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Abstract
In this paper, we study the problem of modelfree cooperative real-time optimization in multi-
agent network systems (MAS). Unlike existing adaptive extremum seeking approaches that
presume the satisfaction of a persistence of excitation condition on the agents of the network,
we propose a novel approach that leverages the presence of cooperation and information-
rich data sets in the system. This approach is based on the idea that in MAS with sufficient
communication and information resources, agents can efficiently learn a common cost function
under mild individual excitation requirements by leveraging cooperation. Therefore, our main
result can be seen as a spatiotemporal condition that guarantees model-free optimization in
MAS with agents having homogeneous but unknown cost functions. To solve this model-
free optimization problem, we characterize a class of robust dynamics that can be safely
interconnected with the data-enabled learning mechanism in order to achieve a stable closed-
loop system. A numerical result is presented to illustrate the approach.
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CODES: Cooperative Data-Enabled Extremum Seeking for Multi-Agent
Systems

Jorge. I. Poveda, Kyriakos G. Vamvoudakis, Mouhacine Benosman

Abstract— In this paper, we study the problem of model-
free cooperative real-time optimization in multi-agent network
systems (MAS). Unlike existing adaptive extremum seeking
approaches that presume the satisfaction of a persistence of
excitation condition on the agents of the network, we propose a
novel approach that leverages the presence of cooperation and
information-rich data sets in the system. This approach is based
on the idea that in MAS with sufficient communication and
information resources, agents can efficiently learn a common
cost function under mild individual excitation requirements
by leveraging cooperation. Therefore, our main result can be
seen as a spatiotemporal condition that guarantees model-free
optimization in MAS with agents having homogeneous but
unknown cost functions. To solve this model-free optimization
problem, we characterize a class of robust dynamics that can be
safely interconnected with the data-enabled learning mechanism
in order to achieve a stable closed-loop system. A numerical
result is presented to illustrate the approach.

I. INTRODUCTION

Due to the inherent model uncertainties that emerge in
practical applications, as well as the growing amount of
available data sets in engineering systems, there is an urgent
need to design robust and data-enabled algorithms with
suitable adaptive and learning properties, see for instance
[26], [27], [22], [2], and references therein. In this paper,
we study a specific learning problem in multi-agent systems
(MAS), namely, optimizing a global reward function using
a cooperative data-enabled approach in the context of zero-
order optimization and extremum seeking control (ES). ES
control has emerged as a promising model-free feedback-
based optimization strategy that provides certifiable stability
and robustness properties in applications where the math-
ematical form of the cost function is unknown [18], [20],
[10], [23], [8]. For multi-agent systems, different types of
ES dynamics have been presented in [21], [28], and [19],
to just name a few. ES dynamics based on persistence of
excitation (PE) conditions have been studied in [12], [11],
[7], [25]. A set point-based relaxed PE condition for ES was
presented in [1], and a relaxed memory-based PE condition
for ES in single-agent systems has been recently developed
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in [24]. However, while these approaches have provided
valuable insight, guaranteeing a priori the satisfaction of a
PE condition along the trajectories of a MAS remains a chal-
lenging problem in many practical settings, e.g., network and
wireless control, control of autonomous robots, optimization
of wind farms, etc. Since existing distributed ES approaches
rely entirely on current (online) measurements of the cost
function, available information-rich data sets that could be
used to either improve the performance of the controller,
or to relax the excitation conditions, are usually ignored.
However, as shown in [5] and [6], in certain applications it
is indeed possible to design learning dynamics that dispense
with the classic PE assumption by leveraging the existence of
information-rich data sets. Moreover, as shown in [3], when
multiple agents with local learning dynamics cooperatively
interact in a networked system, individual PE conditions
imposed to all the agents of system may not be necessary to
guarantee that the overall MAS achieves successful learning.

Motivated by this background, in this paper we extend
our previous results of [24] by studying a novel class of
cooperative data-enabled extremum seeking (CODES) algo-
rithms that combine ideas from cooperative adaptive estima-
tion and concurrent learning in order to achieve real-time
optimization in multi-agent systems (MAS). In particular,
we present a spatiotemporal condition that guarantees the
solution of a common optimization problem in MAS with
unknown mathematical forms of the cost, where agents are
not required anymore to individually satisfy a classic persis-
tence of excitation condition, but only to cooperatively have
“sufficiently rich” stored data. This spatiotemporal condition
merges together past data (temporal) information and share
data (spatial) information from other agents. We characterize
a class of robust optimization dynamics that can be safely
interconnected with the learning mechanism, and we show
that the solutions of the closed-loop system converge to a
neighborhood of the minimizers of the global cost function.
Connections with the classic settings of concurrent learning
and cooperative adaptive control are also discussed. To the
knowledge of the authors the results of this paper correspond
to the first family of ES controllers for MAS that exploit
cooperation and memory (data) simultaneously.

The rest of this paper is organized as follows. In Section
II, we present the model-free optimization problem and we
characterize the CODES dynamics as well as their conver-
gence properties. Sections III and IV illustrate the similarities
and differences with respect to other existing approaches that
relaxed the excitation conditions in the temporal domain and
in the spatial domain. An example is presented in Section



V, and Section VI ends with conclusions.

II. PROBLEM FORMULATION AND MAIN
RESULTS

In this paper, we consider networked systems characterized
by a time-invariant undirected connected graph G = (V, E),
where V := {1, . . . , N} is the set of vertices or nodes, and
E ⊂ V × V is the set of edges between the nodes, which
can be seen as communication links. Each node i ∈ V of
the network can be seen as an agent aiming to solve the
following individual optimization problem

min f(x) subject to x ∈ Ki, (1)

where x ∈ Rn, f : Rn → R is a C2 and convex cost
function, and Ki ⊂ Rn is an individual compact set that
incorporates constraints into the optimization problem. Our
main standing assumption is that the mathematical form
of f is unknown to all agents. Indeed, we assume that
agents have access only to current individual evaluations of
the global function f(xi), which are used to update their
individual state xi ∈ Rn. Additionally, in order to solve
problem (1), agents are allowed to share information with
their neighbors. Examples where this type of model-free
optimization problem emerges include cooperative source
seeking with local constraints, cooperative surveillance with
individual bounded action spaces, and cooperative formation
control under unknown potential fields, to just name a few.
These problems can be solved by leveraging the well-known
paradigm of exploration vs exploitation. However, our goal
in this paper is to use minimal online exploration (i.e.,
excitation) in the network by exploiting the existence of
recorded data that can be accessed by the control system.

A. Feedback Structure and Uniform Function Approximation

In order to solve problem (1), and similar to [24], we
propose a class of algorithm where each agent i ∈ V
implements the following dynamics

˙̂wi =
1

ε
Fw,i(ŵ, φ(x), ei), (2a)

żi = Fz,i(ŵ
>
i ∇φi(xi), z), zi ∈ Cz,i (2b)

where zi := [x>i , s
>
i ]> ∈ Rn+r, si ∈ Rr is an auxiliary state

of dimension r ∈ Z≥0, and ε > 0. The mapping Fz,i and the
set Cz,i ⊂ Rn+r will be designed based on the structure of
the optimization problem (1), and they will be characterized
in Section II-C. The mapping Fw,i : Rnp×Rnp×Rp → Rp
is assumed to be a continuous function that only depends
on the information of agent i and its neighboring agents
j ∈ Ni := {j ∈ V : (i, j) ∈ E}. This function, which
describes the “learning dynamics”, will be designed based
on the available temporal and spatial information to each
agent of the network.

The individual error signal ei in (2a) is given by

ei := f̂i(xi)− f(xi), (3)

where f̂i(xi) is agent’s i approximation of the global com-
mon cost function f(x). In this paper, we consider approxi-
mations of the form

f̂i(xi) = ŵ>i φi(xi), (4)

where the auxiliary state ŵi ∈ Rp is an estimation of an
ideal weight w?i ∈ Rp that satisfies

f(x) = w?>i φi(xi) + εi(xi) (5)

for some approximation error εi(xi) that satisfies
max{|εi(xi)|, |∇εi(xi)|} ≤ δ for all xi ∈ Ki, with
δ > 0. Such ideal weight always exists due to the Stone-
Weirstrass high-order approximation Theorem, see [14],
[13]. The set of all such optimal weights w?i is defined as

Wδ
i :=

{
w?i ∈ Rp : |f(xi)− w?>i φi(xi)| ≤ δ, ∀ xi ∈ Ki

}
,

which we assume to be compact, i.e., ‖w?i ‖ ≤ w for all
w? ∈Wδ

i , and all i ∈ V , for some w ∈ R>0. The individual
vector valued regressor functions φi : Rn → Rp are assumed
to be known and C2. For each agent i ∈ V , the regressor
function φi := [φi,1, φi,2, . . . , φi,p]

> should be selected such
that the functions φi,j , j ∈ {1, . . . , p}, define a complete
independent basis set for f(xi). Typical choices of basis
functions include quadratic functions, radial basis functions,
or sigmoid functions [27]. We will impose the following
technical assumption on the approximation (5).

Assumption 1: For all i ∈ V , the approximation error
function εi(·) in (5) is continuously differentiable. �

Since Ki is compact, by the Stone-Weierstrass high-
order approximation Theorem, as p → ∞ we have that
ε(xi) → 0 and ∇εi(xi) → 0 uniformly in Ki. Moreover,
due to Assumption 1, the compactness of Ki and the fact
that φi(xi) is C2, the mappings φi(xi), ∇φi(xi), εi(xi),
and ∇εi(xi) are all uniformly bounded in Ki. However,
since the set Wδ

i depends on the individual functions φi
and the individual compact sets Ki, we need the following
assumption regarding the existence of a common optimal
weight w? ∈ Rp for the MAS.

Assumption 2: There exists a δ∗ > 0 such that for each
δ ∈ (0, δ∗) there exists a p∗ ∈ Z>0 such that for each p > p∗

the set Wδ :=
⋂
i∈VWδ

i is not empty. �

Let w? ∈Wδ and define w̃i := ŵi−w? as the estimation
error of agent i. Using (3), (4), and (5), the approximation
error of each agent satisfies

ei = f̂i(xi)− f(xi) = w̃>i φi(xi)− εi(xi). (6)

It is well-known, e.g. [15, Ch. 4] that under several learning
dynamics Fw,i, exponential convergence of ei(t) to zero (or
to an ε-neighborhood of zero) is achieved if and only if the
regressor vector φi is “sufficiently rich”, a requirement that
is usually expressed in terms of a PE condition of the form∫ t+Ti

t

φi(τ)φ>i (τ)dτ ≥ γiI, (7)

which must hold for all t ≥ 0 and for some constants Ti, γi >
0. However, in general, for many practical applications it



may be difficult to verify a priori this excitation condition
[5]. Moreover, as discussed in [3], even if some agents of the
MAS individually satisfy the PE condition, it is unrealistic
to assume that all agents of large-scale network will satisfy
the PE condition. Motivated by this limitation we propose
to synergistically combine the availability of communication
networks in the MAS, and the existence of information-
rich data sets, to design cooperative learning dynamics that
guarantee a correct estimation of w? without assuming a
priori that the trajectories of all the regressors satisfy a PE
condition.

B. Learning in Networks using Memory and Cooperation

In order to establish the main ideas behind the cooperative
learning dynamics, let k ∈ {1, 2, . . . ,k} denote the index of
a stored data point xi,k collected at some time tk by agent
i ∈ V , i.e., xi,k = xi(tk), and let φi(xi,k) be the regressor
vector of agent i evaluated at that point. For each agent i
and each k ∈ {1, 2, . . . ,k}, we also introduce an estimation
error associated to the data previously collected at time tk,
given by

ei(tk, t) = f̂i(xi(tk))− f(xi(tk)), (8)

= w̃i(t)
>φi(xi,k)− ε(xi,k).

Note that the estimation error w̃i of each agent i depends
on the current time t. To streamline the presentation of the
learning dynamics, and to be consistent with (8), we will use
t0 to represent the current time t, i.e.,

ei(t0, t) := ei(t), t ≥ 0. (9)

Using this notation, we consider the following adaptive dy-
namics that incorporate individual memory and cooperation
between the agents:

˙̂wi = −α
k∑
k=0

Ψi(xi(tk))ei(tk, t)− γ
∑
j∈Ni

aij(ŵi − ŵj),

(10)

where α, γ > 0 are tunable parameters, ai,j ∈ {0, 1}
corresponds to the entry (i, j) of the adjacency matrix of
the graph G, and where the term Ψi(xi(tk)) is defined as

Ψi(xi(tk)) :=
φi(xi(tk))

(φi(xi(tk))>φi(xi(tk)) + 1)2
. (11)

The dynamic mechanism (10) is comprised of two main
terms. The first term exploits the available memory in the
system by considering the current approximation error, as
well as the approximation error associated to a sequence of
k measurements {xi,k}kk=1. On the other hand, the second
term exploits the flow of information in the system between
neighboring agents.

In order to study the convergence properties of (10) we
introduce the following definition.

Definition 1: A collection of N sequences of stored data
points, denoted by Φ := {{yi,k}kk=1 : yi,k ∈ Rn, i ∈ V},

satisfying inequality

k∑
k=1

N∑
i=1

yi,ky
>
i,k � 0, (12)

is said to be k-cooperatively sufficiently rich (k-CSR). �

Condition (12) in Definition 1 ensures that the stored data
in the entire network contains “sufficiently” rich information.
Since the summation is taken over all agents and over a finite
number of times, it relaxes the cooperative PE condition
and the classic memory condition used in the context of
concurrent learning [5], [24]. Indeed, unlike the PE condition
(7), which applies to the past and future behavior of φi(t),
the condition given by (12) relies only on past recorded data
associated to the nodes of the network. Therefore, it can be
verified a priori. The data can be recorded during a finite
amount of time where the overall networked system is suffi-
ciently excited, e.g., during a training phase. Note, however,
that memory and bandwidth limitations will determine the
number of points k that can be stored in the system.

Remark 1: If the number of data points collected by each
agent differs, i.e., ki 6= kj , condition (12) can be tested with
k := min{k1,k2, . . . ,kn}. �

The following proposition, corresponding to the first result
of this paper, characterizes the convergence properties of the
dynamics (10) under a k-CSR condition on the normalized
regressor vector

φ̃i,k :=
φi(xi(tk))

φi(xi(tk))>φi(xi(tk)) + 1
. (13)

The proof is omitted due to lack of space.

Proposition 1: Suppose that Assumptions 1 and 2 hold,
and that the functions ei(·) and Ψi(xi(·)) are measurable.
Suppose also that the collection of data points

Φ := {{φ̃i,k}kk=1 : φ̃i,k ∈ Rn, i ∈ V} (14)

is k-CSR, and let α, γ > 0. Then, for each ν̄ > 0 there exists
a sufficiently small δ > 0 and a sufficiently large p∗ ∈ Z>1

such that for each p ∈ Z≥p∗ and each compact set Kw ⊂
Rp every solution of (10) with ŵi(0) ∈ Kw for all i ∈ V ,
converges in finite time to Wδ + ν̄B. Moreover, the rate of
convergence is exponential outside the set Wδ + ν̄B. �

The convergence result of Proposition 1 is established by
assuming the richness condition (12) on the data φ̃i,k, which
can be verified a priori for the MAS. Further connections
and differences with respect to existing cooperative and data-
based PE conditions are discussed in Sections III and IV.

C. Robust Optimization Dynamics

Once a data-enabled learning mechanism for the estima-
tion of w? has been designed, we proceed to characterize
the optimization dynamics for the solution of problem (1).
Since the result of Proposition 1 implies a residual estimation
error, in order to obtain a stable interconnection in the closed-
loop system, the optimization dynamics should be robust to
small but persistent additive disturbances on the gradient. To



characterize these optimization dynamics, we assume in (2b)
that ∇fi = ŵ>i ∇φi(xi), i.e., we consider the ideal gradient-
based optimization dynamics

żi = Fz,i(∇fi(xi), zi), zi ∈ Cz,i. (15)

For this system we impose the following Assumption on the
mappings Fz,i and the sets Cz,i.

Assumption 3: For each i ∈ V the dynamics (15) satisfy
the following conditions:
(a) The mapping Fz,i is continuous with respect to both

arguments.
(b) The set Cz,i satisfies Cz,i = Ki×Si, where Si ⊂ Rr is

a compact set.
(c) There exists a nonempty compact set Si ⊂ Si such that

the set Ai × Si is globally asymptotically stable, where
Ai is the optimal solution of (1) for agent i.

(d) There exists an δi > 0 such that for each measurable
function e : R≥0 → Rn satisfying supt≥0 |e(t)| ≤ δi, the
perturbed system żi = Fz,i(∇fi(xi) + e, zi), zi ∈ Cz,i,
generates complete solutions from each zi(0) ∈ Cz,i. �

Generally, in order to construct optimization dynamics that
satisfy Assumption 3, it suffices to known the structure of
Ki and the convexity properties of f . Moreover, in some
cases, item (d) can be relaxed, and complete solutions are
only required from compact subsets of Cz,i. A particular
example will be presented in Section V.

D. Main Result

We now present the main result of this paper, which
combines the cooperative data-enabled learning mechanism
(10) and the optimization dynamics characterized in Assump-
tion 3, which generate a class of cooperative data-enabled
extremum seeking (CODES) dynamics. The proof is omitted
due to lack of space.

Theorem 1: Suppose that Assumptions 1, 2 and 3 hold.
For each agent i ∈ V consider the dynamics (2) with Fw,i
given by (10). Suppose that the collection of sequences (14)
is k-CSR. Then, for each ν > 0 there exists a sufficiently
large p∗ ∈ Z>1 such that for each p ∈ Z≥p∗ and each
compact set K ⊂ RNp there exists ε∗ ∈ R>0 and T ∈
R>0 such that for each ε ∈ (0, ε∗) every solution of the
closed-loop system with ŵ(0) ∈ K generates trajectories xi
satisfying

xi(t) ∈ Ai + νB,

for all t ≥ T , and all i ∈ V . �

In words, Theorem 1 establishes that by selecting a suffi-
ciently large vector of basis functions, by inducing enough
time scale separation in the closed-loop, and by using data
satisfying (12), the CODES algorithm guarantees conver-
gence in finite time to an arbitrarily small ν-neighborhood
of the optimal solution Ai of each agent.

Remark 2: Even though so far we have assumed that the
optimization problems are uncoupled and that the interaction
between the agents occurs via the cooperative estimation
dynamics (10), there is no loss of generality by considering

coupled optimization problems with global constraints. In
that case, the optimization dynamics (15) must be designed
to stabilize the global optimal set assuming that the gradient
is known, and using the information available by the com-
munication graph G.

III. SPATIAL RELAXATION: COOPERATIVE
LEARNING WITH NO MEMORY

The result of the previous section provides a framework
for the design of CODES for MAS with memory and
communication networks. On the other hand, when there is
no memory in the nodes, i.e., k = 0, and condition (12)
applied to the normalized regressor vectors (13) must hold
uniformly on every compact time domain [t, t + T ] for all
t ≥ 0 and some T > 0, condition (12) becomes∫ t+T

t

N∑
i=1

φ̃i(τ)φ̃>i (τ)dτ ≥ γI, γ > 0, (16)

which is the cooperative PE condition studied in [3] in
the context of classic adaptive parameter estimation and
stabilization, as well as in [4] in the context of neuro-adaptive
learning. Instead of asking that every agent satisfies condition
(7), the cooperative condition (16) must hold for the overall
MAS. The following example, corresponding to [3, Remark
4] illustrates this idea.

Example 1: [3, Remark 4] For a 2-agent system con-
sider the individual normalized regressor signals φ̃1(t) =
[sin(t), 0] and φ̃2(t) = [0, cos(t)]. Note that none of
these signals individually satisfy the classic PE condition
(7). However the cooperative signal

∑2
i=1 φ̃i(t)φ̃

>
i (t) =[

sin(t)2 0
0 cos(t)2

]
� 0, satisfies (16). �

On the other hand, while the cooperative PE condition
relaxes the individual PE assumption in MAS, the k-CSR
condition (12) can additionally be verified a priori when
sufficiently rich data exists.

Example 2: For the same 2-agent system of Example 1,
consider the k-sequence of recorded data obtained from
the individual regressor signals {φ̃i(tk)}kk=1. In this case,
condition (12) gives

k∑
k=1

2∑
i=1

φ̃i(tk)φ̃>
i (tk) =

[ ∑k
k=1 sin(tk)2 0

0
∑k

k=1 cos(tk)2

]
,

thus for any sequence of points {tk}kk=1 such that tk 6=
(k − 1)π for all k, or tk 6= (k+1)π

2 for all k, condition (12)
is satisfied. On the other hand, if either tk = (k − 1)π or
tk = π(k+1)

2 for all k, there is no k ∈ Z>0 such that (12)
holds. Thus, condition (12) may not be trivially satisfied even
if the amount of memory is unbounded in the system. This
is also true for condition (16) if, for instance, one selects
φi := [1, 0] for all agents i ∈ V . �

When there is no memory in the nodes, i.e., k = 0, we
recover the estimation dynamics of [3], and the learning
dynamics (10) reduce to

˙̂wi = −αΨi(xi(t))ei(t)− γ
∑
j∈Ni

aij(ŵi − ŵj), (17)



where ei(t) corresponds to the standard error (6), and
Ψi(xi(t)) corresponds to the term (11) evaluated at xi(t).
Under the cooperative PE condition (16) on the normalized
regressors

φ̃i(t) :=
φi(xi(t))

φi(xi(t))>φi(xi(t)) + 1
, (18)

the following Corollary can be obtained as in [3]. The proof
is omitted due to lack of space. While related stability results
have been obtained for neuro-adaptive controllers [4], to our
knowledge the following result is also novel in the context
of extremum seeking control.

Corollary 1: Suppose that Assumptions 1, 2 and 3 hold.
Consider the dynamics (2) with Fwi

given by (17). Suppose
that the normalized regressors (18) satisfy the cooperative
PE condition (16) with (γ, T ) independent of xi(0) and t0.
Then, for each ν > 0 there exists a p∗ ∈ Z>1 such that for
each p ∈ Z≥p∗ and each compact set K ⊂ RNp there exists
ε∗ ∈ R>0 and T > 0 such that for each ε ∈ (0, ε∗) every
solution of the closed-loop system with ŵ(0) ∈ K generates
trajectories satisfying

xi(t) ∈ Ai + νB,

for all t ≥ T , and all i ∈ Vi. �

IV. TEMPORAL RELAXATION: LEARNING WITH
MEMORY AND NO COOPERATION

In the previous section we studied distributed ES dynamics
with cooperation and no memory. In this section, we now
discuss the opposite case. Namely, agents have access to
memory and data, but there is no cooperation to estimate
the parameters w?. In this case, condition (12) reduces to

k∑
k=1

φ̃(tk)φ̃(tk)> � 0, (19)

and we recover the standard “richness” condition used in the
setting of concurrent learning, e.g., [5], [16]. For networked
systems this condition has been studied in [17, Assumption
2] by assuming that all agents of the network individually
satisfy condition (19). Note, however, that condition (19) is
stronger than the k-CSR condition (12).

Example 3: Consider again the network of 2 agents
studied in Examples 1 and 2, and let the sequence of
times {tk}kk be such that tk = (k − 1)π + π/4, for
all k ∈ Z>0. Then, the normalized regressor vectors of

the agents satisfy
∑k
k=1 φ̃1(tk)φ̃>1 (tk) =

[
k
2

0
0 0

]
, and∑k

k=1 φ̃2(tk)φ̃>
2 (tk) =

[
0 0
0 k

2

]
, respectively, which do

not satisfy condition (19) individually for any k ∈ Z>1.
However, the overall multi-agent system satisfies condition

(12), since
∑k

k=1

∑N
i=1 φ̃2(tk)φ̃>

1 (tk) =

[
k
2

0
0 k

2

]
� 0, for

any k ∈ Z>1. �

When there is no cooperation between the agents, we
recover the estimation results of [5], and since aij = 0 for

1 2 3

Fig. 1: Communication topology of the MAS.

all i 6= j, the individual learning dynamics (10) reduce to

˙̂wi = −α
k∑
k=0

Ψi(xi(tk))ei(tk, t), (20)

where Ψi(xi(tk)) is given by (11). Note that under the
stronger richness condition imposed by (19), each agent is
now able to individually learn the optimal weights of a
local cost function fi(xi) that may be different from the
cost functions of the other agents. Thus, under this stronger
excitation assumption, we can now study distributed opti-
mization problems with heterogenous cost functions. Using
the data-enabled dynamics (20), a class of single-agent data-
enabled extremum seeking (DEES) algorithms were recently
proposed in [24].

V. NUMERICAL EXAMPLE

Consider a system of 3 agents, with a communication
graph as the one shown in Figure 1. The agents aim to
cooperatively solve local optimization problems of the form
(1), with a homogenous cost function f . Each agent controls
its own state xi ∈ R, and we assume that the common cost
function has the quadratic form f(x) = x2 − 2x + 1, and
the individual sets of constraints are given by K1 = [1, 4],
K2 = [0.9, 2.4] and K3 = [0.8, 2]. We consider the following
CODES:

˙̂wi = −α
k∑

k=0

Ψi(xi(tk))ei(tk, t)− γ
∑
j∈Ni

aij(ŵi − ŵj), (21a)

ẋi = −xi + PKi

(
xi − ŵ>

i ∇φi(xi)
)
, (21b)

where the Lipschitz projection PK(z) = argminy∈K‖z −
y‖ is used to guarantee the satisfaction of the individual
constraints for all time. Since the cost f is C2 and strongly
convex, and the sets Ki are closed, convex, and bounded,
by [9, Thm. 3], the optimization dynamics (21b) satisfy
Assumption 3. Figure 2 shows the evolution in time of the so-
lutions generated by the algorithm. As it can be observed, all
trajectories converge to the global minimizer of f(x) given
by x∗ = 1. The data was recorded by exciting each regressor
vector during 5 seconds and collecting enough measurements
to guarantee the satisfaction of the richness condition (12).
As shown in Figure 3, the trajectories xi also satisfy the
individual constraints Ki during the initial transient. On the
other hand, Figure 4 shows the behavior obtained when the
richness condition (12) is not satisfied. In this case, the local
estimations of the weights ŵi do not converge to their true
values, and the states xi oscillate between the upper and
lower bounds defined by the individual sets Ki.

VI. CONCLUSIONS

We presented a novel class of cooperative data-enabled ex-
tremum seeking (CODES) algorithms for static optimization
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Fig. 2: Evolution of states xi(t). The inset shows the evolu-
tion of the weights ŵi.
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Fig. 3: Transient performance of the states xi, satisfying the
individual constraints Ki for all time.
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Fig. 4: Lack of convergence when the condition (12) is not
satisfied. The inset shows the evolution of the states ŵi.

problems in network multi-agent systems with homogeneous
cost functions and heterogenous constraints characterized
by compact sets. Under a spatiotemporal richness condi-
tion on the recorded data of the MAS, convergence to a
neighborhood of the set of optimizers can be guaranteed for
a family of optimization dynamics with suitable regularity
and stability properties. Future directions will study function
approximations based on multi-layer neural networks, as well
as time-varying communication graphs.
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[20] D. Nes̆ić, Y. Tan, W.H. Moase, and C. Manzie. A unifying approach
to extremum seeking: Adaptive schemes based on estimation of
derivatives. 49th IEEE Conf. Decision Control, pages 4625–4630,
2010.

[21] J. I. Poveda, M. Benosman, and A. R. Teel. Distributed extremum
seeking in multi-agent systems with arbitrary switching graphs. IFAC
World Congress, 50(1):735–740, 2016.

[22] J. I. Poveda, M. Benosman, and A. R. Teel. Hybrid online learning
control in networked multiagent systems: A survey. International
Journal of Adaptive Control and Signal Processing, pages 1–34, 2018.

[23] J. I. Poveda and A. R. Teel. A framework for a class of hybrid
extremum seeking controllers with dynamic inclusions. Automatica,
76:113–126, 2017.

[24] J. I. Poveda, K. Vamoudakis, and M. Benosman. DEES: A class of
data-enabled robust feedback algorithms for real-time optimization.
IFAC Symposium on Nonlinear Control Systems, to appear., 2019.

[25] J. I. Poveda, K. G. Vamvoudakis, and M. Benosman. A neuro-adaptive
architecture for extremum seeking control using hybrid learning dy-
namics. In proc. of American Control Conferece. Boston, MA., pages
542–547, 2017.

[26] M. Tanaskovic, L. Fagiano, C. Novara, and M. Morari. Data-driven
control of nonlinear systems: An on-line direct approach. Automatica,
75:1–10, 2017.



[27] K. Vamvoudakis, P. Antsaklis, W. Dixon, J. Hespanha, and F. Lewis.
Autonomy and machine intelligence in complex systems: A tutorial.
In Proc. of American Contr. Conf., pages 5062–5079, 2015.

[28] I. Vandemeulen, M. Guay, and P. J. McLellan. Discrete-time dis-
tributed extremum seeking control over networks with unstable dy-
namics. IEEE Transactions on Control of Network Systems, 2017.


	Title Page
	page 2

	/projects/www/html/my/publications/docs/TR2019-148.pdf
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7


