaps preserve the order of the PCs, which is important
as the PCs are sorted based on the data variances they explain. In
addition, as one episode is typically a long time sequence (hundreds
of frames), the system lets users focus on particular sub-episodes
through brushing and zooming as shown in Figure 1(b1 and b3).

5.2.2 Visualization of the Environment
Visualizing the status of the environment and aligning it with the
LSTM hidden states is important for users to explore and analyze
how the dynamics (e.g., the ball location and speed) are encoded
in the LSTM (R2.2, R2.3). To this end, we develop two sub-views
detailed as follows.

Trajectory View The Trajectory view (Figure 1(b2)) provides
the overview of the status of the simulation by visualizing the tra-
jectory of the ball. We use the color of the trajectory to encode
additional information such as the action the model takes at each
frame. We link the Trajectory view with the LSTM hidden states
through brushing and zooming as mentioned early. When users
select a sub-episode through brushing, the trajectory and the LSTM
hidden states that correspond to the selected sub-episode are high-
lighted simultaneously.

Glyph View To visualize the status of the simulation at each
frame in detail, we design glyphs as shown in the series in Fig-
ure 1(b4). Each glyph provides the location of the ball and the tilt of
the maze. We visualize the ball and the walls of the maze together
to indicate the location of the ball. Note that we only draw walls be-
tween the current and the inner ring to make the glyph more compact.
For the tilt of the maze, we accumulate all the tilts along the x- and
y-axis into a vector and visualize it as an arrow centered at the origin.
As with the Trajectory view, we use color to encode which action
was taken at that time step. We align the glyphs with the LSTM
hidden states of the selected sub-episode vertically. In addition, to
avoid overlapping, we change the number of glyphs dynamically as
the number of frames changes in the selected sub-episode.

5.2.3 Comparison between Two Episodes

66 68 70 72 74 76 78 80 82 84 86 88 90 92 93 94 95

81 82 83 85 86 88 90 92 94 96 98 100 102 104 106 108 110

x+ x-
y+ y-
no action

3.2
2.1
1.1
0.0
-1.1
-2.1
-3.2

cluster:
friction: 670n
distance: 14
frames: 30
speed: 470m

cluster:
friction: 0.0
distance: 24
frames: 30
speed: 820m

a b

c c1

c2

Figure 5: Comparing two sub-episodes (a) and (b) in the Episode
view (c). The different activations of the LSTM hidden states are
shown as a difference heatmap in (c1), and the status of the environ-
ment for both sub-episodes are overlaid for comparison as shown in
(c2). Note for the difference heatmap in (c1), a different colormap
(red for negative values, yellow for zeros, and green for positive
values) from the original activation map is used.

Besides visualizing and analyzing a single episode, we extend
the Episode view to compare two episodes with respect to the user
selected sub-episodes (Figure 5). Visual comparison between sub-
episodes is crucial for users to identify differences between cases and
form hypotheses about the cause (R2.4). A straightforward solution
to compare sub-episodes is to visualize them in juxtaposed views.
However, it is difficult and inefficient for users to identify non salient
differences from juxtaposed views. Hence, in this work, we compare
two sub-episodes by visualizing them as a difference heatmap. As
the sub-episodes in comparison may start from different statuses and
have different number of frames, aligning the sub-episodes in time
plays an important role for visual comparison. In this work, we use
dynamic time warping (DTW) [21] to align the two sub-episodes as
detailed below.

Alignment based on DTW We allow users to align sub-
episodes using DTW based on either the ball locations or the LSTM
hidden states. Here, we discuss the method using ball locations as
an example. Given two time series of ball locations p0, p1, . . . , pm−1
and q0,q1, . . . ,qn−1, where m and n are the number of frames in the

selected sub-episodes, we first calculate the DTW matrix D based
on the following equation:

Di, j = dist(pi,q j)+

0 i = 0 & j = 0
Di, j−1 i = 0 & j > 0
Di−1, j i > 0 & j = 0
D̂i, j otherwise

, (4)

where dist(pi,q j) is the Euclidean distance between pi and q j and
D̂i, j = min(Di−1, j−1,Di−1, j,Di, j−1). Based on D, we can extract
the warping path by starting from Dm−1,n−1 and moving down and
left along the path with minimum Di, j. According to the warping
path, the two series can be warped non-linearly to align with each
other with a least distortion.

Visual Design After aligning the selected sub-episodes, we
visualize and compare them in terms of the LSTM hidden states
and the status of the environment. For the LSTM hidden states, we
compute the difference between the sub-episodes and visualize the
difference through heatmaps as shown in Figure 5(c1). Note that
in order to remind users that the heatmap is showing the difference,
not the original activation values, a different colormap is used to
differentiate it with the hidden state values. To compare the sta-
tus of the environment between the sub-episodes, we update the
aforementioned Trajectory and Glyph views in Section 5.2.2 by su-
perimposing the trajectories, ball locations, and tilts of the maze with
different colors as shown in Figure 5(c2). During exploration, we
allow users to save sub-episodes in Figure 1(c) for later comparison.

5.3 Pattern Matching View

(a) (b)

Pattern Target

Figure 6: (a) Pattern defined by a time series of values in 1D. (b)
Blue curve is the target time series, and the green curves are the
matches found by SUBDTW.

By visualizing and comparing selected sub-episodes, users may
identify interesting patterns and need to confirm certain hypotheses
about the patterns in other episodes. To this end, we search the
user specified pattern in the testing episodes with a pattern matching
algorithm called SUBDTW [10]. Then, we visualize the pattern
matching results in the Pattern Matching view to help users confirm
or reject the hypotheses (R3).

Pattern Definition In this work, we define a pattern as a time
series of ball locations or hidden state values (for user selected PCs).
Users could search for similar ball trajectories to check whether the
corresponding hidden states are similar (R3.1). Users could also
search for similar hidden states patterns to confirm or reject that
the patterns only correspond to certain dynamics (e.g., series of
ball locations) (R3.2). In the following, we demonstrate the pattern
matching algorithm with a time series of hidden state values for a
PC as example. It is straightforward to extend to multiple PCs or the
ball locations.

Pattern Matching with SUBDTW Let’s define the pattern as a
time series of hidden state values p0, p1, . . . , pm−1 for a particular
PC, which is essentially a 1D curve as shown in Figure 6(a). The
goal of the pattern matching is to find sub time series in each target
episode that have similar patterns, as shown in Figure 6(b). The sub
time series that match the pattern could start from arbitrary time

frames and contain different numbers of frames. A robust distance
metric is needed to compare the pattern and the target. The DTW
mentioned earlier could address the issue of different numbers of
time frames, but it forces the matching to start from the first frame.
In this work, we use the SUBDTW algorithm, which extends the
DTW such that the matching could start from arbitrary time frames
in the target. Assuming the target is a time series of hidden state
values q0,q1, . . . ,qn−1, where n is typically much larger than m. The
SUBDTW computes the DTW matrix with a modified version of
Equation 4

Di, j = dist(pi,q j)+

0 i = 0 & j = 0
0 i = 0 & j > 0
Di−1, j i > 0 & j = 0
D̂i, j otherwise

, (5)

where the main difference is the case when i = 0 & j > 0, we set Di, j
to 0 instead of Di, j−1. The idea is that we do not want to accumulate
the distance from the starting frame of the target. Once the matrix
D is computed, we compare the distances in row Dm−1 with a user
defined threshold value, and for any Dm−1, j that is smaller than
the threshold value, we extract the warping path using the method
mentioned in Section 5.2.3 and find the matches.

Visualizing Matched Sub-episodes We list and visualize the
matched sub-episodes in the Pattern Matching view. The matched
sub-episodes are first sorted based on the SUBDTW distance starting
from the most similar one. For each sub-episode, we first list the
corresponding parameter settings (e.g., friction value) and statistical
summaries (e.g., number of frames) for the sub-episode as shown
in Figure 1(d1). Then, we visualize the matched sub-trajectory as a
curve in Figure 1(d2) and the LSTM hidden states as a heatmap in
Figure 1(d3). We allow users to compare each of the sub-episodes
with the pattern in the Episode view to identify the difference be-
tween them in detail. Note that in this comparison, we directly
use the warping path generated by SUBDTW to align the matched
sub-episode with the pattern.

6 USE CASES

We worked closely with the domain expert who developed the RL
model that solves the ball-in-maze task decribed in Section 2 on
several use cases. In this section, we present two use cases to
demonstrate the usefulness and effectiveness of DynamicsExplorer:
one focuses on how DynamicsExplorer can help experts diagnose the
trained model under different parameter settings to identify failure
cases, form hypotheses about the cause, and further improve the
model; the other aims to interpret the internal activations of the
model and correlate them with changes of the environment.

For both use cases, we trained the ball-in-maze task using a neural
network based on the implementation of our expert [25]. Training
comprised four million iterations on the simulator, with a fixed
setting of the dynamics-related parameters decided by the expert.
We aim to understand LSTM encodings from first principles by
testing the model under different parameter settings in simulation.
Among the various parameters, our expert is particularly interested in
two: the friction value of the maze material, and the starting location
of the ball. Hence, we tested the model with the combinations of
12 initial ball locations, placed at regular intervals in the outermost
ring, and 10 different friction values. The friction values for testing
were regularly sampled from [0,2×10−7] (the friction value used in
training was 1×10−7). For each parameter setting, a testing episode
was generated by executing the game with the trained model until
the ball reaches the center of the maze, or the maximum number of
frames is reached, which is 400 for our application.

6.1 Model Diagnosis and Fine-Tuning

In this use case, we demonstrate how DynamicsExplorer is used to
diagnose the model under different parameter settings and guide the
process of fine-tuning to improve the model.

6.1.1 Model Diagnosis

(a)

(b)

Figure 7: Two failure cases identified from the Clusters view: (a)
a stuck case: the ball fails to reach the center and gets stuck in an
earlier ring; and (b) an overshooting case: the ball passes a gate it
would otherwise enter for an optimal control policy.

By exploring the clusters in the Clusters view, we can quickly
identify when and where the model fails. Figure 7 shows the two
main failure cases that we identified. The first case is where the ball
fails to reach the center and gets stuck in an earlier ring, as shown
in Figure 7(a). This can be quickly identified from the PCP (i.e.,
the green band in Figure 7(a)), as the ball moved a relatively short
distance yet uses a large number of frames (the maximum episode
length of 400 in the illustrated case). The second case is that the ball
overshoots, i.e., it passes the gate it is supposed to enter, as shown
in Figure 7(b). This case can be identified from the PCP as well.

We can also correlate the failure cases with the parameters (e.g.,
friction values of the maze material). In the PCP, we show the
following parameters from left to right: cluster for the number of
elements, friction value, distance as the length of the ball trajectory,
frames, and speed, which is the ratio of distance divided by the num-
ber of frames. We find that the friction values are relatively higher
for the stuck cases and relatively lower for the overshooting cases,
compared with the friction value used in training. It is noteworthy
that the initial ball locations are similar for the failure cases. For ex-
ample, for the overshooting cases, the ball mainly starts from the top
right corner of the maze. This was actually a surprise to the domain
expert. While it is understandable that low friction values can speed
up the ball, which could result in overshooting, he expected that it
should be independent of the initial ball location, which is revealed
to be not true, according to DynamicsExplorer.

After the identification of failure cases, we can further compare
them with successful cases in terms of the model activations and
the environment, to get more insights into the cause of the failures.
Such comparisons are needed when troubleshooting the transfer of
the simulation-based model to different real environments. Figure 8
shows the comparison between an overshooting case (Figure 8(a))
and a non-overshooting case (Figure 8(b)) starting from similar
initial locations. The comparison is within a small time window right
before the overshooting. After aligning the two cases based on the
sub-trajectories, we can see that the maze has more tilting towards
the right in the non-overshooting case after frame 83 compared with
the overshooting case, as shown in Figure 8(c) and (d). The reason
is that the overshooting case takes one more X+ action (red action
in Figure 8(a)) compared with the non-overshooting case.

(a) (b)

(c)

0.0
0.3
0.7
1.0

-0.3
-0.7
-1.0

(d)

Figure 8: (Best viewed electronically) Comparison between an over-
shooting case (a) and a non-overshooting case (b) starting from
similar initial ball locations. The differences between the two cases
in terms of the hidden states and the environment are shown in (c).
A zoomed in view of the difference circled in (c) is shown in (d).

Figure 9: Clusters view for the testing runs generated from the
fine-tuned model. All tests starting from the top right corner of the
maze go across the nearest gate successfully without overshooting
as shown in the green cluster. Compare to Figure 7(b).

6.1.2 Intelligent Fine-Tuning
Based on the aforementioned findings, the expert can fine tune the
model more efficiently. Taking the overshooting case as an example:
as we observed that the overshooting only happens when the ball
starts from the top right corner of the maze, we can fine tune the
model with the ball location fixed to the top right. The idea is similar
to active learning [3], where a model is trained on data instances
selected according to a certain confidence or failure criteria. After
training for an additional 300 steps, we tested the model with the
same set of friction values and initial ball locations. Figure 9 shows
the Clusters view of the testing runs using the fine-tuned model,
which confirms that the overshooting cases no longer exist. We
also tested fine-tuning the model with random initial ball locations,
which requires around 10,000 more steps to fix the overshooting.

6.2 Understanding Neural Network Hidden States
The ultimate goal for analyzing control policies represented by
neural networks trained in simulation is to be able to efficiently
adapt the control policy to differences in the real world environment.
DynamicsExplorer employs interactive querying and comparison
abilities to allow domain experts to visually investigate LSTM ac-
tivation patterns and to explore their relationship with spatial and
temporal properties in the environment: ball position, maze tilt,
and ball dynamics. In this section, we first compare the activation
patterns of the fine-tuned model with the original model to verify
hypotheses related to the cause of the failure cases. Then, we con-
duct several case studies to shed some light on the general patterns
of the LSTM activations for our application.

6.2.1 Comparison of Models Before and After Fine-Tuning
We compare the model activations before and after fine-tuning, to
gain an understanding about which channels were changed by the
fine-tuning that fixed the overshooting issue. We hope that eventually

(a) (b)

(c)

Figure 10: Comparison of the models before and after fine-tuning.
(a) Episode with overshooting before fine-tuning. (b) Episode with-
out overshooting after fine-tuning (using the same friction value and
initial ball location as (a)). (c) Comparison of hidden states and
environment of (a) and (b) of the selected time interval.

(a) (b)

Figure 11: (Best viewed electronically) Sub-episode of the overshoot-
ing case in Figure 10. (a) Trajectory of the sub-episode. (b) LSTM
hidden states of the sub-episode. Here we select the PCs where the
overshooting case differs significantly from the non-overshooting
case.

experts could adjust channels directly with no, or only minimal, fine-
tuning. By combining the episodes of the two models in Section 6.1,
we can compare their behaviors and LSTM hidden states.

To compare the LSTM hidden states before and after fine-tuning,
we first select an episode with overshooting. Figure 10 (a) shows a
trajectory from the original model where the part before overshoot-
ing is selected. It is colored based on the series of actions. By using
this sub-trajectory to query, we can find the episode with the same
initial ball location and friction values tested with the fine-tuned
model, which can successfully turn the ball without overshooting
as shown in Figure 10(b). Figure10(c) shows the difference in the
LSTM activation sequences leading up to the divergent results. The
difference heatmap indicates that the activations are very similar
until just before the ball overshoots, after which several PCs diverge
in value (darker colors on the right in Figure 10(c).

Next, we shrink the time window of the trajectory of Figure 10(a)
according to where the LSTM hidden states start to deviate towards
the right-hand side of Figure 10(c). The sub-trajectory is shown
in Figure 11(a). We then select the PCs where the difference in
Figure 10(c) is above a threshold. The selected PC channels are
shown in green in Figure 11(b). Finally, we query all episodes with
similar hidden state patterns in the selected PCs and the time interval
to verify whether these PCs indeed contribute to the overshooting.
Figure 12 shows the six most similar episodes, all of which were

Figure 12: Query results of the selected PCs in Figure 11(b), which
shows the six episodes with most similar activation values of selected
PCs within the time range. In all of these 6 episodes, the ball
overshoots at the same gate.

Match:5.0Threshold: Episode View SaveLSTMTrajectoryHidden State Max Action X+ X- Y+ Y- No Action

0 9 18 27 36 45 54 63 72 81 90 99 108 117 126

15 16 17 18 19 20 21 22 23 24

x+ x-
y+ y-
no action

3.2
2.1
1.1
0.0
-1.1
-2.1
-3.2

(a)
2.0
1.3
0.7
0.0
-0.7
-1.3
-2.0

(b) (c) (d)

Figure 13: (Best viewed electronically) Comparing LSTM hidden
states related to similar action sequences at different locations. (a)
The episode view of a long sequence of action (Y+) in the outer most
ring. While the actions are the same, the heatmap shows that the
activation of several PC are changing. (b) The last 4 time steps of
(a). (c) The sub-episode that is most similar (b) when using the 2nd
PC from the top to query. (d) The difference of the PC between (b)
and (c) where the rows with green color means the PC have higher
values on (b) than on (c).

trained by the model before fine-tuning, and overshoot the ball near
the same gate. Based on this finding, experts can confirm that the
hidden state pattern did contribute to the overshooting, which was
fixed after fine-tuning. In the future, we hope that experts can further
study how to directly adjust the LSTM hidden states to avoid such
problems.

6.2.2 Relating LSTM Channels to the Environment
As demonstrated in [23], LSTM channel activations correlate with
concepts of the task it was trained on. In this section we describe
how we use DynamicsExplorer to investigate if we can determine
such channel correlations for our robot task as well.

We analyze the trajectory shown in Figure 13(a). The selected
sub-trajectory consists of all Y+ (orange) tilt actions. The heatmap
on the right shows, as expected, that as the ball position and maze
tilt change, so do the PC activations, and clearly some more than
others. We want to investigate whether certain PC channels correlate
with ball position, maze tilt, or both.

We first narrow the sub-trajectory to four time steps, as shown by

Figure 14: (Best viewed electronically) The most similar eight sub-
episodes by using the 2 PCs with darkest green colors (highlighted
by the black rectangles) of Figure 13(d) to query.

the black rectangle in Figure 13(a). The corresponding sub-trajectory
is shown in Figure 13(b). We then query with individual PCs, for
which the change in activations is relatively large, e.g., the second
PC in the heatmap. With single PC selections we obtain matches
which physically have little in common with the sub-trajectory in Fig-
ure 13(b), as ball location and maze tilt are very different. One such
result is shown in Figure 13(c), where the ball is in a different loca-
tion in the maze. However, the action sequence in this example is the
same as the sub-trajectory we selected. We use DynamicsExplorer
to investigate how the PCs of these sub-trajectories differ from each
other. The heatmap of this difference is shown in Figure 13(d). Here,
PCs with green colors have higher activation on the sub-trajectory
of Figure 13(b) compared to the sub-trajectory of Figure 13(c), and
a red color denotes lower activation. We select PCs with activation
difference above some threshold, marked by the black rectangles
in Figure 13(d). Using these two PCs to query, we obtain eight
sub-trajectories (shown in Figure 14) with the same action sequence
and ball locations as in Figure 13(a). This indicates that these two
PCs are highly correlated to ball location and maze tilt near that
particular gate. Although we could determine PCs which correlate
with a particular ball location and maze tilt using DynamicsExplorer,
we have not yet been able to generalize this across the maze.

Match:5.0Threshold: Episode View SaveLSTMTrajectoryHidden State Max Action X+ X- Y+ Y- No Action

0 9 18 27 36 45 54 63 72 81 90 99 108 117 126

21 22 23 24

x+ x-
y+ y-
no action

3.2
2.1
1.1
0.0
-1.1
-2.1
-3.2

Figure 15: Episode view of the episode of Figure 13(b) where the
top heatmap shows the contribution to the action Y+ over time. Com-
pared to the hidden states values in Figure 13(a), the contributions
to an action suppresses non-relevant PCs.

To help further investigate, DynamicsExplorer also shows the
contribution to different actions. Figure 15, for instance, shows the
contribution to the action Y+ of the episode of Figure 13(b). As is
evident from the figure, not all high activations in the hidden state
contribute significantly to the final actions, Y+ in this case. The
bottom-right heatmap shows the same sub-episode of Figure 13(b).
The PCs with high contribution to Y+ (shown by the green bounding
boxes) are actually the two PCs we found in 13(d). This finding first
confirms that these two PCs are highly correlated to ball location
and maze tilt near that particular gate. In addition, it also indicates

that these two PCs indeed contribute to the final action.
We have shown that DynamicsExplorer is a step towards un-

derstanding LSTM encodings for complex tasks. More interactive
examples can be seen in the supplementary video. However, in order
to fully understand LSTM encodings, DynamicsExplorer needs to
be further extended. We will elaborate on this in the next section.

7 DISCUSSION AND FUTURE WORK

In this section, we discuss the domain expert’s feedback, limitations
of the current system, and potential future work to address them.

Feedback from the Domain Expert Overall, the expert be-
lieved that the tool provides a very powerful ability to diagnose
the model by exploring and comparing episodes, particularly at the
LSTM pattern level. This ability allows the expert to make Sim2Real
for RL more efficient, by exploring problem cases, targeting them for
fine-tuning, and validation of fine-tuning. Furthermore, the ability
to compare sub-trajectories is a good start to understand the black
box of RL policies represented by neural networks. Meanwhile, the
expert also mentioned that the current analysis tool has limitations,
described next.

Limitations The main limitation of the current system is in
generalizing the relations between LSTM hidden states and the
change of the environment. Though we are able to explore and
identify LSTM patterns that relate to certain ball locations and tilt of
the maze, it still relies on the expert to search the patterns to query.
It will be ideal if the tool can summarize salient LSTM patterns,
allowing the expert to effectively overview which LSTM channel
encodes what information in the environment. Another limitation
of the current tool is that it does not account for how the long-term
memory of the LSTM, i.e., the cell state, relates to updates to the
hidden states.

Deeper understanding of LSTM Based on the limitations
outlined above, there are several directions we would like to ex-
plore in the future. First, we will continue to utilize our existing
DynamicsExplorer system to find associations between hidden state
patterns, environment states, and actions. This remains a challenging
problem, however, and we expect to experiment with other problem
domains that might be more amenable to human-comprehensible
mappings between the domain environment and internal states of the
LSTM. Moreover, based on the understanding of the LSTM patterns,
we would like to directly manipulate the hidden state patterns to
solve the failure cases, especially in the real-world environment.
In addition, we would like to extend the study to the cell state of
the LSTM to analyze the long-term memory of the LSTM. One
possible extension of the current analysis tool is to incorporate the
method presented in [11], and provide the user with an understand-
ing of which previous frames contribute to what degree to the current
decision.

Troubleshooting on real robots Besides extending the capac-
ity to understand and to even manipulate the LSTM layers, another
goal is using DynamicsExplorer to understand why the transferring
to real robots can fail. While the relevant parameter values of real
robots could be unknown, since the parameter values are fixed, we
could still compare the episodes on real robots before and after the
fine-tuning. Like the use case in Section 6.2.1, we believe that it is
feasible to locate the LSTM channels adjusted by the fine-tuning for
real robots.

Extra applications Meanwhile, we would like to further gen-
eralize the current prototype to other tasks. While our current pro-
totype was original designed for specific ball-in-the-maze robot
control tasks, several components are independent to this applica-
tion, including the PCP in the Cluster view to explore the parameter
space, the Episode view to overview the neural activation and to

select activation patterns of interest, the matching of temporal activa-
tion patterns, and the comparison of different episodes with similar
prefixes. These components can be applied to other tasks that utilize
deep neural networks to make a sequence of decisions.

8 CONCLUSION

Our research with DynamicsExplorer was motivated by the need
to open up the black box of RL models for problems having a
significant dynamics component. We focused on a robotics control
domain as our test case, and we chose to utilize an LSTM layer in
our architecture to model the dynamics of the problem. We noted
that the development of RL models for robotics control requires
heavy use of simulation for training and that there are inevitably
problems with transferring the trained system to the real world,
where dynamics aspects will no doubt differ in subtle and significant
ways from the simulator. Then our goal became how to gain insight
into the behavior of the trained model to improve its performance.
Such a goal requires understanding the relationships between the
environment and the activations of the model.

Given this goal, we proposed a set of requirements and devel-
oped a tool we call DynamicsExplorer. This visual analytics sys-
tem contains several innovations. Our use cases presented some
of our experiences so far in utilizing DynamicsExplorer. We were
able to discover failure instances in our dataset through visualiza-
tions of parallel coordinates as well as the trajectory variability plot.
We confirmed these cases by utilizing the Episode View. For this
particular problem, we were able to fine-tune the model with the
guidance of DynamicsExplorer. Our second use case attempted to
understand the hidden states of LSTM, which is critical when trans-
ferring the simulator-trained system to real environments. Using
DynamicsExplorer we could demonstrate that certain LSTM channel
combinations correlate with ball location and maze tilt, but only for
specific trajectories, rather than in general.

ACKNOWLEDGMENTS

The authors wish to thank the anonymous reviewers for their con-
structive comments. Wenbin He was supported in part by US De-
partment of Energy Los Alamos National Laboratory contract 47145
and UT-Battelle LLC contract 4000159447 program manager Laura
Biven.

REFERENCES

[1] J. Choo and S. Liu. Visual analytics for explainable deep learning.
IEEE Computer Graphics and Applications, 38(4):84–92, 2018.

[2] I. Corouge, S. Gouttard, and G. Gerig. Towards a shape model of
white matter fiber bundles using diffusion tensor MRI. In Proceedings
of 2004 IEEE International Symposium on Biomedical Imaging, pp.
344–347 Vol. 1, 2004.

[3] S. Das, W. Wong, T. Dietterich, A. Fern, and A. Emmott. Incorporating
expert feedback into active anomaly discovery. In ICDM ’16: Proceed-
ings of IEEE International Conference on Data Mining, pp. 853–858,
2016.

[4] F. Ferstl, K. Bürger, and R. Westermann. Streamline variability plots
for characterizing the uncertainty in vector field ensembles. IEEE
Transactions on Visualization and Computer Graphics, 22(1):767–776,
2016.

[5] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural
Computing, 9(8):1735–1780, 1997.

[6] T. Jaunet, R. Vuillemot, and C. Wolf. DRLViz: Understanding deci-
sions and memory in deep reinforcement learning. arXiv:1909.02982,
2019.

[7] T. Jaunet, R. Vuillemot, and C. Wolf. RLMViz: Interpreting deep
reinforcement learning memory. In Journée Visu 2019, 2019.

[8] M. Kahng, P. Y. Andrews, A. Kalro, and D. H. Chau. Activis: Vi-
sual exploration of industry-scale deep neural network models. IEEE
Transactions on Visualization and Computer Graphics, 24(1):88–97,
2018.

[9] A. Karpathy, J. Johnson, and L. Fei-Fei. Visualizing and understanding
recurrent networks. arXiv:1506.02078, 2015.

[10] T.-Y. Lee and H.-W. Shen. Visualization and exploration of temporal
trend relationships in multivariate time-varying data. IEEE Trans-
actions on Visualization and Computer Graphics, 15(6):1359–1366,
2009.

[11] T.-Y. Lee, J. van Baar, K. Wittenburg, and A. Sullivan. Analysis of the
contribution and temporal dependency of lstm layers for reinforcement
learning tasks. In CVPR ’19 Workshops on Explanable AI, 2019.

[12] J. Li, X. Chen, E. Hovy, and D. Jurafsky. Visualizing and understanding
neural models in NLP. In Proceedings of the 2016 Conference of
the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pp. 681–691, 2016.

[13] M. Liu, J. Shi, K. Cao, J. Zhu, and S. Liu. Analyzing the training pro-
cesses of deep generative models. IEEE Transactions on Visualization
and Computer Graphics, 24(1):77–87, 2018.

[14] M. Liu, J. Shi, Z. Li, C. Li, J. Zhu, and S. Liu. Towards better anal-
ysis of deep convolutional neural networks. IEEE Transactions on
Visualization and Computer Graphics, 23(1):91–100, 2017.

[15] S. Liu, X. Wang, M. Liu, and J. Zhu. Towards better analysis of
machine learning models: A visual analytics perspective. Visual Infor-
matics, 1(1):48–56, 2017.

[16] K. Lu, A. Chaudhuri, T.-Y. Lee, H.-W. Shen, and P. C. Wong. Exploring
vector fields with distribution-based streamline analysis. In PacificVis
’13: Proceedings of IEEE Pacific Visualization Symposium, pp. 257–
264, 2013.

[17] Y. Ming, S. Cao, R. Zhang, Z. Li, Y. Chen, Y. Song, and H. Qu.
Understanding hidden memories of recurrent neural networks. In VAST

’17: Proceedings of IEEE Conference on Visual Analytics Science and
Technology, pp. 13–24, 2017.

[18] P. Mirowski, R. Pascanu, F. Viola, H. Soyer, A. J. Ballard, A. Ban-
ino, M. Denil, R. Goroshin, L. Sifre, K. Kavukcuoglu, D. Kumaran,
and R. Hadsell. Learning to navigate in complex environments.
arXiv:1611.03673, 2016.

[19] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Harley, T. P. Lillicrap,
D. Silver, and K. Kavukcuoglu. Asynchronous methods for deep
reinforcement learning. In ICML, pp. 1928–1937, 2016.

[20] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis. Human-level control through
deep reinforcement learning. Nature, 518(7540):529–533, 2015.

[21] H. Sakoe and S. Chiba. Dynamic programming algorithm optimization
for spoken word recognition. IEEE Transactions on Acoustics, Speech,
and Signal Processing, 26(1):43–49, 1978.

[22] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den
Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner,
I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel,
and D. Hassabis. Mastering the game of Go with deep neural networks
and tree search. Nature, 529:484–503, 2016.

[23] H. Strobelt, S. Gehrmann, H. Pfister, and A. M. Rush. LSTMVis: A
tool for visual analysis of hidden state dynamics in recurrent neural
networks. IEEE Transactions on Visualization and Computer Graphics,
24(1):667–676, 2018.

[24] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for
model-based control. In IROS, pp. 5026–5033, 2012.

[25] J. van Baar, A. Sullivan, R. Cordorel, D. Jha, D. Romeres, and
D. Nikovski. Sim-to-real transfer learning using robustified controllers
in robotic tasks involving complex dynamics. arXiv:1809.04720, 2018.

[26] L. van der Maaten and G. Hinton. Visualizing data using t-SNE.
Journal of Machine Learning Research, 9:2579–2605, 2008.

[27] J. Wang, L. Gou, H.-W. Shen, and H. Yang. DQNViz: A visual
analytics approach to understand deep Q-networks. IEEE Transactions
on Visualization and Computer Graphics, 25(1):288–298, 2019.

[28] J. Wang, L. Gou, H. Yang, and H. Shen. GANViz: A visual analytics
approach to understand the adversarial game. IEEE Transactions on
Visualization and Computer Graphics, 24(6):1905–1917, 2018.

[29] T. Zahavy, N. B. Zrihem, and S. Mannor. Graying the black box:
Understanding DQNs. In ICML, pp. 1899–1908, 2016.

	Title Page
	page 2

	/projects/www/html/my/publications/docs/TR2020-011.pdf
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10

