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Abstract

We consider the problem of optimally controlling turbulent buoyancy-driven flows in the built en-
vironment, focusing on a model test case of displacement ventilation with a time-varying heat source.
The flow is modeled using the unsteady Reynolds-averaged equations (URANS). A direct-adjoint-looping
implementation of the nonlinear optimal control problem yields time-varying values of temperature and
velocity of the inlet flow that lead to ‘optimal’ time-averaged temperature relative to appropriate objec-
tive functionals in a region of interest. The resulting dynamics of both ‘filling’ and ‘intruding’ added
layers due to a time-varying source and inlet flow are discussed. The robustness of the optimal solution
is demonstrated. It is found that for large enough values of time horizon the optimal steady solution is
recovered, while for intermediate values a non-trivial deviation from this optimal steady state design is
achieved. The computational framework is flexible, and can be applied to several problems of interest in
optimal design and control of indoor airflow.
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1 Introduction

Modern buildings are a major contributor to energy consumption in North America, largely due to the Heating,
Ventilation and Air Conditioning (HVAC) [1] requirements. It is also evident that indoor airflow greatly affects
occupant comfort, health, and productivity. In the past few decades, the field of architectural fluid dynamics has
seen considerable advances [2] in the form of better theoretical understanding of buoyancy-driven indoor flows,
novel experimental techniques, and advanced numerical methods. There is rising interest in combining these recent
advances with modern optimization and control methods [3] for the purpose of optimal design, and control of flow
in the built environment. This engineering task has the twin goals of maintaining thermal comfort while reducing
energy consumption. The complicated dynamics of airflow within the built environment, and its interaction with
occupants, building, and the exterior, necessitate a systematic approach to accomplish this task.

The adjoint method [4] has long been identified as the method of choice for optimization in fluid mechanics
[5, 6, 7, 8], mostly in the context of shape optimization. In contrast to shape optimization problems, indoor airflow
optimization is aimed at obtaining optimal boundary actuation (either steady or time-varying) that leads to desired
airflow temperature and velocity distribution characteristics in the domain of interest [9]. In particular, designing
and controlling coherent structures in indoor flows to enable ‘localized’ heating and cooling can result in considerable
energy savings by reducing the load [10]. In the past decade, application of systematic optimization and control to
indoor airflow has been gaining attention [11, 12, 13, 14, 15]. A parallel but related recent development is the use of
nonlinear adjoint optimization techniques to find ‘optimal’, i.e. minimal energy, perturbations that lead to turbulence
in canonical flows [16, 17, 18, 19, 20].

In our previous work [21], we formulated and solved a model test-case problem of optimal design to determine
steady inlet velocity and temperature that optimize a certain cost functional related to achieving a desired temperature
distribution in part of a room using the Direct-Adjoint-Looping (DAL) method [17]. That study focused on the fully
turbulent mixed-convection regime, resulting from the presence of a line heat source in addition to forced conditioned
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air from the inlet. Since DNS/LES based numerical optimization is not feasible with reasonable computing resources,
we employed Reynolds-Averaged Navier-Stokes (RANS) models to account for interaction between the mean-flow and
turbulent eddies. The open source software Open Field Operation and Manipulation (OpenFOAM) [22] was used
as the numerical tool to develop our continuous-adjoint based framework. We validated the numerically computed
optimal solutions with those obtained by optimizing experimentally-verified analytical reduced-order models for the
same problem. Such physics-based reduced-order models for indoor ventilation dynamics have been developed for
steady [23] and unsteady [24] natural ventilation, ventilation in the presence of time-varying heat sources [25], exchange
flow between adjacent rooms [26, 27], and general unsteady plume dynamics [28], among other phenomena.

Two different approaches for formulating the adjoint of a solver are popular in the literature, the discrete adjoint
method and the continuous adjoint method. In the discrete adjoint method, the governing equations are discretised,
then transposed with the addition of appropriate source terms in order to arrive at an adjoint code for differentiation
[15]. On the other hand in the continuous adjoint method, the adjoint equations are derived analytically from the
governing equations and then a numerical solution is constructed by discretization of these adjoint equations. The
advantages and disadvantages of these two methods are subject to ongoing research [4] and is not the topic of the
paper. Here we choose the continuous adjoint method due to implementational reasons and the associated flexibility
of our code being straightforward to adapt to a wide range of cost functions.

In this paper, we extend our previous work by formulating and solving a problem of open-loop time-varying
optimal control of the velocity and temperature of the inlet air, for the same model of mixed-convection. As a
concrete example, we study the problem of optimally maintaining a desired temperature distribution in a part of the
room, after a sudden change in strength of the line heat source. The source is assumed to be fixed in the space;
however, the results can be extended to cases where the location of the source is altered, provided that the source
is away from the inlet or the walls. This example serves as a proof-of-concept of the DAL-based optimal control
framework for fully turbulent buoyancy-driven flows with RANS models. The framework we develop has direct
application to several related problems of contemporary interest in control of indoor environment. Such problems
include intelligent scheduling of air-conditioning equipment using prediction of time-varying occupancy or outdoor
conditions, and optimal operation of windows and other openings between various zones, etc.

The performance of a system under open-loop control may degrade greatly under disturbances, hence requiring
real-time sensing and feedback control in maintaining the desired (optimal) conditions. Another motivation for
the current work is to reduce or eliminate the need for real-time feedback control. The optimal control framework
presented here can be adapted to find time-varying open-loop control policies that result in indoor flows that are robust
to disturbances, while possibly being slightly sub-optimal with respect to comfort or energy efficiency criteria (when
compared with steady inlet flow computed in our previous work). Previous results from the field of vibrational control
theory [29], and oscillatory flow control [30] lead us to believe that such policies may have periodic or quasi-periodic
time dependence.

The rest of the paper is organized as follows. In Section 2, we discuss the numerical model for buoyancy-driven
flow with bottom and top vents in the presence of a line heat source of buoyancy. We also compare its transient
response with an experimentally-validated analytical model for the case of sudden change in strength of the source.
In Section 3, we formulate the optimal control problem, and discuss a implementation of the DAL method to solve
this problem. In Section 4, we discuss the results of the optimal control problem, and the dependence of the optimal
control policies on various problem parameters. In Section 5, we provide conclusions and sketch out directions for
future research.

2 Problem Set-up and Numerical Modeling

Two qualitatively different types of ventilation processes can be straightforwardly defined: the emptying filling box,
and forced convection. In the former, the pressure difference between the interior and the exterior of the room drives
the flow. In the latter, the inflow is injected to the domain by use of a mechanical device. In either case the outflow
is governed by the pressure difference between the interior and the outside.

In either ventilation mode, the thermal plume originating from the heat load interacts with the ambient: the
fluid in the vicinity of the heat source rises to the top due to buoyancy forces, and as it ascends, the ambient fluid
is entrained into the plume. This leads to a reduction of temperature within the plume. Once the plume reaches
to the top it spreads out toward the lateral walls and forms a buoyant layer at the top. The continuous process of
entrainment and lateral discharge results in stratification in the upper layer of the domain. Concurrently, the inflow
at the bottom induces an upward flow in the bottom layer. There is a significant difference of temperature between
the upper layer and the lower layer such that a hypothetical horizontal line divides the two layers in the domain. We
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Figure 1: Schematic of the problem of transient flow in case of a) step-up and b) step-down. In panel a) ζo is the scaled
height of the original layer, ζf is the scaled height of the filling layer associated with the ‘stepped-up’ heat load, H and L
are the total height and length of the domain, and ain and aout are the inlet and outlet area respectively. The heat load,
modeled as a thermal plume in the current study, is located at the middle of the bottom boundary, and θo and θf are the
original and filling layer scaled temperature of each layer. In panel b) the scaled height of the intruding layer associated with
the ‘stepped-down’ heat load is ζi with scaled temperature θi, and the possibility of entrainment between the intruding and
original layer is quantified by the scaled entrainment flux qe. θin and Vin are the inlet temperature and velocity, respectively.

refer to the elevation of such a horizontal line as the interface height. The interface height descends until a two-layer
steady state is reached.

In this paper we are interested in the response of the flow to a sudden jump in the heat load. Hence, we assume
initially there is a steady state in the room for a given heat load and at time t = 0. We consider the two cases of
sudden increase and decrease in the heat load, which we refer to as step-up and step-down scenarios, respectively.
Schematics of both scenarios are shown in Fig. 1. In the step-up scenario, there is a filling layer that descends from
the top, and eventually merges with the existing top layer. We refer to such a layer as the ‘filling layer’, and its
nondimensional height is denoted by ζf . In contrast, in the step-down scenario, a new layer emerges at the original
interface height, and is sandwiched between the lower layer and the existing upper layer. We refer to this new layer
as an ‘intruding layer’, and its nondimensional height is denoted by ζi. We allow for entrainment between this layer
and the original layer above it through a scaled entrainment flux qe, as shown in the schematic. It is further assumed
for simplicity that qe is equal to the volume flux of the collapsing relatively dense plume upon arrival at the intruding
layer [25]. In either case, the height of the original layer is denoted by ζo. One approach to model such flows is to
assume temperature is uniform across each layer. We define an appropriately nondimensional scaled temperature θ
in (1) below. Using classical plume equations [31] along with conservation of mass and buoyancy (energy) for each
layer, Bower et al. [25] developed analytical models to describe both these scenarios.

In our previous study [21] we showed that the analytical model is only valid for a certain regime of parameters for
forced ventilation. It was demonstrated that the two nondimensional parameters of inlet volume and momentum flux
represent a phase-diagram for which the analytical model based on thorough mixing of each layer is valid. Hence,
we restrict our comparison to the intermediate regime that is identified by moderate volume and momentum flux at
inlet, which effectively allows for the development of identifiable different layers within the room consistently with
the schematic shown in figure 1. Buoyancy flux F is given by F = gαV q/(ρcp), where ρcp is the heat capacity, and q
is the heat load. We use the filling box time as the scaling for time Tf = SH

CFH1/3 with C as a universal constant for
line plume.

2.1 Governing equations

The flow is governed by Boussinesq equations described below (using Einstein notation)
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with u, p, θ as scaled ensemble-averaged velocity, pressure and temperature, the vertical direction is the second
coordinate direction, and δij is the Kronecker delta. We use the inlet velocity, Vin, height, H, and temperature
deficiency of Ts − Tref with Ts as source temperature, as reference values for velocity, length and temperature
deficiency, respectively. Nondimensional numbers in Equation set 1 are

Re =
VrefLref
νeff

, P e =
VrefLref
κeff

, Ri =
gαV ∆TrefLref

V 2
ref

, (2)

where νeff and κeff are effective viscosity and diffusivity defined below. Also note that in this study we assume
Pr = 0.71, which is the Prandtl number of air at room temperature. For nondimensional time τ = t

Tf
we define the

characteristic time scale as ‘filling time’ whose physical meaning and definition is given below.
Boundary conditions are as follows:

inlet : un = Vin, θ = θin, (ni∂/∂xi)p = 0,

outlet : (ni∂/∂xi)ui = 0, (ni∂/∂xi)θ = 0, p = 0,

wall : u = 0, (ni∂/∂xi)θ = 0, (ni∂/∂xi)p = 0,

heat load : u = 0, θ = θs, (ni∂/∂xi)p = 0,

(3)

where n is the unit vector normal to the surface and un is the normal component of velocity. We consider regimes for
which Ts−T

Ts
�1 so that the Boussinesq approximation is valid and the flow is assumed to be incompressible. We define

the scaled inlet temperature θin =
Tin−Tcomf

Tcomf−Ts
. The initial conditions are a steady solution of the system described

by Eq. 1 with a quiescent environment for a given heat source prior to step change. We define θs =
Ts − Tcomf
Ts(0)− Tcomf

,

where Ts(0) is the initial temperature of heat load. In this study, we adopt the unsteady RANS (URANS) approach,
in which there is a scale separation between the unsteadiness of the mean flow and the turbulence. Using the
Boussinesq hypothesis for turbulence and by assuming a constant turbulent Prandtl number, the closure of the
system of equations, i.e. the computation of Reynolds stress and turbulent heat flux, is reduced to determining νeff ,
for which a standard k − ε closure model is used [32] such that νeff = νt + ν. The turbulent heat flux depends
on turbulent Prandtl number Prt = 0.9, which is assumed to be constant for simplicity and is linearly related to
νt. Finally, the isotropic eddy-diffusivity assumption is implemented to account for the impact of the buoyancy on
turbulence. Hence, for a stable and unstable stratification, there is destruction and production of turbulent kinetic
energy, respectively.

2.2 Details of Numerical Solver

We use OpenFOAM [22], which is based on a finite-volume method [33] with a collocated grid arrangement and
offers object-oriented implementations that suit the employed continuous adjoint formulation (the solver is based on
buoyantBoussinesqPimpleFoam). Pressure and velocity are decoupled using the SIMPLE algorithm [34] technique
in the state/adjoint equations. For the convection terms, second order Gaussian integration is used with the Sweby
limiter [35] to account for propagation of density fronts, and numerical stability. For diffusion, Gaussian integration
with central-differencing-interpolation is used. The advective terms in the energy equation are discretized using the
second order upwind scheme of the van Leer method [36]. The time integration was performed with the implicit
Crank-Nicolson method, which is second-order bounded. The discretized algebraic equations are solved using the
Preconditioned biconjugate gradient (PBiCG) method [37]. The mesh sensitivity analysis is discussed in Section 3.
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Figure 2: Emptying Filling Box: Interface height based on an analytical model (lines) and numerical simulations (symbols)
for: a) step-up of the source (increased F five times); b) step-down of the source (decreased F by a factor of 5). The analytical
model has been experimentally validated for this range of parameters [25].

2.3 Numerical Results: Transient Dynamics for a Step Change in Source Strength

In this section, we discuss numerical results from the transient simulations for cases corresponding to both the
step-up and step-down scenarios. Note that the inlet flow is kept fixed in both cases. We validate our solver by
comparing the results with the experimentally validated mathematical model reported in Bower et al. [25]. The
available experimental data for the emptying filling box problem is numerous [23, 24, 38]; however, there is no
relevant experimental data for the forced ventilation.

In our previous study [21], we validated our numerical approach by comparing the steady state solutions with
corresponding experimental results. In this paper, we are interested in the transient case. Due to similarities of the
underlying physical mechanism, we validate our numerical solver by comparing the transient results of our numerical
solver with the available experimental data for the emptying filling box case.

2.3.1 Validation of Numerical model for Emptying Filling Box

We focus on the transients in the step-down and step-up scenarios. For the step-up and step-down scenarios, we
increased and decreased the buoyancy flux to five times its original value and to 20% of its original value, respectively.
The simulation results are compared with the experimental data reported in Bower et al [25]. The results of this
comparison are shown in Fig. 2. In both cases, the steady state for a given source strength is set as the initial
condition. In the step-up scenario shown in Fig. 2(a), the new descending filling layer merges with the original layer
such that the new upper layer consists of a warmer fluid.

For the step-down case, as shown in Fig. 2(b), the upper layer keeps rising, and after a finite time, it leaves the
room from the top vents. In the meantime, the upper extent of the new intruding layer ascends up to ζi = 0.47 and
then descends until it settles down at the (original) steady state interface height. Overall, there is good agreement
between the numerical results and the experimentally-validated analytical model for both scenarios. In plotting
Fig. 2, we adopt the common practice of defining the interface height as the height at which the the derivative of
temperature with respect to height is a local maximum i.e. ∂T/∂z = 0. In some cases where this was not possible
due to numerical difficulties, we used alternative reasonable definitions such as the height, at the far left-hand side of
the box (away from the plume and the incoming air, say x = 0.05L), for which there is (almost) no vertical motion,
i.e. vy ≈ 0, as is common in the field [24, 25].
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2.3.2 Numerical Results for Forced Ventilation

One major difference between the forced ventilation mode and the interior/exterior exchange flow is that the inlet flow
conditions in the former situation are not governed by the temperature difference, but rather they are independent
variables. Consequently, the steady state interface height in either a step-up or step-down scenario is a function of the
source strength. Fig. 3 shows the results of forced ventilation for both step-up and step-down scenarios. In each case,
the initial state is the steady state based on a source of Ts = 305K. For this simulation, we set the inlet temperature
fixed in time as θin = −0.01. We plot the non-dimensional temperature, where source temperature is set as Ts(0), i.e.
the initial source temperature. As shown in Fig. 3(a) for the step-up case, the new filling layer emerges at the top of
the domain, and pushes the original layer down. In the step-down scenario shown in Fig. 3(b), an intrusion layer is
sandwiched between the rising original layer which is draining through the upper vents, and the lower layer, and, as
expected, there is some entrainment from the original layer into this intruding layer. Finally, we notice that in the
case of the forced ventilation simulation, i.e. for the results shown in Fig. 3, we keep the inlet temperature fixed in
time. In this case, the step-up scenarios result exclusively in filling layers, while the step-down scenarios lead only
to intruding layers. On the other hand, as is shown later in the manuscript, in the case of optimal control for which
the inlet conditions are time-dependent, these two distinct behaviours do not occur, and both filling and intruding
layers may form for either step-up or step-down configurations.

3 Optimal Control Problem : Formulation and Solution Method

In this section, we formally describe the optimal control problem. The region of interest, denoted by Ω, is a rectangular
region that spans the length of the room, and reaches up to a specified height ω, which is assumed to be 0.4H
throughout the paper, without loss of generality, to mimic a typical occupant height in a room. Tcomf denotes the
desired temperature to be maintained in Ω. We set Tref = Tcomf = 300K; however, it should be noted that the
analysis is independent of the specific Tref value. The associated scaled temperature for the desired temperature is
then θcomf = 0.

We define the cost function as

J =

∫
Ω

∫ T
0

[
γT θ(x, y, z, τ)2 + γv

(
v(x, y, z, τ)− vd

)2]
dV dτ (4)

where T is the time window during which the optimal control problem is solved, γT , γv as weighting factors, and vd
as desired velocity. In this paper, we focused on the thermal comfort problem, for which we assumed γT = 1, γv = 0.
Such a cost function measures the discomfort in the region of interest as the deviation of temperature from Tcomf .
The optimal control problem is then stated as

min
vin(τ),θin(τ)

J = J (W,U),

s.t. R(W,U) = 0,
(5)

where W = (u, p, θ) are the state variables, and U is the set of control variables, i.e., U = (Vin, θin). R denotes the
constraints arising from the state governing equations, corresponding to the Boussinesq equations Eq. (1). Additional
constraints may also be implemented with no change in the formulation of Eq. (5).

We formulate the optimal control problem using a Lagrangian L to enforce the Boussinesq equations and con-
straints, as

min
vin(τ),θin(τ)

L = J + 〈P,R〉, (6)

where P = (v, pa, Ta) is the vector of adjoint variables, and we use the notation 〈f, g〉 =
∫ T

0

∫
D fg dV dτ with D

as the whole domain. It should be noted that we identify time-varying inlet conditions that (locally) minimize J .
The adjoint variables are Lagrange multipliers to enforce the state equations Eq. (1). To ensure the (at least local)
optimality of the solution, we enforce δL = δUL+ δWL = 0, where δG denotes variation of a dependent variable G.
We choose the adjoint variables such that δWL = 0. The sensitivity equations with respect to control variables are
then obtained as δL = δUL. This idea is the core of the adjoint method [7, 17, 18] (refer to appendix A for details of
our derivation).
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(a)

(b)

Figure 3: Forced Ventilation: Streamlines of velocity colored by scaled temperature θ for various times τ . a). Step-up scenario
(increased θs two times) b). Step-down scenario (decreased θs by half). The red arrow in the panels i and iv denotes the original
location of the interface, while the black arrow in panel iv denotes the final location of the interface, showing that this interface
moves downwards for the step-up case and upwards for step-down case.
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By enforcing that first order variations with respect to the state variables vanish at optimal solutions, i.e.,
δWL = 0, we obtain the adjoint equations

∂vj
∂xj

= 0,

−∂vi
∂τ

+ vj
∂uj
∂xi
− uj

∂vi
∂xj

+ Ta
∂θ

∂xi
− ∂

∂xj
(

1

Re

∂vi
∂xj

) +
∂pa
∂xi

= 0,

− ∂Ta
∂τ
−Riδi2vi − uj

∂Ta
∂xj
− ∂

∂xj
(

1

Pe

∂Ta
∂xj

) + βθ = 0.

(7)

where β is a function that is unity in the region of interest Ω and 0 elsewhere.
The adjoint boundary conditions are

inlet : v = 0, Ta = 0, (ni∂/∂xi)pa = 0,

outlet : unvt +
1

Re
(ni∂/∂xi)v

t = 0,

Tau
n +

1

Pe
(ni∂/∂xi)Ta = 0,

pa = unvn +
1

Re
(ni∂/∂xi)(v

n),

wall : v = 0, (ni∂/∂xi)Ta = 0, (ni∂/∂xi)pa = 0,

(8)

where vn and vt are the normal and tangential component of adjoint velocity, respectively.
In deriving Eqs. 7 and 8, we use the ‘frozen turbulence’ hypothesis [39]; that is we ignore the time variation of

turbulent eddies while solving the adjoint equations. In other words, the effective viscosity used in adjoint equations
7 is based on the k − ε fields obtained with the forward system of equations 1. An assessment of the validity of this
assumption can be done for a given problem by comparing adjoint sensitivities to those computed using a finite-
difference method. We relegate this comparison to appendix B. We refer the reader to [21] for more detailed study
on this subject.

The sensitivity of the cost function with respect to inlet velocity and temperature, i.e. the control variables, is
obtained as follows.

∇VinJ = pa,in −
1

Re
(ni∂/∂xi)va,in,

∇θinJ =
1

Pe
(ni∂/∂xi)Ta,in,

(9)

where the subscript ‘in’ denotes the values at the inlet.
As shown by Nabi et al. [21], the optimization problem favors unboundedly large velocities at inlet, i.e. vin →∞

with θin = 0, consistent with the analytical model, in the absence of constraint on the energy budget. To avoid such
a nonphysical solution, we enforce an extra constraint on the energy of the incoming flow of the following form:

TinVin = d, (10)

where d is a given constant value of enthalpy flux at the inlet. The sensitivity Eq. 9 subject to constraint Eq. 10 can
be rewritten as

∂L
∂θin

= ∇θinJ −
d

θ2
in

∇VinJ . (11)

In order to update the inlet conditions, we apply a gradient descent method of the form:

θi+1
in = θiin −

∂L
∂θin

i

, (12)

where superscript i denotes the number of iteration.
The optimal control procedure can be summarized as follows:
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1. An initial guess for inlet conditions is chosen such that it satisfies Eq. 10. We refer to such an initial guess as
θ0
in whose impact on the DAL results is discussed below.

2. The forward or ‘direct’ equations are integrated from τ = 0 to τ = T by solving Eq. 1. The flow solutions are
stored at desired time intervals, named ‘checkpoints’. We also evaluate the cost function of Eq. 4.

3. At τ = T , the initial conditions for the adjoint equations 7 are solved backward in time. Since saving all
forward states in memory is not feasible, especially for large T , we use the check-pointing method [17].

4. Once the values for the adjoint variables are obtained at each time, the sensitivities for the constrained optimal
control problem are calculated using Eq. 11

5. The next best values of inlet conditions are then found via gradient descent using Eq. 12.

6. The steps 2-5 are repeated until the convergence criteria for the cost functional is satisfied, i.e. |J
i+1−J i|
J i ≤ ε.

We set the tolerance ε = 1e− 3.

The adjoint equations are also solved using the numerical method described in Section 2.2 for solving the forward
equation. We found that using an upwind and first order method for solving the adjoint equations Eqs. 7 resulted
in inaccurate gradients, and hence those methods were not adopted. Refer to appendix B for further validation of
adjoint equations.

Finally, for mesh sensitivity analysis, we carried out two separate tests for froward and adjoint equations. In case
of the forward simulations, we used the interface height as the monitoring parameter to check the mesh sensitivity
between two coarse mesh of 30,800 elements and refined mesh of 147,630 elements. During the time interval of
t ∈ [0, Tf ], we noticed that the interface height is less than only 3 percent different between the coarse and refined
mesh. For the adjoint equations, on the other hand, sensitivity to the mesh size is much more pronounced, specially
in the control region, i.e. the inlet surface in our case. This is also confirmed from 9 where the normal gradient
of adjoint velocity and temperature is employed to calculate the gradient of the cost function. Hence, we refined
the mesh in particular around the inlet. We have also refined the mesh in the core region of the plume to better
capture the ascending dynamics of the plume and the entrainment process. For the mesh sensitivity analysis of the
adjoint equations we used ∂L

∂θin
defined in Eq. 11. We realized the sensitivity obtained in the coarse mesh leads to

a large error when compared with that of the finite-difference of Eq. 19 introduced in Appendix B. Thus we also
considered several intermediate meshes such that the value of ∂L

∂θin
does not alter more than 5 percent between two

meshes with the refinement ratio of 1.23. Therefore, the refined mesh of the size 147,630 elements is used in the
following DAL simulations, even though much less number of mesh elements are required if only forward simulations
were to be considered. Such computationally demanding behavior of the continuous adjoint method is also observed
in other references (e.g. see [40]). The minimum of y+ is 0.01, the maximum is 3.12, and the average is 0.2837. As
we discussed above, the adjoint method demands a very refined mesh and even though the forward problem could
be simulated with standard wall functions for which 30 < y+ < 300 would have been sufficient such that the first
cell would reside in the log region, we use the viscous sublayer resolution approach for which the first layer can fall
within boundary layer. The Reynolds number for the intermediate regime considered in this study is chosen to make
the resolution of viscous sublayer feasible. For large values of Re, the forced convection becomes dominant and the
two-layer stratification may not exist. In our simulations, for a typical optimization loop we have Tcpu = 4000s. This
is for the mesh of 147630 elements. We ran the case in parallel mode on 10 Intel Xeon CPUs with 2.40GHz speed.
Every DAL iteration loop with checkpointing method requires 3Tcpu clock time and for a typical optimization about
5 DAL iteration loops are needed to reach to convergence.

4 Results and Discussion

We discuss the solution of the optimal control problem for the step up scenario. The initial state is the optimal steady
state solution for θs = (Ts − Tcomf )/(Ts(0)− Tcomf ) = 1 with Ts(0) = 305K. Note that the optimal solution for the
steady-state case is independent of the value chosen as the initial guess of θin, as shown by [21]. At τ = t/Tf = 0 we
increase the source temperature to θs = 2. For all optimization problems considered in this paper, the initial guess
for the inlet temperature is taken to be a uniform value in time, and denoted by θ0

in. The inlet velocity is then found
using the constraint VinTin = d. Fig. 4 shows the results associated with various DAL iterations for calculations
with θ0

in = −0.01 (i.e. optimal inlet for θs = 1). The source is changed to θs = 2 at τ = 0. The time window is
taken to be T = 0.48, i.e. about half of the filling time Tf . As shown in Fig. 4(a), at the first iteration of the DAL
method, the sensitivity values are large. In subsequent iterations shown in Fig. 4(b-d), the sensitivity decreases, and
the time-dependent inlet temperature converges to its optimal structure. Note that at τ = T the initial condition
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Figure 4: Variation with scaled time τ of the inlet temperature (left panels) and sensitivity of the cost
function (right panels) for a DAL method calculation with the initial guess θ0in = −0.01 at iteration: a) 1;
b) 2; c) 3; and d) 10, when convergence has been achieved. Time window is T = 0.48.

for adjoint equations implies ∇TinJ = 0; therefore, for each iteration we have θin(T ) = θ0
in. We found that the cost

function of Eq. (4) drops significantly between the first and final iterations of the DAL method, as expected, such
that it satisfies the convergence criterion.

In the following, we numerically probe the dependence of the optimal inlet time-dependent functional form θoptin ,
and the optimal control cost J opt on both the initial guess of the inlet temperature, i.e. θ0

in, and the time window T .
Robustness of the optimal solution with respect to variations in both the initial guess and the time horizon is clearly
important to obtain an effective optimal control scheme.

4.1 Impact of Initial Guess

Fig. 5 shows the optimal inlet temperature θoptin as a function of time for several different θ0
in ,i.e. initial guesses

values. θ0
in may be the optimal value corresponding to the source strength prior to the step change. For results of Fig.

5, we use θ0
in = −0.01. We tested the robustness of the DAL method to the initial guess by using several different

values for the initial guess θ0
in. For instance, when the source strength is increased, we expect the new optimal

value of inlet temperature to be smaller than the optimal value corresponding to the original heat source strength.
However, to put the robustness of the numerical algorithm to the test, we used positive values of θ0

in as a ‘bad’ initial
guess. The DAL algorithm is still able to find a near-optimal solution. When θ0

in > 0, the inlet temperature becomes
hotter than the lower layer leading to an unstable flow at the inlet, and forms a buoyant plume of its own which may
manifest itself as oscillations in the adjoint variables, and eventually in the optimal solution. Such oscillations can be
eliminated by penalizing the control action, i.e. θin(τ). In terms of applications, providing oscillatory time variation
of temperature or velocity may not be feasible for the device. Alternatively, to smoothen out or to completely remove
such oscillations we use a low-pass filter applied to the sensitivity profile at each DAL method iteration to lessen or
remove the oscillations. The case of θ0

in = 0.2 in Fig 5 is shown with the filter applied.
Figs. 6 and 7 show the evolution of the flow for the first and the last DAL method iteration, respectively, when

θ0
in = −0.2. The first iteration shown in Fig. 6 has the bottom layer at a temperature that is lower that the desired

value. Also, the formation of an intrusion is evident. For the final iteration of Fig. 7, the lower layer temperature
is close to θ = 0, and the height of the interface for most part is close to the top of region of interest, shown with
a dashed box. Similarly, for the first DAL method iteration with initial guess of θ0

in = 0.08 shown Fig. 8, the
bottom layer is hotter than the desired value, and the region of interest is mainly filled with buoyant fluid, with no
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Figure 5: Optimal inlet temperature θoptin as a function of time for various initial guesses of inlet temperature
θ0in. In all cases shown T = 0.48.

well-defined interface. We find that the converged solution in this case is nevertheless essentially identical to the one
for θ0

in = −0.2 shown in Fig. 7.
Hence, we have demonstrated that the DAL method is successful in finding the optimal control that keeps

temperature in the region of interest close to the desired value. The variation of scaled interface height, ζ, with time
is shown in Fig. 9 for the first, and final (converged) DAL method iterations. All the optimal controls exhibit similar
behavior in terms of interface height. For the initial DAL method iterations, the interface height is significantly below
that of the optimal solutions. In fact, for the case where the inlet temperature is too hot, the interface height is
not well-defined (also evident in Fig. 8) and this case is not in the ‘intermediate regime’ identified previously [21].
Up to τ = 0.48, the interface height ζ defined at x = 0.05L becomes almost independent of time in the interval of
0.35 < τ < 0.48; see Fig. 9. Hence, such simulation time seems to be long enough to capture the dynamics of the
bulk properties of the flow such as the interface height.

4.2 Impact of Time Window

In this section we examine the impact of the time horizon T on the optimal control θoptin (τ). In Fig. 10, we plot
θoptin (τ) for three different time horizons, i.e., T = 0.48, 0.96, 1.43, for the initial guess of θ0

in = −0.01 and θs = 2, i.e.
the step-up in the heat source. In each case, there is a sharp gradient near the end of the time horizon to enforce
zero sensitivity at final time.

Also shown in Fig. 10 are steady state optimal solutions. The horizontal lines of θin = −0.01,−0.02 correspond
to steady state optimal inlet values corresponding to θs = 1 and θs = 2, respectively. Note that these solutions
have been validated by comparison with analytical model optimization results in [21]. For shorter time-horizons T ,

the average of θoptin , i.e. θ̄optin =
∫
θ
opt
in dτ

T , is significantly different from both the steady-state results. In particular,

θ̄optin = −0.0122, −0.0186, and −0.0197 for, respectively, T = 0.49, 0.98, and 1.47. For large enough values of T the
optimal control time-average value converges to the steady state value. Therefore, from a practical point of view,
for large times of operation, the steady state results may serve as estimation of the optimal policy whereas for short
time horizons of interest, a non-trivially different profile is expected.

4.3 Impact of the Size of Step Change in Source Strength

Fig. 11(a) shows the optimal control solutions corresponding to different sizes of step-up in source strength. As
expected, colder inlet temperatures are favored for higher source strengths, consistent with steady state results. It
should also be noted that for cases considered in Fig. 11(a), the inlet temperature remains lower than that of the
lower layer, and hence oscillations in optimal inlet temperature are minimal. Fig. 11(b) shows the volumetric cost
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Figure 6: Streamlines of velocity colored by scaled temperature θ for the solution with initial guess of θ0
in = −0.2 for various

times τ . This solution corresponds to the first iteration of the DAL method calculations. The dotted box in each figures shows
the region of interest, and the arrows mark the determined interface location. The red dashed line at τ = 0.16, 0.33, and 0.50
shows the formation of intruding layer.

function, i.e. J ≡
∫

Ω
θ(x, y, z, τ)2dV , as a function of time for θs = 4 and θs = 0.5. We consider two types of control:

the initial DAL method iteration corresponding to the constant in time initial guess θ0
in, and the optimal control

θoptin (τ) from the final DAL method iteration. For the larger value of the step change in the heat source strength, the
difference between the two controls become larger.

4.4 Convergence of the cost functional

For each DAL iteration loop, the cost J can be computed from Eq. 4 at τ = T , i.e. at the end of the simulation. To
demonstrate the convergence of the optimization method, we plot the cost as a function of the number of iterations
in Fig. 12. It can been seen that the cost is reduced significantly, even when the initial guess is significantly different
from the comfortable temperature. Also shown in Fig. 12 is the fact that for various initial guess values, the optimal
cost functional is almost identical, consistent with the results of plot Fig. 5.

5 Conclusions

We have presented a DAL framework for computing optimal control policies in the built environment for the case
of fully turbulent mixed convection flows using RANS models. We have studied the problem of computing controls
to maintain desired temperature optimally in a specified region after the heat source strength is suddenly changed,
resulting in time-varying inlet velocity and temperature.

The numerical simulation model was validated against an experimental data-set available for the case of natural
ventilation. Convergence of the direct-adjoint-looping (DAL) method implementation was studied by varying the
initial guess of the inlet temperature, as well as the time-horizon of the optimal control problem. It was found that
in the long time-horizon limit, the time-averaged optimal control profile resembles the (steady state) optimal design
computed in our previous work [21]. Moreover, our results showed that the clear distinction between step-up leading
to ‘filling’ and step-down leading to ‘intruding’ layers breaks down in the forced ventilation flows that we consider
in this work. In particular, the step-up configuration with time-dependent inlet conditions leads to both filling and
intruding layers. The DAL control algorithm behaves in an analogous fashion for step-down scenarios.

5.1 Practical implications and future work

The framework presented here can be used to compute optimal time-varying inlet control strategies if the time-varying
heat source properties are known in advance. Approximate optimal control strategies for such a case can also be
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Figure 7: Same as Fig. 6 but the solution corresponds to the last (converged) iteration of the DAL method, i.e. the optimal
solution.

computed by linearizing the governing equations, and employing the linear-quadratic (LQR) framework [12]. In such
a formulation, the DAL method can be replaced by an operator Riccati equation, and solved in feedback form using
modern large-scale solvers [41]. It would be interesting to compare and contrast the fully nonlinear DAL method
with the linearized approach, to delineate the cases where nonlinear control clearly outperforms linear control, and
hence is worth the extra computational cost. Practical implementation of feedback control requires estimation of the
full distributed state of the system. Such a task involves building state estimators based on sparse sensing, and is a
topic of intense ongoing research [11, 42]. Furthermore, as shown by Kaye and Hunt for emptying filling boxes, the
extension to multiple non-interacting plumes is straightforward [24].

As mentioned in the introduction, another intended application of the DAL method framework presented here
is to obtain near-optimal open-loop time-periodic (or quasi-periodic) control strategies resulting in flows that are
robust to perturbations. In localized heating and cooling applications in large buildings [10], it is crucial to ensure
that the associated coherent structures are stable to perturbations, such as those from opening of a window, increase
in heating/cooling load, or change in outdoor conditions, etc. This task can benefit from the recent developments
in quantifying the stability of time-varying base flows using the nonlinear adjoint framework [43]. Since one often
has some knowledge of disturbance locations, inlet strategies can be computed using the DAL method that result in
time-varying flows that deviate the least from desired conditions under worst case disturbances. We plan to pursue
this topic in the future.

Using a comprehensive thermal comfort model demands consideration of several parameters in addition to air
temperature such as airflow velocity, relative humidity, clothing of occupants, and even the mindset of occupants.
Quantifying thermal comfort accurately is an ongoing topic of research, see Laftchiev and Nikovski [44]. A detailed
consideration of additional parameters in the optimization process, while theoretically possible within the DAL
framework, is beyond the scope of the present work.

We used the enthalpy flux of Eq. 10 as representative of energy consumption of the HVAC equipment. A more
realistic analysis requires coupling between the building energy systems (BES) and CFD to account for the internal
dynamics of air conditioners, e.g., vapor compression systems [45]. A co-simulation approach that considers the
dynamical model of the air-conditioner in addition to airflow dynamics governed by Eq. 1 will be considered in future
work. This will enable the use of sophisticated performance metrics such as the coefficient of performance (COP) in
the optimization process.

Finally, various techniques can be used to speed up the DAL simulation time. For instance, Hazara et al. [46]
suggested a ‘one-shot’ method for steady optimization of Euler equations, and Guenther et al. [47] used simultaneous
solution of the forward and adjoint equations in the transient flows with appropriate preconditioning. In future,
we aim to adapt and develop a one-shot method for optimization of buoyancy-driven flows. Furthermore, for real-
time control one may use reduced-order modeling approaches such as proper orthogonal decomposition (POD) and
dynamic mode decomposition (DMD) [42].
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Figure 8: Same as Fig. 6 but for initial guess θ0
in = 0.08. This solution corresponds to the first iteration of the DAL method.

Note that there is no identifiable interface with these flow conditions.

Appendix A: Derivation of adjoint equations

The augmented objective functional, i.e. Lagrangian, is

L = J+ < vi,
∂ui
∂τ

+
∂uiuj
∂xj

+
∂pi
∂xi
−Riδi2θ −

∂

∂xj
(

1

Re

∂ui
∂xj

) > +

< pa,−
∂uj
∂xj

> +

< Ta,
∂θ

∂τ
+
∂ujθ

∂xj
− ∂

∂xj
(

1

Pe

∂θ

∂xj
) >

(13)

with < . >=
T∫
0

∫
D dV dτ . The variation of the augmented cost function is

δL = δJ+ < vi,
∂δui
∂τ

+ δuj
∂ui
∂xj

+ uj
∂δui
∂xj

+
∂δpi
∂xi

−Riδi2(δθ)− ∂

∂xj
(

1

Re

∂δuj
∂xj

) > +

< pa,−
∂δuj
∂xj

> +

< Ta,
∂δθ

∂τ
+ δuj

∂θ

∂xj
+ uj

∂δθ

∂xj
− ∂

∂xj
(

1

Pe

∂δθ

∂xj
) > .

(14)

For optimality δL = 0 should be satisfied. Each term can be calculated analytically. Specifically, using vector
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Figure 9: Interface height as a function of time for various cases. The symbols 4 mark the case with fixed
θ0in = −0.2, © mark the case with fixed θ0in = 0.08, while the ∗ mark optimal simulations where the first
iteration has θ0in = −0.2 (black); θ0in = 0.08 (blue) and θ0in = −0.01 (red).

calculus and integration by parts, appropriate Euler-Lagrange equations can be derived. For instance,

< vi,
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(15)

and so on for the other terms. From the space-time integral, the adjoint equations are recovered as

∂vj
∂xj

= 0,

− ∂vi
∂τ

+ vj
∂uj
∂xi
− uj

∂vi
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+ Ta
∂θ
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∂xj
(

1

Pe

∂Ta
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(16)

Setting surface integrals to zero and decomposing these integrals into normal and tangential components, we
obtain
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Figure 10: Optimal inlet profile θoptin as a function of time for various initial values of T . In all cases shown
θ0in = −0.01. The horizontal dotted lines are steady-state solutions.

(a) (b)

Figure 11: a) Time dependence of optimal inlet temperature θoptin for various jumps in the heat load char-
acterized by θs. In all cases shown θ0in = −0.01 and T = 0.48. b) V Time dependence of volumetric cost
function J for θs = 4 for two types of control; constant inlet conditions of the initial guess θ0in (plotted with
dashed lines) and the optimal solution of the DAL method (plotted with solid lines).

(pa − ni
1

Re

∂vn

∂xi
− vnun) = 0,

(ni
1

Re
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∂Ta
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) = 0.

(17)

16



0 5 10

No. iteration

0

1

2

3

4

5
10

-3

in

0
=0.2

in

0
=0.08

in

0
=-0.01

0 5

2.95

2.955

2.96

10
-4

Figure 12: Cost function versus the number of iterations for various initial guesses of inlet temperature θ0in.
The inset figure corresponds to θ0in = −0.01. In all cases shown T = 0.48.

For each boundary we set the above equations to zero and we obtain the appropriate boundary conditions

inlet : v = 0, Ta = 0, (ni∂/∂xi)pa = 0

outlet : unvt +
1

Re
(ni∂/∂xi)v

t = 0,

Tau
n +

1

Pe
(ni∂/∂xi)Ta = 0,

pa = unvn +
1

Re
(ni∂/∂xi)(v

n),

wall : v = 0, (ni∂/∂xi)Ta = 0, (ni∂/∂xi)pa = 0.

(18)

Appendix B: validation of sensitivity

We compare the adjoint-based sensitivities, that have been computed using the frozen-turbulence hypothesis, with
those computed by a finite-difference (FD) method. Referring to the general first-order forward Euler approximation
of a derivative, we obtain

∇VinJ (τ)|FD =
J (Vin + δVin, τ)− J (Vin − δVin, τ)

2δVin
,

∇θinJ (τ)|FD =
J (θin + δθin, τ)− J (θin − δθin, τ)

2δθin
.

(19)

In evaluating Eq. 19, the cost function is calculated as follows at time τ = τ0: for the time 0 < τ < τ0 − δτ0 the
forward Eq. 1 are solved with Vin, θin as boundary conditions at the inlet. For the time period τ0−δτ0 < τ < τ0 +δτ0
the desired perturbation, i.e. δVin or δθin, to inlet boundary conditions are implemented and for the time interval
τo + δτ0 < τ < T the boundary conditions are reset as Vin, θin. The value of δτ0 is chosen to be of the order of a
time step for the forward solution.

Fig. 13 shows the results of such comparison. Overall, the two methods give similar values for sensitivities. This
confirms that our numerical framework is robust, and the assumption of frozen-turbulence in our DAL method does
not introduce errors in the computation of optimization problem. Care was taken to choose optimal values for the
step size in the finite difference evaluation [21]. Briefly speaking, step size is chosen such that the combination of
truncation error and condition error is minimal [48].
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(a)

(b)

Figure 13: Comparison of adjoint-based and FD-based sensitivities for validation of the adjoint method.
Gradients of the cost function J with respect to inlet: a) temperature ∇θinJ ; and b) velocity ∇VinJ are
shown.
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