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Abstract
We propose a trust region method for policy optimization that employs QuasiNewton approx-
imation for the Hessian, called Quasi-Newton Trust Region Policy Optimization (QNTRPO).
Gradient descent is the de facto algorithm for reinforcement learning tasks with continuous
controls. The algorithm has achieved state-of-the-art performance when used in reinforce-
ment learning across a wide range of tasks. However, the algorithm suffers from a number of
drawbacks including: lack of stepsize selection criterion, and slow convergence. We investi-
gate the use of a trust region method using dogleg step and a Quasi-Newton approximation
for the Hessian for policy optimization. We demonstrate through numerical experiments over
a wide range of challenging continuous control tasks that our particular choice is efficient in
terms of number of samples and improves performance
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Abstract

We propose a trust region method for policy optimization that employs Quasi-
Newton approximation for the Hessian, called Quasi-Newton Trust Region Policy
Optimization (QNTRPO). Gradient descent is the de facto algorithm for rein-
forcement learning tasks with continuous controls. The algorithm has achieved
state-of-the-art performance when used in reinforcement learning across a wide
range of tasks. However, the algorithm suffers from a number of drawbacks includ-
ing: lack of stepsize selection criterion, and slow convergence. We investigate the
use of a trust region method using dogleg step and a Quasi-Newton approximation
for the Hessian for policy optimization. We demonstrate through numerical experi-
ments over a wide range of challenging continuous control tasks that our particular
choice is efficient in terms of number of samples and improves performance.

1 Introduction

Reinforcement Learning (RL) is a learning framework that handles sequential decision-making
problems, wherein an ‘agent’ or decision maker learns a policy to optimize a long-term reward by
interacting with the (unknown) environment. At each step, an RL agent obtains evaluative feed-
back (called reward or cost) about the performance of its action, allowing it to improve (maximize
or minimize) the performance of subsequent actions Sutton and Barto [2018]. The Trust Region
Policy Optimization (TRPO) has been proposed to provide monotonic improvement of policy perfor-
mance Schulman et al. [2015a]. TRPO relies on a linear model of the objective function and quadratic
model of the constraints to determine a candidate search direction. Even though a theoretically
justified trust region radius is derived such a radius cannot be computed and hence, linesearch is
employed for obtaining a stepsize that ensures progress to a solution. Consequently, TRPO is a scaled
gradient descent algorithm and is not a trust region algorithm as the name suggests. More impor-
tantly, TRPO does not inherit the flexibility and convergence guarantees provided by the trust region
framework Nocedal and Wright [2006]. As a consequence, the impact of trust region algorithms have
not been fully investigated in the context of policy optimization.

Our objective in this work is to show that a classical trust region method in conjunction with quadratic
model of the objective addresses the drawbacks of TRPO. It is well known that incorporating curvature
information of the objective function (i.e. quadratic approximation) allows for rapid convergence
close to a solution. Far from a solution, the curvature information should be incorporated in a
manner that ensures the search direction improves on the reduction obtained by a linear model. We
propose the Quasi-Newton Trust Region Policy Optimization (QNTRPO) which uses a dogleg method
for computing the step, i.e. both the search direction and stepsize are determined jointly1. The
Quasi-Newton (QN) method allows for incorporating curvature information by approximating the
Hessian of the objective without the need for computing exact second derivatives. In particular, we

1Codes for the proposed method could be downloaded from http://www.merl.com/research/
?research=license-request&sw=QNTRPO
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employ the classical BFGS approximation Nocedal and Wright [2006]. The dogleg method is well
known to produce at least as much reduction obtained using a linear model Nocedal and Wright
[2006], thus ensuring that QNTRPO does at least as well as the TRPO. The choice of QN method
and search direction are chosen to ensure that global convergence properties are retained and the
computational cost is comparable to that of TRPO. We want to investigate if QNTRPO, which has a
different step from TRPO, can

1. accelerate the convergence to an optimal policy, and
2. achieve better performance in terms of average reward.

We test the proposed method on several challenging locomotion tasks for simulated robots in the
OpenAI Gym environment. We compare the results against the original TRPO algorithm and show
that we can consistently achieve better learning rate as well as performance.

2 Background

We first introduce notation and summarize the standard policy gradient framework for RL and the
TRPO problem.

2.1 Notation

We address policy learning in continuous/discrete action spaces. We consider an infinite horizon
Markov decision process (MDP) defined by the tuple (S,A, P, r, γ), where the state space S is
continuous, and the unknown state transition probability P : S × S × A → [0, 1] represents the
probability density of the next state st+1 ∈ S given the current state st ∈ S and action at ∈ A and γ
is the standard discount factor. The environment emits a reward r : S ×A → R on each transition.

Let π denote a stochastic policy π : S × A → [0, 1], and let η(π) denote the expected discounted
reward:

η(π) = Es0,a0,...
[ ∞∑
t=0

γtr(st)

]
, where

s0 ∼ ρ0(s0), at ∼ π(at|st), st+1 ∼ P (st+1|st, at).

where, ρ0 is the state distribution of the initial state s0. Then, we use the standard definition of the
state-action value function Qπ , the state value function Vπ , and the advantage function Aπ:

Qπ(st, at) = Est+1,at+1,...

[ ∞∑
l=0

γlr(st+l)

]
,

Vπ(st) = Eat,st+1,...

[ ∞∑
l=0

γlr(st+l)

]
.

Aπ(s, a) = Qπ(s, a)− Vπ(s)

In Kakade and Langford [2002], authors derived an expression for the expected return of the another
policy π̃ in terms of advantage over π, accumulated over timesteps:

η(π̃) = η(π) + Es0,a0,...,∼π̃
[ ∞∑
t=0

γtAπ(st, at)

]
(1)

= η(π) +
∑
s
ρπ̃(s)

∑
a
π̃(a|s)Aπ(s, a)

A local approximation to η(π̃) can then be obtained by making an approximation of the state-visitation
frequency using the policy π which is expressed as

Lπ(π̃) = η(π) +
∑
s

ρπ(s)
∑
a

π̃(a|s)Aπ(s, a).

In Schulman et al. [2015a], the authors present an algorithm to maximize Lπ(π̃) using a constrained
optimization approach. For simplicity, we denote Lπ(π̃) as Lθold(θ), where θ represents the policy
parameters.
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2.2 Trust Region Policy Optimization (TRPO)

In this section, we first describe the original TRPO problem and then we present our proposed
method to contrast the difference in the optimization techniques. Using several simplifications to the
conservative iteration proposed in Kakade and Langford [2002], authors in Schulman et al. [2015a]
proposed a practical algorithm for solving the policy gradient problem using generalized advantage
estimation Schulman et al. [2015b]. In the TRPO, the following constrained problem is solved at
every iteration:

maximize Lθold(θ) subject to D̄KL(θold, θ) ≤ δ
where Lθold(θ) is the following term.

Lθold(θ) =
∑
s

ρθold(s)
∑
a

πθ(a|s)Aπθold
(s, a)

For simplicity of notation, we will denote Lθold(θ) as L(θ) in the following text. The optimization
algorithm in TRPO works in two steps: (1) compute a search direction, using a linear model of
the objective and quadratic model to the constraint; and (2) perform a line search in that direction,
ensuring that we improve the nonlinear objective while satisfying the nonlinear constraint. The search
direction in TRPO and its variants is ∆θ = αF−1g where g = ∇L(θ) is gradient of L(θ) evaluated at
θold and F is the Fisher information matrix, i.e., the quadratic model to the KL divergence constraint
D̄KL(θold, θ) = 1

2 (θ − θold)TF (θ − θold) and F is the Hessian of the KL divergence estimation
evaluated at θold.

In contrast, the proposed algorithm approximates the objective by a quadratic model and uses the
Dogleg method Nocedal and Wright [2006] to compute a step. The Dogleg method smoothly
transitions between the scaled gradient step and a Quasi-Newton step, which is the unconstrained
minimizer of the quadratic model. Thus, the step automatically changes direction depending on the
size of the trust region. The size of the trust region is modified according to the accuracy of the
quadratic model to ensure global convergence of the algorithm.

3 Quasi-Newton Trust Region Method (QNTRM)

QNTRM has three distinctive elements that sets it apart from TRPO. First, the use of a quadratic
approximation for the objective via a Quasi-Newton approximation of the Hessian. Second, the
Dogleg method that defines the step. Finally, the adaptive change of the stepsize through the classical
trust region framework. We describe each of these in the following. Psuedo-codes for the algorithms
are provided in the appendix. In the rest of the paper, let f(θ) = −L(θ) so that maximization of
L(θ) can be equivalently expressed as minimization of f(θ). We use θk to refer to the value of the
parameters at the k-th iterate of the algorithm. For sake of brevity, fk denotes f(θk), ∇fk denotes
∇f(θk) and ∇2fk denotes ∇2f(θk).

3.1 Quadratic Approximation via BFGS

QNTRM approximates the objective using a quadratic model fqk (θ) defined as

fqk (θ) = fk +∇fTk (θ − θk) +
1

2
(θ − θk)TBk(θ − θk)

where Bk ≈ ∇2fk is an approximation to the Hessian of f at the point θk. We employ the BFGS
approximation Nocedal and Wright [2006] to obtain Bk. Starting with an initial symmetric positive
definite matrix B0, the approximation Bk+1 for k ≥ 0 is updated at each iteration of the algorithm
using the step sk and yk = ∇f(θk + sk) − ∇fk is a difference of the gradients of f along the
step. The update Bk+1 is the smallest update (in Frobenius norm ‖B − Bk‖F ) to Bk such that
Bk+1sk = yk (i.e. the secant condition holds), and Bk+1 is symmetric positive definite, i.e.

Bk+1 = arg min
B
‖B −Bk‖F subject to Bsk = yk, B = BT .

The above minimization can be solved analytically Nocedal and Wright [2006] and the update step is

Bk+1 = Bk −
Bksks

T
kBk

sTkBksk
+
yky

T
k

yTk sk
(2)
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Observe the effort involved in performing the update is quite minimal. The above update does not
enforce positive definiteness of Bk+1. By recasting (2) after some algebraic manipulation as

Bk+1 =

(
I − 1

sTkBksk
Bksks

T
k

)
Bk

(
I − 1

sTkBksk
sks

T
kBk

)
+
yky

T
k

yTk sk

it is easy to see that Bk+1 is positive definite as long as yTk sk > 0.

3.2 Dogleg Method

The search direction in QNTRM ∆θk is computed by approximately solving

min
∆θ

fqk (θk + ∆θ) subject to (∆θ)TFk(∆θ) ≤ δk

i.e. minimizing the quadratic model of the objective subject to the KL-divergence constraint. The
above problem is only solved approximately since the goal is only to produce a search direction ∆θk
that furthers the overall objective of minimizing f(θ) at moderate computational cost. However, the
search direction ∆θk should incorporate both the curvature and attain sufficient progress towards
solution, in fact at least as much progress as the step in TRPO. The Dogleg method does precisely
this by combining the scaled gradient direction ∆θGDk = −βkF−1

k ∇fk and the QN direction
∆θQNk = −B−1

k ∇fk. The search direction ∆θDLk is obtained using Algorithm 1.

The algorithm first computes the QN direction ∆θQNk and accepts it if the trust region constraint
defined by the KL-divergence holds (Step 4). If not the algorithm computes the scaled gradient
direction (Step 5) and a stepsize βk so as to minimize the quadratic model, i.e.

βk =
∇fTk F

−1
k ∇fk

(F−1
k ∇fk)TBk(F−1

k ∇fk)
. (3)

Unlike the TRPO, observe that due to the curvature in the objective we can now define an optimal
stepsize for the gradient direction. If the gradient direction scaled by the optimal stepsize exceeds
the trust region then it is further scaled back until the trust region constraint is satisfied and accepted
(Step 7). If neither of the above hold then the direction is obtained as a convex combination of the two
directions ∆θ(τk) := (∆θGDk + τk(∆θQNk − θGDk )). This is the Dogleg direction. The parameter τk
is chosen so that the direction ∆θ(τk) satisfies the trust region constraint as an equality (Step 10).
The computation of τk requires finding the roots of a quadratic equation which can be obtained easily.

Note that QNTRM requires the solution of linear system in order to compute B−1
k ∇fk and F−1

k ∇fk.
Both of these can be accomplished by the Conjugate Gradient (CG) method since Bk, Fk are both
positive definite. Thus, the computation QNTRM differs from TRPO by an extra CG solve and
hence, comparable in computational complexity. More details about the derivation of the Dogleg step
could be found in Jha et al. [2019].

3.3 Trust Region Algorithm

QNTRM combines the curvature information from QN approximation and Dogleg step within the
framework of the classical trust region algorithm. The algorithm is provided in Algorithm 2 and
incorporates safeguards to ensure that Bk’s are all positive definite. At each iteration of the algorithm,
a step ∆θDLk is computed using Algorithm 1 (Step 3). The trust region algorithm accepts or rejects
the step based on a measure of how well the quadratic model approximates the function f along the
step ∆θDLk . We use as measure the ratio of the actual decrease in the objective and the decrease
that is predicted by the quadratic model (Step 4). If this ratio νk is close to or larger than 1 then
the step computed using the quadratic model provides a decrease in f that is comparable or much
better than predicted by the model. The algorithm uses this as an indication that the quadratic model
approximates f well. Accordingly, if the ratio (Step 4) is larger than a threshold (ν), the parameters
are updated (Step 6). If in addition, the ratio is larger than ν and ∆θk satisfies the trust region size as
an equality then the size of the trust region is increased in the next iteration (Step 8). This condition
indicates that the quadratic model matches the objective f with high accuracy and that the progress is
being impeded by the size of the trust region. Hence, the algorithm increases the trust region for the
next iteration. With the increased trust region size the algorithm promotes the possible acceptance of
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a direction other than the scaled gradient direction. On the other hand, if the ratio is below ν then the
computed direction is rejected (Step 11) and the size of the trust region is decreased (Step 12). This
reflects the situation that the quadratic model does not the capture the objective variation well. Note
that as the size of the trust region decreases the performance of the algorithm mirrors that of TRPO
very closely. Thus, QNTRM is naturally designed to be no worse than the TRPO and often surpass
TRPO’s performance whenever the quadratic model approximates the objective function well. Finally,
we update the QN approximation whenever the sTk yk is greater than a minimum threshold. This
ensures that the matrices Bk are all positive definite (Step 16). Note that this safeguard is necessary
since the Dogleg step cannot be designed to ensure that sTk yk > 0.

4 Quasi-Newton Trust Region Policy Optimization (QNTRPO)

QNTRPO is the trust region algorithm that we propose in this paper for policy optimization, The
algorithm differs from TRPO in the step that is computed at every iteration of policy iteration. For
completeness of the paper, it is presented as an Algorithm 3. It is noted that the only difference
between QNTRPO and TRPO is the way the trust region optimization problem is solved (see line
4 in Algorithm 3). It is noted that in the original TRPO formulation, the line 4 in Algorithm 3 is
performed using the scaled gradient method as discussed earlier. This is the major difference between
the proposed and the algorithm proposed in TRPO. Note that QNTRM is an iterative procedure and
that the step for every iteration of Algorithm 3 is computed by iterating over K steps of QNTRM
(see Algorithm 2).

5 Experimental Results

In this section, we present experimental results for policy optimization using several different
environments for continuous control from the openAI Gym benchmark Brockman et al. [2016]. In
these experiments, we try to answer the following questions:

1. Can QNTRPO achieve better learning rate (sample efficiency) than TRPO consistently over
a range of tasks?

2. Can QNTRPO achieve better performance than TRPO over a range of tasks in terms of
average reward?

In the following text, we try to answer these two questions by evaluating our algorithm on several
continuous control tasks. In particular, we investigate and present results on four different continuous
control environments in Mujoco physics simulator Todorov et al. [2012]. We implement four
locomotion tasks of varying dynamics and difficulty: Humanoid Tassa et al. [2012], Duan et al.
[2016], Half-Cheetah Heess et al. [2015], Walker Levine and Koltun [2013] and Hopper Schulman
et al. [2015a]. The goal for all these tasks is to move forward as quickly as possible. These tasks
have been proven to be challenging to learn due to the high degrees of freedom of the robots Duan
et al. [2016].

We run both TRPO and QNTRPO for 500 episodes and average all results across three different runs
with different random seeds for the environment initialization. All hyperparameters for the algorithms
– batch size, policy network architecture, step size and the generalized advantage estimation coefficient
(λ) – are identical for both algorithms. As TRPO (and thus QNTRPO ) performs better with bigger
batches, we use a batch size of 15000. In each of these episodes, trajectories are generated for a
maximum length of 2000 and then restarted either if the terminal condition is met or the trajectory
length is satisfied. The network architecture is kept the same across all the tasks. The trust region
radius is chosen to be 0.1 (note that this is the parameter δ̄ in Algorithm 2). At lower trust region
radius both algorithms performed slower and thus the results are not reported here. The discount
factor γ is chosen to be 0.99 and the constant λ for advantage function estimation is chosen to be 0.97.
The parameters for QNTRM were chosen to be the following: the maximum number of iterations K
is 10, ν is chosen 0.75, ν is chosen to be 0.1, ω is 0.3 while ω is 2. The parameter κ is chosen to be
1e− 3 for the BFGS approximation (see Algorithm 2).

Results of our experiments are shown in Figure 1. For all four tasks, we can demonstrate that
QNTRPO can achieve faster learning, and thus better sample efficiency than the original TRPO.
Furthermore, the performance of QNTRPO is also significantly better than TRPO. This is evident

5



(a) Humanoid-v2

(b) HalfCheetah-v2

(c) Hopper-v2

(d) Walker 2d-v2

Figure 1: Results of our method compared against the TRPO method in Schulman et al. [2015a]
compared on four benchmark continuous control environments in OpenAI gym. The plots show the
average batch reward obtained by both methods averaged over 5 different runs.

from the fact that QNTRPO achieves higher rewards than TRPO, which is saturating quite early (see
Hopper and Walker2d tasks, for example). These results show that QNTRPO can calculate a better
step for the constrained optimization problem for policy iteration using QNTRM.

6 Conclusions and Future Work

In this paper, we presented an algorithm for policy iteration using a Quasi-Newton trust region
method. The problem was inspired by the policy optimization problem formulated in Schulman et al.
[2015a] where a linesearch is performed to compute the step size in the direction of steepest descent
using a quadratic model of the constraint. In this paper, we proposed a dogleg method for computing
the step during policy iteration which has theoretical guarantees Nocedal and Wright [2006] of better
performance over the scaled gradient descent method used in Schulman et al. [2015a]. The proposed
method was compared against the original TRPO algorithm in four different continuous control tasks
in Mujoco physics simulator. The proposed algorithm outperformed TRPO in learning speed as well
performance indicating that the proposed method can compute better step for the policy optimization
problem.

Despite the good performance , there are a number of open issues for which we do not have a complete
understanding. We have observed that the maximum trust region radius (δ) plays an important role in
speed of learning. However, choosing this arbitrarily high results in poor convergence. Furthermore,
to achieve monotonic improvement in policy performance, one has to select the trust region radius
very carefully which is undesirable. Furthermore, we would like to test the proposed algorithm on
challenging robotic environments v. Baar et al. [2019], Romeres et al. [2019], Chang et al. [2019].
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7 Appendix

We present three algorithm in the appendix which are part of the proposed method for QNTRPO.
The Dogleg method is a classical trust region algorithm to solve a trust region optimization problem.
The psuedo-code is provided in Algorithm 1. Furthermore, the proposed method also allows us to
increase or decrease the trust region radius depending on how well the quadratic model approximates
the original objective function. The psuedo-code for this is provided in Algorithm‘2.
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Algorithm 1: Dogleg Method
Data: ∇fk, Bk, Fk, δk
Result: Dogleg direction ∆θDLk

1 Compute QN direction ∆θQNk = −B−1
k ∇fk;

2 if (∆θQNk )TFk(∆θQNk ) ≤ δk then
3 return ∆θQNk
4 end
5 Compute Gradient direction ∆θGDk = −βkF−1

k ∇fk where βk is defined in (3);
6 if (∆θGDk )TFk(∆θGDk ) ≥ δk then
7 return

√
δk

(∆θGDk )TFk(∆θGDk )
∆θGDk

8 end
9 Find largest τk ∈ [0, 1] such that ∆θ(τk) := (∆θGDk + τk(∆θQNk − θGDk )) satisfies

(∆θ(τk))TFk(∆θ(τk)) = δk;
10 return (∆θGDk + τk(∆θQNk − θGDk ));

Algorithm 2: Quasi-Newton Trust Region Method (QNTRM)

Data: Parameters of algorithm – 0 < ν < ν < 1, δ ∈ (0, 1), κ ∈ (0, 1), 0 < ω < 1 < ω.
Data: Initial policy parameters – θ0

Data: Convergence tolerance – ε > 0, Limit on iterations K
Result: θ∗

1 Set k = 0;
2 while ‖∇fk‖ > ε and k < K do
3 Compute the Dogleg step ∆θDLk using Algorithm 1;

4 Compute νk =
f(θk+∆θDLk )−f(θk)

fqk (θk+∆θDLk )−fqk (θk)
;

5 if νk ≥ ν then
6 Set θk+1 = θk + ∆θDLk ;
7 if νk ≥ ν and (∆θDLk )TFk(∆θDLk ) = δk then
8 Set δk+1 = min(δ, ωδk);
9 end

10 else
11 Set θk+1 = θk;
12 Set δk+1 = ωδk;
13 end
14 Set sk = ∆θDLk and yk = ∇f(θk + ∆θDLk )−∇f(θk);
15 if sTk yk ≥ κ then
16 Update Bk+1 using (2);
17 else
18 Set Bk+1 = Bk;
19 end
20 Set k = k + 1;
21 end
22 return θ∗ = θk

Algorithm 3: QNTRPO
1 Initialize policy parameters θ0

2 for i = 0, 1, 2, . . . until convergence do
3 Compute all Advantage values Aπθi (s, a) and state-visitation frequency ρθi ;
4 Define the objective function for the episode Lθi(θ) = −f i(θ);
5 Obtain θi+1 using QNTRM to minimize f i(θ) with initial policy parameters θ0 = θi

6 end
7 ;
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