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Abstract

This paper proposes a model-based deep reinforcement learning (DRL) algorithm for coop-
erative adaptive cruise control (CACC) of connected vehicles. Differing from most existing
CACC works, we consider a platoon consisting of both human-driven and autonomous vehi-
cles. The humandriven vehicles are heterogeneous and connected via vehicleto-vehicle (V2V)
communication and the autonomous vehicles are controlled by a cloud-based centralized DRL
controller via vehicle-to-cloud (V2C) communication. To overcome the safety and robustness
issues of RL, the algorithm informs lowerlevel controllers of desired headway signals instead
of directly controlling vehicle accelerations. The lower-level behavior is modeled according
to the optimal velocity model (OVM), which determines vehicle acceleration according to a
headway input. Numerical experiments show that the model-based DRL algorithm outper-
forms its model-free version in both safety and stability of CACC. Furthermore, we study
the impact of different penetration ratios of autonomous vehicles on the safety, stability, and
optimality of the CACC policy.
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Abstract— This paper proposes a model-based deep rein-
forcement learning (DRL) algorithm for cooperative adaptive
cruise control (CACC) of connected vehicles. Differing from
most existing CACC works, we consider a platoon consisting
of both human-driven and autonomous vehicles. The human-
driven vehicles are heterogeneous and connected via vehicle-
to-vehicle (V2V) communication and the autonomous vehicles
are controlled by a cloud-based centralized DRL controller
via vehicle-to-cloud (V2C) communication. To overcome the
safety and robustness issues of RL, the algorithm informs lower-
level controllers of desired headway signals instead of directly
controlling vehicle accelerations. The lower-level behavior is
modeled according to the optimal velocity model (OVM),
which determines vehicle acceleration according to a headway
input. Numerical experiments show that the model-based DRL
algorithm outperforms its model-free version in both safety
and stability of CACC. Furthermore, we study the impact
of different penetration ratios of autonomous vehicles on the
safety, stability, and optimality of the CACC policy.

I. INTRODUCTION

Vehicle platooning, or driving in grouped rows of vehicles,
has been recognized as providing a significant social and
environmental benefit as it can both significantly decrease
fuel economy and increase road capacity. For this reason,
effort has been devoted in both academia and industry to
improving the autonomy, adaptivity, safety, and reliability
of vehicular platoon control. Platoon control relies on coop-
eration between vehicles and, for this reason, research has
focused on the development of cooperative adaptive cruise
control (CACC) [1]. Relying on vehicle-specific wireless
communication protocols, such as vehicle-to-vehicle (V2V)
and vehicle-to-cloud (V2C), which allow for the real-time
information sharing and control, CACC has the potential to
improve traffic throughput and reduce incidences of collision
(2], [3].

The majority of work on CACC focuses on developing
robust and safe controllers, assuming all vehicles of the
platoon are autonomous and connected. Some work con-
siders a predecessor-following model [4], designing CACC
for a two-vehicle system. Other work considers CACC for
connected, multi-vehicle systems with more global, V2V
communication structures [5], [6]. However, in the near
future, it is expected that most road traffic will be a mixture
of both autonomous and human-driven vehicles and it is
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therefore desirable to design CACC for mixed-autonomy,
multi-vehicle system. Examples of such work can be found
in [7]-[9], but most of the proposed approaches require
solving optimal control problems online, which may not be
efficient and scalable for real-time application. To address
this challenge, in this paper we propose a purely data-driven
reinforcement learning (RL) based approach.

As the joint area of machine learning and artificial intel-
ligence, RL has had rapid and significant progress in recent
years. RL was originally proposed in the control domain
for optimal stochastic controls under uncertainties, within
the framework of Markov decision processes (MDPs) [10].
Unlike traditional model-based optimization approaches, RL
directly fits a parametric model to learn the optimal control
policy, based on its experience interacting with the control
system. Recently, deep neural networks (DNNs) have been
successfully applied to enhance the learning capacity of RL,
and the resulting deep reinforcement learning (DRL) algo-
rithms have demonstrated breakthrough human-level perfor-
mance on complex tasks like playing Go [11]. The common
way to deploy DNN models is to maintain them on the cloud
and provide output signals as API services [12], in order
to protect the trained model and allocate sufficient resource
for model inference. With the coming roll-out of 5G, the
communication latency between cloud and edge devices will
be reduced significantly and, considering this communication
structure, this paper proposes a new CACC architecture
where a centralized cloud-based DRL controller exchanges
information with all connected autonomous vehicles via V2C
communication.

Recent studies of RL-based CACC include [13], which
was the first to apply a policy gradient method for CACC but
results in oscillatory behavior due to the discrete longitudinal
control; [14], which applies a policy iteration method to learn
parameters of a classical proportional-integral (PI) controller
instead of direct longitudinal control; [15], which proposes
an informative reward design to ensure safety and robustness
of the Q-learning method; and [16], which applies deep-
deterministic policy gradient (DDPG) to learn the continuous
longitudinal control with predicted leading vehicle trajecto-
ries. Most of these works consider a predecessor-following
problem in a two-vehicle system rather than a multi-vehicle
setting. Furthermore, they do not guarantee constraints and
rely heavily on the correctness of input signals, which may
lead to safety and robustness concerns.

In this work, we design a model-based DRL scheme for
CACC. The DRL controller, instead of directly controlling



autonomous vehicle accelerations, informs the parameters of
an optimal velocity model (OVM) [17], which in turn is used
to determine the required acceleration to reach the optimal
velocity according to the model. Our choice is informed
by results found in [15], that controlling acceleration does
not allow RL to explore a safe policy; in contrast, learning
an input to a model, which by itself provides some safety
guarantees, removes the need for us to deliver the same
guarantees using RL. This idea is similar to that found in
[14], where the authors use RL to determine desired velocity
and parameters of a PI controller. Our DRL controller uses a
DDPG approach to learn the desired control. Numerical sim-
ulations are performed comparing our model-based DDPG
approach to a model-free DDPG one. We show that the
model-based approach is superior, providing convergence to
a locally optimal control policy as well as stability of the
platoon.

The rest of the paper is organized as follows. In Section II,
we present the system model. In Section III, we formulate
the CACC problem. In Section IV, we introduce our model-
based DRL approach. In Section V, we provide numerical
results. Section VI is the conclusion.

II. SYSTEM MODEL

We consider a platoon or set of connected vehicles V),
traveling on a straight road. The platoon consists of both
human-driven and autonomous vehicles so that V = V), U
V, where V}, is the set of human-driven vehicles and V,
is the set of autonomous vehicles. Autonomous vehicles are
controlled by a cloud-based DRL controller through V2C
communication, while human-driven vehicles only transmit
state information via V2V communication.

A. Vehicle dynamics

Given a vehicle ¢ € V, we denote its headway, i.e.,
bumper-to-bumper distance between ¢ and its leading vehicle
i — 1, by h;, its velocity by v;, and its acceleration by wu,.
The vehicle dynamics are given by,

hi =vi—1 —vj,

Vi = Uy,

which we discretize as,

t4+At
Rit+1 = hit +/ (Vie1,r — Vi 7)dT, (1a)
t

Vi1 = Vip + Ui At (1b)

with sampling time At. To ensure comfort and safety, the
following constraints are applied to each vehicle,

hmin é hi,ta (23)
0 S Vit S Umax (Zb)
Umin < Uit < Umax, (2¢)

hmin 1S the minimum safe headway, vp.x iS the speed
limit, and upmi, < 0 and wupax > 0 are deceleration and
acceleration limits, respectively.

The car-following behavior of each human-driven vehicle
i € V), is modeled using the OVM,

Wi = a; (V(higs B hY) —vig) + Bi(vicie — vig), (3)

where «; and (3; are headway gain and relative velocity gain
for each human driver and v is a headway-based velocity
policy:

0 if b < b,
0 (h) = § Somax (1= cos (mfsh ) i he < h< b,
Umax if h > 19,

“4)
where h° is the stop headway and hY is the full-speed
headway.

B. Communication between vehicles

We assume that each human-driven vehicle 7 € V), is able
to send its headway h;, velocity v;, and acceleration u;, to
any nearby vehicle within range D. We define f/h,t C Vy as
a group of human-driven vehicles whose states are accessible
by an autonomous vehicle, based on the vehicle position z
at time ¢,

])h,t = Uiev, {j € Vit |zjs — 244 < D} (5)

We also assume that all autonomous vehicles are able to
send their state and receive control signals from the central,
cloud-based controller.

Let s;4, ¢ € V, denote each vehicle’s state,

hi
Sit = | Vit
Uj,t
We design a control policy u to determine the acceleration
inputs u;, of all autonomous vehicles 7 € V,. The control
inputs are given by,

Ugt = M(ét)7 (6)

where u, ; is the vector of all autonomous vehicles states,

Ug,t = [ui,t]ieva 5

and §; is the vector of all vehicle states,

ét - [éi,t]ievv

with 8; 4 = s, if i € Vo U ]}}m and 0 otherwise. Note that,
since the RL algorithm must have a fixed dimension (in this
case 3|V|), we must choose a value for the set the states of
out-of-range vehicles Vj, \ f)h,t.

In Fig. 1 we present an illustration of the communication
between vehicles and the cloud-based DRL controller. In the
illustration, we show that each autonomous vehicle collects
states of nearby human-driven vehicle within V2V com-
munication range D, that the cloud-based DRL controller
collects states from all autonomous vehicles and that it
outputs a control action to the same vehicles, and that each
human-driven or autonomous vehicle performs a longitudinal
control based on either the OVM or the received command,
respectively.
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Fig. 1. Illustration showing a platoon of connected vehicles; blue vehicles
are human-driven and red vehicles are autonomous; the V2V communication
range D is illustrated by a red ellipse; V2V and V2C communications are
shown as dashed and solid arrows, respectively, inheriting their color from
the sender

II1. CACC

The common goal of CACC is to ensure plant- and string-
stability of the controlled platoon for a desired headway. A
platoon is plant stable if all vehicles approach the constant
velocity of their leading vehicle; it is string stable if distur-
bances in velocity are attenuated along the entire platoon.

To achieve this, we set the objective as the minimization
of the mean-squared errors of velocity and headway with
respect to a desired velocity v; and headway h* with a
quadratic penalty on control, i.e., we maximize,

_ 1 E
Vp) =7> 7, (7)
t=1

=l

subject to (1)-(3), (6), forall t =1,2,...,T, where T is the
planning horizon and,

1
= > e, ®)

i€V

with Ei}t = ((hi’tJrl — h*)2 + a(vi’tﬂ — ’U;k)z + buf}t), is
the step-wise reward, where a and b are weights correspond-
ing to plant and string stability, respectively.

Since the dynamics of human-driven vehicles are nonlinear
and depend on unknown parameters, such as «; and [;,
1 € Vy, it is impossibly difficult to determine p analytically.
For this reason, we pursue an RL approach, which attempts
to determine the optimal policy statistically, from explored
experience of underlying system dynamics.

RL is formulated as an MDP with the definition of state,
action, transition, and reward. The state s; € S contains all
accessible information for decision-making S;. In model-free
RL, the action a; € A is simply the centralized longitudinal
control u, ;. However, learning a safe and robust longitudinal
control is challenging due to the data-driven nature of RL.
We therefore apply RL to learn adaptive high-level car-
following strategies, while the actual acceleration is still
controlled by OVM. Specifically, the action is the full-
speed headway recommendation a; := [h{ Jicy,, and the

longitudinal control of each autonomous vehicle ¢ € V,, is,
uiy = & (V0 (hig; h® 0 ) = i) + Buicie —vin), (9)

where @ and S are design parameters. To improve ex-
ploration efficiency, we bound the action space to A =
[hI.  h9. WVl where h?. < hg.. are minimum and
maximum full-speed headways.

The system transition is defined by (1) and (3) and the
control (9) and it is Markovian. Control constraints are
directly applied to each control u;;. Headway constraints
(2a) may easily become violated due to human behavior or
unsafe RL policy and therefore, to make RL become aware
of safety constraints, we follow [15] to represent these as
part of the reward according to,

> (min{hi 1 — he, 0})?,

%

X

Ty = Ft + (10)

c
VI
where c is a weighting parameter. The above holds as long
as h;; > hmin for all 7 € V. If the headway constraint is
violated for any ¢ € V in training, we set ; = —G for some
large GG and terminate training early.

RL learns the optimal stationary policy 7y : S — A to
maximize the discounted return,

T

V(o) :Z'yt_lrt, 0<y<l1. 11
t=1

We use 6 to denote a trainable parametric model such as a

DNN.

IV. DRL For CACC

In this section, we introduce and describe details of the
model-based DRL algorithm applied to CACC and training
strategies.

A. DRL algorithm

To learn the CACC policy, we use DDPG as it has
been widely applied to robotic continuous control and its
effectiveness has been verified in various applications. DDPG
trains both an actor network to learn the optimal policy my
and a critic network to learn the corresponding return (Q-
value) estimate @, : S x A — R. As many off-policy
RL algorithms, DDPG maintains an experience replay buffer
to store recently explored experience for sample-efficient
training. Instead of random exploration like an e—greedy,
it adopts the Ornstein-Uhlenbeck (OU) process to achieve
temporally correlated exploration [18]. To ensure that the
explored action remains inside the action space, for every
i € V,, we saturate the action between hr’;ﬁn and hY

hzg,t = Clip{hﬁlil’ﬂ WG(St)[i] + Eo(t; 007 UO)’ h?nax}v

where the noise € is sampled from the OU process with
parameters 6° and o°.

We provide the algorithm pseudo-code in Algorithm 1. To
differentiate our algorithm from the model-free DDPG-based
CACC algorithm, we refer to it as DDPG-OVM. At each
step, a full-speed headway recommendation is first explored
based on the current state (line 6), then the corresponding

(12)



Algorithm 1: DDPG-OVM based CACC

1 initialize DDPG model 6, w and replay buffer D;
2 for each training episode do
3 initialize s1 = s, t = 1;
4 while ¢t < T do
5 observe state s;;
/+ OU exploration */
6 explore a; = [h,]icy, by (12);
/+ vehicle control */
7 get u; ; by (9) for all ¢ € V,;
8 get u;; by (3) for all ¢ € Vy;
9 perform for all ¢ € V constrain u; ; by (2¢);
/+ experience collection */
10 observe updated state s;1 by (1);
11 compute compute 7; by (10);
/+ model update %/
12 update D + DU {e; := (s¢,a¢, St+1,7¢) 15
13 sample minibatch D,, := {e,} from D;
14 update 0, w based on gradient from D,,;
15 if r; = —G then
16 | break;
17 end
18 update ¢ <t + 1;
19 end
20 end

constrained longitudinal control is performed by each vehicle
(lines 7-9). Next, the system transfers to another state and the
corresponding reward signal is collected (lines 10 and 11).
Note the human parameters «; and (3;, i € V), are known
to the system but not provided to the agent and therefore
not included in the state. Finally, the agent attaches this new
experience to the replay buffer and samples a minibatch of
experiences from it to update the model parameters (lines
12-14). The gradient update procedure we use can be found
in [19]. Note that (2a) may be violated during the exploration
and that the corresponding experience is accumulated for the
agent to learn how to avoid headway constraint violation. If
violation occurs, the episode is terminated (line 15-17).

B. DRL training

1) DNN settings: We adopt the DNN structure proposed
in [19] and illustrated in Fig. 2. The DNN contains two
hidden layers of rectified non-linearity with 400 and 300
units respectively. The final layer of the critic network is
linear with a scalar output of the Q-value, and the final
layer of the actor network is tanh with a |V,|—dimensional
vector output of bounded headway recommendations. The
actions are not included until the second hidden layer of the
critic network. Default hyper-parameters are used for training
DNN weights: the learning rates are 10~* and 10=3 for
actor and critic networks, respectively, and the critic network
has a 10~2-weighted L?-norm weight regularization. Finally,
the global gradient norm is clipped at 40 for stabilizing the
update.

vehicle states FC (400) FC (300) linear

St \ -

actor network

softmax

Fig. 2. DDPG actor and critic DNN structures, with different layer types
in different colors

State normalization is important in DNN-training as the
scale of input signal is maintained when it is passed through a
DNN. To provide reward-related information after normaliza-
tion, acceleration is normalized according to —u/tumiy if u <
0 and u/umax otherwise, velocity is normalized according
to 3(v — v;)/vf, and headway is normalized according to
(h — h*)/h*. All normalized states are clipped between —2
and 2 to prevent outliers.

2) Training settings: Default hyper-parameters are used
for DDPG training, i.e., the discount factor v = 0.99 and the
OU process #° = 0.15, 0° = 0.2. The reward coefficients are
a=1,b=0.1, c=5, and G = 1000. Considering ordinary
V2V communication [20], whose range and sampling time
are D = 40m and At = 0.2s, respectively. The DDPG model
is trained over 10° steps, and each episode simulates the
vehicle dynamics of a CACC platoon for 2 minutes, i.e.,
T = 600 steps. We use the following constraint parameters
[4], [7]: Umin = —2.5M/52, Upax = 2.5m/82, Vpay = 30m/s,
Rmin = 2m, hy = 5m, hy = 35m. The output of the actor
network is scaled so that my(s;) € [10m, 60m], i.e., h?, =
10m and h{ .. = 60m.

max

V. NUMERICAL SIMULATIONS

A. Setup

Noting that recent demonstrations of CACC [5]-[7] per-
form simulation of between five and ten connected vehicles,
we simulate a platoon of 8 vehicles, excluding the leading
vehicle, with half of them set to be autonomous vehicles
running at odd positions, i.e., we choose V, = {1,3,5,7}
and V;, = {2,4,6,8}. For human-driven vehicles, we set
differing OVM parameters as = 0.4, 83 = 0.4, ay = 0.3,
ﬁ4 = 0.5, g = 0.3, 56‘ = 0.4, ag = 0.5, and 68 = 0.5; for
autonomous vehicles the design OVM parameters are chosen
as a = =04.

As has been done in [7], we investigate how CACC helps
the platoon catch up to the head vehicle. Specifically, the
desired velocity profile is v; = v* = 15m/s and the desired
headway is h* = 20m. In the initial state, all vehicles are
already driving at v* and h*, except for the first vehicle of the
platoon whose headway is h;,; = 80m. Therefore the CACC
task is to control the platoon to transit to another steady state
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Fig. 3. Learning performance of DDPG and DDPG-OVM over 108 training
steps; curve and shade indicate the average and standard deviation of rewards
per training episode, respectively

where it is closer to the head vehicle, i.e., h;; = h*, while
ensuring plant and string stability during transition.

B. Learning performance

We compare the learning performance of the DDPG-OVM
algorithm against a model-free DDPG algorithm that directly
learns the longitudinal control of autonomous vehicles, i.e.,
mg(st) = uy. Model-free DDPG was demonstrated to have
good performance for car-following in a two-vehicle system
recently [16], so we are interested in how well it will perform
in a complex multi-vehicle system with unknown nonlinear
dynamics of human vehicles. Both DDPG and DDPG-OVM
are trained with identical settings, and Fig. 3 plots the
average reward per training episode % Zf:l r; against the
training step. Note that, even though this is the reward of
the behavior policy (12), it is correlated to that of the target
policy mg. In a successful learning process, the training
reward curve first increases as RL improves an initial random
policy from explored experiences, then it becomes stable as
RL converges to a local optimal policy. The results show that
DDPG-OVM learns more efficiently and converges before
2 - 105 steps, while DDPG takes a longer time to achieve a
similar performance at around 4 - 10° steps and is not able
to converge at the end. This implies that it is challenging to
learn stable longitudinal control directly in complex systems,
and a model-based DRL may help by restricting the action
space.

C. Evaluation

Now we evaluate the inference performance of the trained
DDPG-OVM model. We are interested in the performance of
a baseline CACC system where autonomous vehicles are also
controlled by OVM using (3) instead of (9). Alternatively,
this system can be considered as a platoon of purely human-
driven vehicles with enabled OVM-based ACC. Fig. 4 shows
the headway and velocity trajectories of selected vehicles
of the OVM-controlled system, with the average reward

70 — veh#1
60 —— veh #3
‘=50 —— veh #6
g —— veh#8
540
S 30
T 20 Cav

10

0 20 40 60 80 100 120

25
2
EZO i, { \
>
£15
8 vV
L0

5
0 20 40 60 80 100 120

Time [s]

Fig. 4. Headway and velocity trajectories of selected vehicles, where all
vehicles are controlled by OVM

—32.09. We can see it takes about 40s for the platoon to
catch up to the head vehicle and reach the steady state h*
and v*. Plant stability is achieved as all vehicles eventually
drive at the desired velocity v*, despite accelerations and
decelerations in the transition. However, string stability is
violated, since whenever the first vehicle changes its velocity,
the fluctuation is amplified though the platoon. Specifically,
the velocity of the last vehicle (vs ) varies between 5Sm/s to
25 m/s, and its headway (hg ;) drops below 5m, leading to
safety and stability concerns.

We evaluate the same CACC system with autonomous
vehicles controlled by the trained DDPG-OVM model. Fig. 4
shows the headway and velocity trajectories from the same
vehicles, with average reward —20.59. We can see the pla-
toon reaches h* and v* much faster, within 20s. Furthermore,
string stability is achieved since all other vehicles follow
nearly the same velocity profile as that of the first vehicle.
This can also be verified in the plot of headway trajectories,
where all other vehicles are able to maintain a headway close
to h* during transition. Interestingly, not only autonomous
vehicles but also human-driven vehicles {6,8} are able to
achieve a safe and stable longitudinal control. This implies
that the DDPG-OVM model is able to learn the behavior
of unknown human drivers and optimize CACC over the
entire platoon, based on its experience interacting with such
a system.

We perform a final simulation to evaluate the CACC
system where all vehicles are controlled by DDPG-OVM.
With the settings above, the agent fails to learn due to the
challenges in exploring a both safe and optimal policy. To
address this issue, we reduce the action space size so that
the agent is restricted to explore more within the safe OVM
policy. Specifically, we set hY . = 20m and hZ, = 50m.
Fig. 6 shows the headway and velocity trajectories under the
learned policy. We can see similar plant and string stabilities
are achieved in this system, though a higher diversity is
observed among velocity trajectories of different vehicles.
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Experiments in this catch-up scenario imply that CACC-
enabled autonomous vehicles can improve the plant and
string stabilities of a platoon. However, beyond a certain
threshold, further increase in the penetration ratio of au-
tonomous vehicles may not steadily improve performance;
it may instead introduce safety concerns from the learning-
based CACC policies.

VI. CONCLUSION

In this paper, we presented a model-based DRL approach
to the CACC of vehicle platoons consisting of both human-
driven and autonomous vehicles. We designed a DRL con-
troller based on a DDPG approach which, instead of directly
controlling vehicle accelerations, determines headway pa-
rameters of an OVM model. Numerical simulation results
show that the model-based approach is superior to a model-
free approach, with the former exhibiting convergence to a
local optimum as well as stability.
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