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Inverse Learning for Human-Adaptive Motion Planning

Marcel Menner, Karl Berntorp, Melanie N. Zeilinger, and Stefano Di Cairano

Abstract— This paper presents a method for inverse learning
of a control objective defined in terms of requirements and their
probability distribution. The probability distribution character-
izes tolerated deviations from the deterministic requirements,
is modeled as Gaussian, and learned from data using likelihood
maximization. Further, this paper introduces both parametrized
requirements for motion planning in autonomous driving appli-
cations and methods for their estimation from demonstrations.
Human-in-the-loop simulations with four drivers suggest that
human motion planning can be modeled with the considered
probabilistic control objective and the inverse learning methods
in this paper enable more natural and personalized automated
driving.

I. INTRODUCTION

Humans can perform complex tasks that are difficult to
achieve with autonomous systems. One reason is that it is
difficult to analytically model human knowledge or incorpo-
rate human expertise into a control objective. Autonomous
driving is one such task where humans’ capabilities of real-
time decision-making and trading-off various objectives are
hard to achieve by pure model-based approaches [1], [2].
Calibrating a control objective to achieve human-like control
of a complex system such as an autonomous vehicle can be
a challenging, time-consuming and expensive task. Inverse
learning methods such as imitation learning [3], inverse
reinforcement learning [4], or inverse optimal control [5]
approach the problem of calibrating a control policy or
control objective in a more systematic way: Given a desired
behavior observed in demonstrations, what is the underlying
objective that caused it?

In this paper, we propose a method to learn a control
objective, which consists of deterministic requirements and
a probability distribution that represents tolerated deviations
from the requirements accounting for uncertainties and noise,
or that the requirements may not be all perfectly achieved.
This control objective for decision-making is proposed in
[6], where a particle filter extracts the motion plan for au-
tonomous driving. This paper considers the inverse problem,
where motion plans generated by a different ”actor”, e.g., a
human, are given from demonstrations and we estimate the
deterministic requirements and the probability distribution.
First, we propose a parametrized requirement function to
be used for motion planning, and methods to learn its
parameters. Second, we present a likelihood maximization
method to estimate the probability distribution. Human-in-
the-loop simulations with four drivers suggest that both the
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probability distribution and the parameters of the requirement
function are individual, thereby allowing for tailoring the
motion planner to individual preferences.

The motivation for this work is to automate the training
and calibration of autonomous driving to achieve a more
natural and personalized driving style for human passengers,
while retaining safety and behavioral guarantees of model-
based motion-planning algorithms. While a pure end-to-end
learning approach results in a black-box algorithm that is
difficult to assess and verify, a pure model-based approach
may be easier to assess and verify but is difficult to calibrate
for achieving human-like and personalized driving. Here, we
pursue a gray-box learning approach and calibrate the model-
based motion-planning algorithm in [6] with the proposed
learning method using demonstrations of human drivers. In
this way, the overall driving behavior is guaranteed to have
the general properties and guarantees of the motion plan-
ner [6], including collision avoidance and specific behaviors
in safety-critical decisions. Yet, among the admissible motion
plans, the ones that are closer to the driver’s natural behavior
and that enhance passenger comfort are chosen.

Related learning approaches are presented in [7]–[14].
Imitation learning methods [7] learn control policies di-
rectly from demonstrations and inverse reinforcement learn-
ing/inverse optimal control methods [8]–[14] assume that
demonstrations are caused by an underlying objective func-
tion, whose parameters are learned. Typically, inverse opti-
mal control methods such as [8]–[12] assume a determin-
istic control objective and the resulting control actions are
deterministic. Under this assumption, the performance may
deteriorate in the presence of imperfect information such
as noisy data or sub-optimal demonstrations. Some notable
exceptions are [13], where a risk-metric model is introduced
to circumvent risk-neutral, deterministic objective functions,
and [14], where policies are constructed for scenarios with
multiple future outcomes. Differently from [8]–[11], we learn
a probabilistic control objective and, therefore, demonstra-
tions are also interpreted as nondeterministic. Similar to
[12]–[14], we consider nondeterministic decision-making,
however, we use a different model and learn a probability
distribution which adds stochasticity to the control objective.
This is especially relevant in autonomous driving, due to the
presence of uncertainty in the environment, modeling errors,
and sensing and localization errors.

Notation: p(x0:T |y) := p(x0,x1, ...,xT |y) denotes the
conditional probability density function (PDF) of xk ∈ Rn

at time k = 0, ..., T , conditioned on y. Given mean vector
µ and covariance matrix Σ, N (µ,Σ) and p(x|µ,Σ) stand
for the Gaussian distribution and PDF, respectively, x ∼
N (µ,Σ) means x sampled from N (µ,Σ), and ∝ reads



proportional to. The expected value of x is E[x] and for a
matrix Z, zij is the element in the ith row and jth column.

II. PRELIMINARIES & PROBLEM STATEMENT

We consider discrete-time vehicle models of the form

xk = f (xk−1) + g (xk−1)uk, (1)

where f and g are in general nonlinear functions, xk ∈ Rnx

is the state at time k, and uk ∈ Rnu denotes the input applied
from discrete time-step k − 1 to k. The behavior of (1) is
modeled with respect to requirements yk ∈ Rny with

yk = h(xk,uk) + vk, (2)

where we call h the requirement function and vk is the
slack, with yk = h(xk,uk) if all requirements are obeyed
perfectly. The requirement function h is deterministic with
potentially unknown parameters. On the other hand, the tol-
erated deviations from the requirements, represented by the
slack vk, are probabilistic and, therefore inflict a probability
distribution upon the requirements. The goal of the proposed
method is to learn the parameters of the requirement function
h and the probability distribution from demonstrations. Note
that we deviate from standard literature by using uk with
index k instead of k − 1 in (1) to ease notation.

A. Motion Planner & Modeling Assumptions

Using this probability distribution and the requirement
function, the considered motion planner as in [6] con-
structs the state trajectory PDF given the requirements, i.e.,
p(x0:T |y0:T ) with yk in (2) from time k = 0 through k = T ,
and extracts the state trajectory from the PDF. The extracted
state trajectory is then used as motion plan. In this context,
the motion-planning problem is formulated as an optimal
estimation problem, in which the requirements yk in (2) are
treated as sensor measurements and uk in (1) is the input
(process) disturbance. We model the input disturbance in (1)
as Gaussian distributed uk ∼ N (0,Q) and the slack in (2)
as vk ∼ N (0,R).

Control Inputs: In order to find the control inputs that
result from this model, we use independence of the random
variables to write the joint probability recursively:

p(x0:T |y0:T ) ∝∏T
k=1 p(xk|yk,xk−1)

and, at the first order, h(xk,uk) ≈ Hkxk + Dkuk with
Hk = ∂h(x,uk)/∂x|x=x̂k

, Dk = ∂h(x̂k,u)/∂u|u=ûk
,

p(xk|yk,xk−1) ≈ N (x̂k,GkΣkG
T
k ), (3a)

where Gk = g(xk−1), and

x̂k = f(xk−1) +Gkûk (3b)
ûk = Kk (yk − h(f (xk−1) ,0)) (3c)

Kk = Q (HkGk +Dk)
T

Γ−1k (3d)

Γk = (HkGk +Dk)Q (HkGk +Dk)
T

+R (3e)
Σk = (I −Kk(HkGk +Dk))Q. (3f)

Eq. (3) can be derived using the conditional Gaussian dis-
tribution of uk and vk and is similar to a measurement

update of an extended Kalman filter, where x̂k is the optimal
state estimate, Kk is the optimal Kalman gain, Γk is the
innovation covariance, and Σk is the estimate covariance.

The control inputs of the resulting motion planner are
obtained from (3):

uk = Kk (yk − h(f (xk−1) ,0)) + σk (4)

with the optimal Kalman gain Kk in (3d) and σk ∼
N (0,Σk) with Σk in (3f), and is therefore entirely specified
by the covariance matrices Q and R along with yk and h.

B. Outline

This paper presents a likelihood maximization method to
estimate Q and R from state and input measurements (4)
for general requirement functions in Section III. Further, it
proposes a parametrized requirement function h for human-
conscious motion planning in autonomous driving applica-
tions in Section IV and presents algorithms to learn its
parameters in Section V.

III. ESTIMATION OF COVARIANCE MATRICES

We estimate the covariance matrices for a given require-
ment function from the posterior distribution

p(Q,R|x0:T ,y0:T ) ∝ p(x0:T ,y0:T |Q,R)p(Q,R), (5)

where x0:T and y0:T are the observed state and known
requirement trajectories, respectively, from time k = 0
through T , p(Q,R) is a prior probability, which is used to
favor structurally beneficial Q,R, and p(x0:T ,y0:T |Q,R)
is the likelihood of the observations. The two probabilities
are further specified in the following. In (5) and what
follows, x0:T refers to observations of closed-loop driving
and differs from the open-loop motion planner in Section II-
A by observing the inputs in (4) rather than uk ∼ N (0,Q).

1) Likelihood p(x0:T ,y0:T |Q,R): Consider the system
dynamics (1) and the measurement (requirement) equation
(2), along with the control law (4). If h in (2) is linear, i.e.,
h(xk,uk) = Hkxk +Dkuk, and p(x0,y0) = 1, then

p(x0:T ,y0:T |Q,R) =

T∏
k=1

p(uk|0,Q)p(vk|0,R)
p(vk|0,R)

p(ek|0,Γk)

(6)

with ek = yk −h(f(xk−1),0), which is formally shown in
Theorem 1. First, we provide two technical results.

Lemma 1. Let uk as in (4) and ûk = Kkek. Then,

p(xk|yk,xk−1,Q,R)p(yk|xk−1,Q,R)

= p(uk|ûk,Σk)p(vk|0,R).

Lemma 2. Let uk as in (4) and ûk = Kkek. Then,

p(uk|ûk,Σk) = p(uk|0,Q)
p(vk|0,R)

p(ek|0,Γk)
.

Proof of Lemma 1 and Lemma 2 (Sketch). The results are
obtained by showing that the respective PDFs are equivalent.
Equivalence of the PDFs’ determinants can be shown using
Sylvester’s determinant identity [15].



Theorem 1. Consider (1) and let p(x0,y0) = 1. If vk ∼
N (0,R) with h(xk,uk) = Hkxk +Dkuk in (2) and uk

as in (4) with σk ∼ N (0,Σk), then (6) holds.

Proof. First, p(xk,yk|x0:k−1,y0:k−1) = p(xk,yk|xk−1)
and conditioning yields

p(x0:T ,y0:T ) =
∏T

k=1p(xk,yk|xk−1)p(x0,y0).

Using p(xk,yk|xk−1) = p(xk|yk,xk−1)p(yk|xk−1),

p(x0:T ,y0:T |Q,R) =∏T
k=1p(xk|yk,xk−1,Q,R)p(yk|xk−1,Q,R). (7)

Reformulating (7) using Lemma 1 and 2 shows (6).

Corollary 1. For a purely stochastic control law uk = σk,
the sample covariances Q = 1/T

∑T
k=1 uku

T
k and R =

1/T
∑T

k=1 vkv
T
k are the maximum likelihood solutions to

maxQ,R p(x0:T ,y0:T |Q,R).

Proof. This follows directly from Lemma 1 with ûk = 0 and
Σk = Q, for which the sample covariance is the maximum
likelihood estimator [16].

2) Prior Belief p(Q,R): We model the prior probability
as a Gaussian distribution with PDF p(t (Q,R) |0, ρInt

),
where t (Q,R) ∈ Rnt imposes the prior belief on Q,R and
ρ trades off prior belief and maximum likelihood estimation,
i.e., for ρ → 0, the maximum a posteriori estimate is the
maximum of the prior and for ρ → ∞, the maximum a
posteriori converges to the maximum likelihood estimate.

3) Maximum a Posteriori & Overall Algorithm: Overall,
we want to find Q, R that maximize the likelihood:

max
Q,R

log p(x0:T ,y0:T |Q,R)p(Q,R) (8a)

subject to Q ∈ CQ,R ∈ CR, (8b)

where CQ, CR can be used to enforce constraints on Q,R,
e.g., Q = QT � 0,R = RT � 0. We use the first-
order approximation h(xk,uk) ≈Hkxk+Dkuk, for which
p(x0:T ,y0:T |Q,R) is approximated as in (6). We optimize
(8) with a projected gradient method in Algorithm 1 and
define Jk = HkGk+Dk. We use Corollary 1 to initializeQ
and R. The projection project enforces Q ∈ CQ,R ∈ CR
and is specified in Section VII for the considered application.
The step-size l does not affect the optimal solution but the
convergence rate, and ‖ · ‖F denotes the Frobenius norm.

Remark 1. The complexity of the gradient computation of
(8) with (6) using tensor calculus [17] isO(T (n4y(n2y+n2u))),
which is feasible for the problem dimension we consider.

Algorithm 1 Estimation of Q, R

1: i = 0, Q0 = 1/T
∑T

k=1 uku
T
k , R0 = 1/T

∑T
k=1 vkv

T
k

2: do . ε = 10−6 in our case
3: dQ,dR← getGrad (Qi,Ri,Q0,R0, {ek,Jk}Tk=0)
4: Q = Q+ l · dQ; R = R+ l · dR
5: Qi+1,Ri+1 ←project(Q,R)
6: i← i+ 1
7: while ‖Qi −Qi−1‖F + ‖Ri −Ri−1‖F ≤ ε

IV. REQUIREMENTS FOR AUTONOMOUS DRIVING

The requirements for the motion-planning application in
this paper are: i) Stay in the middle of a target lane, ii)
maintain a target velocity, iii) drive in a natural way for
the passenger, and iv) keep a safety distance to surrounding
obstacles. The requirements yk in (2) are formalized as

yk =


0

vnom
0
0

 , h(xk,uk) =


hl(pX,k, pY,k)

vx,k
hc(ax,k, ay,k)
ho(dk, vx,k)


where hl(pX , pY ) denotes the squared distance from the
centerline at vehicle position pX , pY , vnom and vx are the
nominal and current velocity, respectively, hc(ax, ay) is the
passenger comfort requirement with longitudinal acceleration
ax and lateral acceleration ay , and ho(d, vx) is the obstacle
avoidance requirement with separation distance d between
ego vehicle (EV) and obstacle vehicles (OVs). Both the
passenger comfort and obstacle avoidance requirements are
expected to vary between drivers and are introduced next.

A. Passenger Comfort Requirement

We model the passenger comfort requirement as penalty
for longitudinal and lateral accelerations, as well as their
coupling. The accelerations and their coupling are well
known to relate to the individual driving style [18]. The
requirement is formalized as

hc(ax, ay) = ā · c(ax, ay)− c0
c1 − c0 (9)

with c1 = (
√

(ā2 + ε)
nc

+
√
ε
nc)

1
nc , c0 = (2

√
ε
nc)

1
nc , and

c(ax, ay) = (
√

(a2x + ε)
nc

+
√

((s · ay)2 + ε)
nc

)
1
nc

and a small ε > 0. The parameter ā is a measure for
maximum accelerations, s defines a unilateral scaling, i.e.,
for s 6= 1, hc(ax, ay) 6= hc(ay, ax), and c1, c0 ensure
hc(0, 0) = 0 and hc(ā, 0) = hc(0, ā/s) = ā. The exponent
nc shapes the level sets of (9) so that, for higher nc, the level
sets are more circular, cf. the left plot in Figure 1.

Note that (9) differs from a (pseudo)norm for [ax ay]T by
virtue of ε 6= 0 and s 6= 1. However, we introduce ε > 0 (and
c1, c0 as a consequence) for two reasons: First, hc(ax, ay)
is differentiable with respect to ax, ay for all nc. Second,
the level sets have different shape so that the penalty in
combined longitudinal and lateral accelerations is reduced
for smaller values relative to their magnitude (more circular
shape around the origin), cf. the right plot in Figure 1.

B. Obstacle Avoidance Requirement

The obstacle avoidance requirement is modeled as a piece-
wise linear function

ho(d, vx) =

{
dmin + tsvx − d if dmin + tsvx ≥ d
0 else,

(10)

where dmin is the minimum distance to be kept from the
OVs and tsvx is the traveled distance of the EV within
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Fig. 1. Left: Level sets hc = 1 with varying nc, s = 1, and ε = 0. Right:
Varying level sets hc with nc = 1

2
and ε = 0.01.

the safety time ts at vx and takes into account that the
safety distance from the OVs is velocity-dependent. Note
that lateral obstacle constraints are considered through the
motion planner as discussed in [6].

V. ESTIMATION OF REQUIREMENT PARAMETERS

In this section, we present estimation methods to learn
both the proposed passenger comfort requirement, i.e. nc, ā,
and s in (9), and the obstacle avoidance requirement, i.e. ts
and dmin in (10), from demonstrations of human driving.

A. Estimation of Passenger Comfort Requirement

Let Ax = {ax,0, ..., ax,T } , Ay = {ay,0, ..., ay,T }, and

A =

{[
ax,0
ay,0

]
, ...,

[
ax,T
ay,T

]}
Ac = {ax,0, ..., ax,T , ay,0, ..., ay,T } .

Estimation of s: We compute s as the median of the M
largest longitudinal accelerations divided by the median of
the M largest lateral accelerations.

Estimation of ā: We compute ā as the median of the M
largest elements in absolute value of the set defined by Ax∪
(s · Ay), where s · Ay = {s · ay0

, ..., s · ayT
}.

Estimation of nc: The exponent nc is obtained by esti-
mating the shape of level set ā using the passenger comfort
requirement as (pseudo)norm. First, we compute a set with
strong coupling of longitudinal and lateral accelerations us-
ing a small nc,0, denoted F0. Then, nc is increased iteratively
until the median comfort level in F0 is greater than or equal
to ā.

B. Estimation of Obstacle Avoidance Requirement

We use a system identification-like approach similar to
[19] to estimate the parameters dmin and ts. The intuitive
idea is that the observed data originates from either of two
models: Driving with or without traffic. Considering the
piecewise linear ho in (10), we want the switch between
the two models to coincide with dmin = d − tsvx, where
dmin < d − tsvx indicates traffic-free and dmin > d − tsvx
is traffic-affected driving.

Estimation of dmin: We estimate dmin as the median of
the M smallest observed distances with D = {d0, ..., dT }.

Estimation of ts: Let

hr(x,u) =
[
hl(pX , pY ) vx hc(ax, ay)

]T
Hr

k =
∂hr(x, ûk)

∂x

∣∣∣∣
x=x̂k

, Dr
k =

∂hr(x̂k,u)

∂u

∣∣∣∣
u=ûk

vrk =
[
0 vnom 0

]T − hr(xk,uk)

erk =
[
0 vnom 0

]T − hr(f(xk−1),0),

(11)

where r denotes reduced (by the obstacle avoidance require-
ment). If the parameters of hc are known (Section V-A), we
can use Algorithm 1 to estimate Qr and Rr using (11) for
traffic-free driving. Further, in (4), let Kk = KTF

k +KTA
k ,

where KTF
k = Kr

kT is the gain matrix in the absence of
traffic (traffic-free) with T = [ I3 03×1],

Kr
k = QrJr

k
T(Jr

kQ
rJr

k
T +Rr)−1, Jr

k = Hr
kGk +Dr

k

and KTA
k is the traffic-affected gain. This decomposition of

Kk yields σk = uk −KTF
k ek ∼ N (KTA

k ek,Σk). Hence,
in the absence of traffic (KTA

k ek = 0), σk = uk −KTF
k ek

is sampled from a distribution with zero mean and, in the
presence of traffic (KTA

k ek 6= 0), uk −KTF
k ek is sampled

from a distribution with mean KTA
k ek.

We use this change in mean for the estimation of ts:

ts = arg min
ts,T ,ai

∑
k∈T

Ik +
∑
k/∈T

Jk (12a)

with Ik = ‖uk−Kr
ke

r
k‖22, Jk = ‖uk−Kr

ke
r
k−p(dk, vx,k)‖22

and

T = {i | dmin + tsvx,i ≤ di}, (12b)

where p(d, vx) =
∑1

i=0 ai (dmin + tsvx − d)
i with coeffi-

cients ai ∈ Rnu is used to approximate the nonzero mean.
Eq. (12) is a combinatorial problem, however, for a fixed
ts, it reduces to a convex least squares problem in ai.
We solve (12) by enumerating ts in ∆tinc increments with
ts ∈ [0s ts,max] and choose ts,max = 10s, ∆tinc = 0.01s.

VI. HUMAN-IN-THE-LOOP SIMULATION SETUP

We carried out human-in-the-loop simulations by control-
ling a vehicle in CarSim using the torque feedback Thrust-
master T300RS gaming steering wheel through a MATLAB
interface. The track is a two-lanes oval circuit with two
straights of 200m connected by two 180◦ turns with radius
53.6m at the centerline of the right lane, Both ego vehicle
and obstacle vehicles drive anti-clockwise. Each test driver
completed the following:

Task 0: The driver familiarized themself with the driving
simulator and was prepared for Task 1 and Task 2. No data
were recorded during this task.

Task 1 (15min recorded): The driver was instructed to stay
in the right lane and that the target velocity is 50km/h. This
task did not involve OVs.

Task 2 (15min recorded): The driver was allowed to use
both lanes and the target velocity was 50km/h. We added
7 OVs, as specified in Table I, where the initial position
is the distance along the track and the start, i.e., 0m, is the
beginning of a straight segment and the EV’s initial position.



TABLE I

OVS’ INITIAL POSITIONS & VELOCITIES

Vehicle ID 1 2 3 4 5 6 7
Initial Position 100m 300m 500m 600m 350m 550m 600m
Lane right right right right left left left
Velocity 5.5m

s
5.5m

s
5.5m

s
5.5m

s
4.5m

s
4.5m

s
4.5m

s

VII. ESTIMATED PARAMETERS & PERSONALIZED
MOTION PLANNING

This section presents results of the proposed methods
with four human drivers. While three drivers are normal
drivers, one (Driver 3) had professional test driving training,
and aims at exercising the full performance envelope of
the vehicle, i.e., performance driving style. We present the
estimated parameters in Section VII-B and the resulting
motion planners using such parameters in Section VII-C.

A. Design Choices

We consider the kinematic single track vehicle model [6]

ẋ =


ṗX
ṗY
ψ̇
v̇x
δ̇

 =


vx cos(ψ + β)/ cos(β)
vx sin(ψ + β)/ cos(β)

vx tan(δ)/L
u1
u2


represented in discrete time with sampling period Ts = 0.5s,
where pX , pY mark the position of the EV in the world
frame, ψ is the heading (yaw) angle, vx is the longitudinal
velocity, δ is the steering angle of the front wheel, L
is the wheel base, and β = arctan(lr tan(δ)/L) is the
kinematic body-slip angle. Accelerations are computed as
ax = v̇x, ay = vxψ̇. The inputs u1 and u2 are the
longitudinal acceleration and steering rate, respectively.

Constraints CQ, CR: We requireQ to be diagonal because,
if Q had nonzero off-diagonal elements, the longitudinal
acceleration and steering rate would be more likely to be
coupled. For instance, if q12 > 0 (E[u1u2] > 0), accelerating
(v̇x,k = u1 > 0) would imply a preference on steering to
the right (δ̇ = u2 > 0), which appears unnatural. Further,
we impose Q = QT � ε · I and R = RT � ε · I with
ε = 10−3 and model the centerline tracking as independent
of the other requirements, i.e. r12 = r13 = r14 = 0, in order
to avoid oscillations, e.g., of the velocity with the centerline
tracking error (E[(vnom − vx)(0− hl)] = 0).

Prior: The signal-to-noise ratio ‖JQJT‖/‖R‖ with J =
HG + D is to be close to one, which is beneficial for
particle-filter algorithms [20]. We choose G = g(x?), H =
∂h(x,0)/∂x|x=x? , D = ∂h(x?,u)/∂u|u=0 where x?

denotes a nominal state where all requirements are fulfilled
(vx = 50km/h, δ = 0) and design the prior as t(Q,R) =
vec(JQJT − R) with ρ = 1, see Section III-2, with the
vectorization operator vec : Rn×n → Rn2

.

B. Estimation Results

Requirement Function: Figure 2 shows scatter plots of
accelerations demonstrated by the four drivers along with the
estimated level set ā for the passenger comfort requirement.

It shows that Driver 3’s driving style yields high lateral
accelerations with ā/s = 7.28m/s2 relative to Driver 1, 2,
and 4 with ā/s = 2.70m/s2, 1.49m/s2, and 2.84m/s2, respec-
tively. It indicates that Driver 1 and Driver 4 exhibit similar
accelerations, whereas Driver 2 avoids larger accelerations.
Table II specifies the estimated parameters s, ā, and nc of
the passenger comfort requirement as well as dmin and ts
of the obstacle avoidance requirement. Here, too, Driver 2 is
the most conservative keeping a minimum distance to OVs
of 13.6m, compared to dmin < 9m for the other drivers,
and reacting to OVs at ts = 7.00s. Driver 3 is the least
conservative with dmin = 5.89m and ts = 3.84s.

Covariance Matrices: Table II specifies the estimated
covariance matrices for the four drivers. The matrices can be
interpreted as follows: Low values represent a low tolerance
of violating the respective requirement, e.g. r22 = 0.995
of Driver 3 versus r22 > 10 for all other drivers indicates
that Driver 3 is more reluctant to deviate from the target
velocity. Low off-diagonal values relative to their diagonal
counterparts represent little coupling of the respective two
requirements, e.g. r23 = −0.260 of Driver 3 indicates that
Driver 3 is not as likely to reduce their velocity for the sake
of reducing lateral accelerations on the vehicle. An important
off-diagonal element is r24, which represents the covariance
of the velocity and obstacle avoidance requirement. For
r24 < 0 (E[(vnom − vx)(0 − ho)] < 0), the driver is more
likely to reduce the velocity when encountering traffic on the
target lane. Similarly, for r34 > 0 (E[(0−hc)(0−ho)] > 0),
the driver is more likely to sacrifice comfort in traffic. The
difference in scale of the obstacle avoidance requirement is
caused by the driving style and the individual dmin, ts.
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Fig. 2. Scatter plots of accelerations (absolute values) for estimating the
passenger comfort requirement. All demonstrated accelerations of each driver
are displayed in gray. The level set hc(ax, ay) = ā is displayed as black
line, where s is estimated using the green data points (median of largest
longitudinal divided by the largest lateral accelerations) and nc is such that
the median of the black data points is ā.



TABLE II

ESTIMATED PARAMETERS

Driver 1
Passenger Comfort Requirement s = 2.86, ā = 7.73, nc = 0.961
Obstacle Avoidance Requirement dmin = 7.32m, ts = 4.10s
Covariance Matrices

Q =

[
10.8 0

0.0017

]
, R =

0.0848 0 0 0
10.9 −9.57 −30.6

12.1 34.1
182


Driver 2
Passenger Comfort Requirement s = 3.14, ā = 4.68, nc = 0.951
Obstacle Avoidance Requirement dmin = 13.6m, ts = 7.00s
Covariance Matrices

Q =

[
25.7 0

0.0009

]
, R =

0.0551 0 0 0
25.7 −10.2 −150

4.97 43.1
1260


Driver 3
Passenger Comfort Requirement s = 0.629, ā = 4.58, nc = 0.941
Obstacle Avoidance Requirement dmin = 5.89m, ts = 3.84s
Covariance Matrices

Q =

[
0.226 0

0.0032

]
, R =

0.257 0 0 0
0.995 −0.260 −0.425

2.90 0.216
4.62


Driver 4
Passenger Comfort Requirement s = 1.99, ā = 5.66, nc = 0.861
Obstacle Avoidance Requirement dmin = 8.52m, ts = 5.87s
Covariance Matrices

Q =

[
17.2 0

0.0013

]
, R =

0.0660 0 0 0
17.2 −6.77 −89.8

4.46 23.3
592



C. Autonomous Motion Planning using the trained Models

We use the particle-filter algorithm in [6] with the pro-
posed requirement function and estimated covariance ma-
trices for validation, where we refer to the motion planner
trained with the data obtained from Driver x as Planner x.

Figure 3 displays the trajectories of driving without OVs
(Task 1) as mean and standard deviation over all laps of
Driver 1–4 and Planner 1–4. It displays the velocity, the
distance to the centerline ∆CL, and the lateral acceleration
over the track position from 0 to 50% of the track. It can
be seen that the velocity and lateral acceleration of the
drivers and their respective planners match relatively closely
with some notable exceptions. Driver 1, 3, and 4 exceeded
the target velocity (indicated as constant, black line) of
13.89m/s on average on the straight segment. The path
planner avoids almost always exceeding the target velocity by
design as it is easier to fulfill the other requirements using
lower velocity, which is desirable for autonomous driving
applications. Furthermore, the planners track the centerline
more closely than the drivers, which is due to the path
planner optimization of the requirements.

Next, we consider a motion-planning scenario where both
lanes are initially blocked by two slow OVs with velocities
30km/h and 25km/h on the right and left lane, respectively.
Approaching the blockage, the planner must slow down and
wait for the opportunity to overtake. Figure 4 illustrates the
resulting trajectories of Planner 1–4. It displays the EV’s
velocity, the minimum distance to the other vehicles in the
target lane, and a snapshot of the path, where the positions of
the two OVs are frozen at the time of lane-change decision.
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Fig. 3. Velocity, centerline tracking error, and lateral acceleration for the
four drivers. The mean of all laps of the driving data is displayed in black
with standard deviation in gray. The mean along with standard deviation of
the path planner is displayed in dashed red.

It shows that Planner 2 is the most conservative starting
to decelerate early (vx < 10m/s) and keeping the largest
distance from the OVs (d > 40m and d > 15m on the
right and left lane, respectively). Also, Planner 2’s lane-
change trajectory shows the smallest curvature, which is
expected from its lower tolerance for lateral accelerations,
and is consistent with Driver 2 being the most cautious of the
test subjects. Planner 3 is the least conservative, decelerating
later than the others (see distance and velocity for t < −30s)
and its trajectory exhibits the highest curvature, which is
consistent with the performance driving style of Driver 3.

Individuality of Planners: The motion planners exhibit
some similarities, e.g., not exceeding the target velocity and
a small centerline tracking error. In the traffic-free driving
scenario in Figure 3, the individuality of the planners can be
best identified in the velocity profile and its resulting lateral
acceleration. Planner 1, 2, and 4 take the turn at 9.5m/s, 7m/s,
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Fig. 4. Path planning in traffic. Top left: EV velocity. Bottom left: Distance
from OVs in target lane. Right: Lane-change trajectory with OVs’ positions
frozen at time of decision and marked with x stripes for Planner x.

and 8m/s with lateral accelerations of 1.8m/s2, 1.0m/s2, and
1.5m/s2, which matches their respective drivers’ velocities.
Planner 3 takes the turn at a slightly higher velocity than
Driver 3, however, due to the optimization in the planning
algorithm, the velocity is more constant during the turn and
hence Planner 3 exhibits lower lateral accelerations than
Driver 3, thereby fulfilling both requirements more closely.

Also, the considered traffic-affected scenario in Figure 4
shows individual components. Planner 3 accelerates quickly
and monotonically after the opportunity to overtake presented
itself. Planner 1, 2, and 4 exhibit a brief drop in velocity for
time > 0s. This drop appears at the peak curvature of the
path when the EV turns right to align with the left lane and
is caused by the tolerance for lateral accelerations.

Generalization to other City-Driving Scenarios: Due to
combining data-based, i.e., learning, and model-based, i.e.,
particle-filter motion planning, approaches, the planners gen-
eralize well to road scenarios different from the training
track. Table III shows the case of a circular track with varying
radius, by reporting the mean of the velocities of Planner 1-
4. All the planners decrease their velocities with decreasing
turn radius, with Planner 2 and 4, which generally avoid
higher lateral accelerations, slowing down the most.

TABLE III

CIRCULAR TRACK - AVERAGED VELOCITIES

Radius 500m 100m 50m 25m

Planner 1 13.1m/s 10.9m/s 9.31m/s 7.58m/s
Planner 2 11.4m/s 8.22m/s 6.64m/s 5.23m/s
Planner 3 13.8m/s 13.7m/s 13.5m/s 12.8m/s
Planner 4 12.7m/s 9.90m/s 8.10m/s 6.33m/s

Expected Limitation of Estimated Parameters: For signif-
icantly different driving scenarios, both the drivers and the
planners are expected to behave differently. For instance in
high-speed freeway driving, lane-change maneuvers may be
slower (higher r11) and/or velocities more constant (smaller
r22). This might prompt mode-dependent parameter sets for
each planner, which will be addressed in future work.

VIII. CONCLUSION

This paper presented an inverse learning approach to
calibrate a motion planner from demonstrations of human
driving. It proposed a deterministic requirement function
with a priori unknown parameters and an algorithm for their
estimation. Further, it presented a likelihood maximization
method to estimate the probability distribution defining tol-
erated deviations from the requirements. Human-in-the-loop
simulations with four drivers showed that the estimates are
different for each individual, thus resulting in the motion
planner generating different motions that, while satisfying the
intrinsic properties of the model-based planning algorithm,
had a behavior similar to the corresponding drivers.
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