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Abstract
The central challenge in supporting massive IoT connectivity is the uncoordinated, random
access by sporadically active devices. The random access protocol and activity detection
have been widely studied, while the auxiliary procedures, such as synchronization, channel
estimation and equalization, have received much less attention. However, once the protocol
is fixed, the access performance can only be improved by a more effective receiver, through
more accurate execution of the auxiliary procedures. This motivates the pursuit of joint
synchronization and channel estimation, rather than the traditional approach of handling
them separately. The prohibitive complexity of the conventional analytical solutions leads us
to employ the tools of deep learning in this paper. Specifically, the proposed method is applied
to the random access protocol of Narrowband IoT (NB-IoT), preserving its standard preamble
structure. We obtain excellent performance in estimating Time-of-Arrival (ToA), Carrier-
Frequency Offset (CFO), channel gain and collision multiplicity from a received mixture of
transmissions. The proposed estimator achieves a ToA Root-Mean-Square Error (RMSE) of
0.99 microsecond and a CFO RMSE of 1.61 Hz at 10 dB Signal-to-Noise Ratio (SNR), whereas
a conventional estimator using two cascaded stages have RMSEs of 15.85 microsecond and
8.05 Hz,respectively.
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Abstract—The central challenge in supporting massive IoT
connectivity is the uncoordinated, random access by sporadically
active devices. The random access protocol and activity detection
have been widely studied, while the auxiliary procedures, such
as synchronization, channel estimation and equalization, have
received much less attention. However, once the protocol is fixed,
the access performance can only be improved by a more effective
receiver, through more accurate execution of the auxiliary
procedures. This motivates the pursuit of joint synchronization
and channel estimation, rather than the traditional approach
of handling them separately. The prohibitive complexity of the
conventional analytical solutions leads us to employ the tools of
deep learning in this paper. Specifically, the proposed method
is applied to the random access protocol of Narrowband IoT
(NB-IoT), preserving its standard preamble structure. We ob-
tain excellent performance in estimating Time-of-Arrival (ToA),
Carrier-Frequency Offset (CFO), channel gain and collision
multiplicity from a received mixture of transmissions. The
proposed estimator achieves a ToA Root-Mean-Square Error
(RMSE) of 0.99 µs and a CFO RMSE of 1.61 Hz at 10 dB
Signal-to-Noise Ratio (SNR), whereas a conventional estimator
using two cascaded stages have RMSEs of 15.85 µs and 8.05 Hz,
respectively.
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I. INTRODUCTION

A massive number of devices are expected to be connected

to the Internet and several standards have been proposed to

enable connectivity of low-complexity devices operating over

a shared wireless channel. Most prominent technologies are

Sigfox, LoRa and Narrowband IoT (NB-IoT) [1]. In Internet

of Things (IoT) applications, the random access procedure

has a high impact on device battery life and number of

devices that can be supported concurrently [2]. Random access

is used to request uplink allocation from the base station

without requiring users to be constantly connected to the

base station. Most IoT data packets are on the order of bits

and users transmit them sporadically by establishing a new

connection for every transmission. Establishing a connection

using random access is a four step procedure [3], [4], which

is initiated by a user that has packet to transmit by sending

a random access preamble. The random access preamble

is designed such that the base station is able to efficiently

detect the transmitting user and estimate any timing offset

between the user and base-station from the received signal.

The first author performed this work as an intern at MERL.

The timing offset comprises of propagation time, downlink

synchronization errors and channel delay spread [5].

NB-IoT is a recent standard proposed by the 3rd Generation

Partnership Project (3GPP) to accommodate the emerging

number of wireless devices connected to the Internet. It is

designed to co-exist with Long-Term Evolution (LTE) and

provide low-cost and low-power devices with low throughput

connectivity. The random access procedure in the NB-IoT

is initiated by the Narrowband Physical Random Access

CHannel (NPRACH). The NB-IoT has a system bandwidth

of 180 kHz that accommodates 48 orthogonal channels from

which a user attempting to establish a connection chooses one

at random. If NB-IoT users choose different (i.e., orthogonal)

preambles, the base station is able to estimate Time of Arrival

(ToA) and Carrier Frequency Offset (CFO) of each user [5],

[6]. However, given a possibly large number of users and

relatively small number of orthogonal preambles, it is likely

that two or more users choose the same preamble. The

resulting collision may lead to a user back-off time of up

to almost 9 minutes [7], [8]. In order to avoid unnecessary

backoff periods and consequently improve channel utilization

and overall capacity of the NB-IoT system, we propose in

this paper a Deep Learning (DL)-based method for separating

colliding users, detecting their number and estimating their

respective ToAs and CFOs. We validate the proposed method

using simulations and demonstrate significantly improved

performance compared to the conventional approaches.

A. Related Work

Several papers have explored methods for activity detec-

tion, ToA and CFO estimation using the NB-IoT NPRACH

preamble structure. As such, [5] estimates the ToA by search-

ing for highest correlation between the received signal and

delayed/frequency-shifted preamble on a grid of possible

delays and frequencies. To reduce the complexity of the

algorithm in [5], the ToA and CFO are estimated using the

residual phase difference between symbol groups and channel

hops in a two-stage procedure in [6]. With the goal to improve

the ToA estimation, [4] suggests a novel hopping pattern

that renders more accurate ToA estimation compared to that

achieved with the already defined NB-IoT preamble.

We consider in this paper a problem of separating colliding

NB-IoT users that choose the same random access preamble

in the NPRACH scheme, and propose a method to detect

the number of colliding users and estimate their ToA, CFO



CP

Symbol group

m = 0m = 0

m = 1

m = 2

m = 3

1
2
 s

u
b
-c

a
rr

ie
rs

 �

(m
) 

� = 5266.7 µs

3
.7

5
 K

H
z

L = 4

Uplink slot n = 1, ..., 128

Fig. 1. Overview of NPRACH preamble and packet structure.

and channel gains. Motivated by recent success in leveraging

learning-based methods for addressing problems related to

physical layer communications [9], our method builds upon

deep learning framework. In particular, we jointly detect

the number of active users and estimate their parameters,

with the aim to improve the capacity of the critical random

access phase by not discarding interfering signals in order to

utilize channel resources better, which in turn reduces back-off

periods. In addition to handling much richer class of scenarios,

the proposed method outperforms [6] in their own scenario

where users transmit orthogonal preambles and do not collide.

In comparison to [4], the random access preamble in this

work is as suggested by the NB-IoT standard, ensuring the

proposed method is practical in the NB-IoT systems currently

being deployed. Finally, looking outside the NB-IoT scope,

we believe that this work is the first application of deep

learning techniques for user separation in massive connectivity

systems.

II. NB-IOT RANDOM ACCESS PREAMBLE DESIGN

The preamble format and packet structure are illustrated in

Fig. 1. The preamble is divided into symbol groups, where

each group consists of a Cyclic Prefix (CP) and ε identical

symbols. The value of ε depends on preamble format. The

preamble format is chosen by the user based on the downlink

power measurement to estimate its coverage area [3].

The most common preamble format is format 1 with

preamble frame structure 0 or 1, which has ε = 5 and a

symbol time TSYM = 266.7 µs. The CP period for frame

format 0 is TCP = 66.7 µs and TCP = 266.7 µs for frame

format 1 [10]. The CP is designed such that it is long enough

to cover the maximum round trip delay to suppress Inter-

Symbol Interference (ISI). Therefore one interpretation of

allowing adaptive CP selection is for the user to use the short

CP in the range 0–8 km and the long CP in the range 8–35 km

[5].

The full preamble consists of 4 repetitions of the symbol

group which is again repeated n = 2J , J = 0, . . . , 7 times

for a full preamble length of L = 4× 2J symbol groups. The

repetition of the symbol groups occurs within an uplink slot,

and the number of repetitions is decided by the upper Medium

Access Control (MAC)-layer depending on estimated link

quality [10]. For simplicity we only consider the arbitrarily

chosen case where J = 2, i.e., four symbol groups are

repeated 4 times.

Before transmission, the user chooses a contiguous set of

N = 12, 24, 36 or 48 subcarriers with 3.75 kHz spacing out

of the available 48 subcarriers. This paper focuses on the

preamble frame structure type 1 where N = 12. At the start

of the NPRACH preamble transmission, the subcarrier of the

first symbol group is chosen at random. After each symbol

group the subcarrier will change using a deterministic channel

hopping sequence so in the duration of a preamble there will

be L subcarrier hops. Since the hopping pattern is determinis-

tic, several users choosing the same initial subcarrier will thus

collide for the entirety of the NPRACH preamble sequence.

The number of orthogonal preamble sequences is therefore

the number of allocated NPRACH subcarriers [7].

For frame structure type 1 and preamble format 0, two “lev-

els” of hopping are employed as shown in Fig. 1. The hopping

pattern is deterministic within a cell, but the subcarrier of

every 4th symbol group appears random to neighbouring cells.

The hopping procedure aids in the estimation of ToA and also

reduces inter- and intra-cell interference [5]. The ToA should

be estimated by the base station for successful uplink signal

decoding and it further enables device positioning. Error in

the ToA estimation results in the user being unable to receive

the response sent by the base station. ToA estimation therefore

has a great impact on performance in NB-IoT [4].

III. SYSTEM MODEL

The received signal at the base station is a superposition of

signals from multiple users, given by

y[n] =

K−1
∑

k=0

aksk[n] + w[n], (1)

where K is the maximum number of concurrent users, ak ∈
{0, 1} indicates whether the kth user is active or not, and

w[n] ∼ CN (0, 1/ρn) denotes the additive noise with a per

symbol Signal-to-Noise Ratio (SNR) of ρn.

At the receiver, the phase of each symbol depends on the

ToA τ , the CFO ∆f (which gives the frequency of the user’s

chosen channel with respect to the receiver’s uplink carrier

frequency f ), and the channel rotation given by arg(h), where

h is the complex-valued channel coefficient. These parameters

are assumed to be independent across users and denoted by

τk, ∆fk and hk for each user k.

The signal from the kth user is given by

sk[n] = hk e
−2π(fn+∆fk)(nTsym−τk), (2)

where Tsym is the symbol duration. The signal model is

limited to only considering a single preamble sequence for the
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Fig. 2. Geometry of users distribution.

sake of simplicity. This means that the sub-carrier frequency

pattern fn is predetermined and identical for all instances of

s.

The typical FFT length in LTE is 512 [6], but for simplicity

we describe that each sample, n, corresponds to a symbol.

In this model, the contents of the CP are interpreted as a

symbol and therefore no distinction is made between the CP

and the ε = 5 repeated symbols in a symbol group. This signal

model may be valid only for the long CP which corresponds to

distances between the user and base station within a minimum

of r = 8km and a maximum of R = 35 km [5]. The users

are assumed to be uniformly distributed in the coverage area

of the base station as illustrated in Fig. 2. The distance from

the base station to the users d has the following Probability

Density Function (PDF) [11]:

fD(d) =
2d

R2 − r2
, r ≤ d ≤ R, (3)

which is used to model the ToA τk = d
c

, where c is the

propagation speed.

The channel coefficient hk of the signal model in (2) is

a complex-valued constant which accounts for small scale

fading: hk ∼ CN (0, 1). This means that the average received

signal power is normalized to one. The narrowband channel is

modeled as a slowly varying single-tap Rayleigh fading chan-

nel and for this reason, modeled as a single coefficient [6].

Large scale fading is not included in the model since users

already have knowledge of the downlink SNR and adjust their

transmit power accordingly using power control.

The CFO in (2) is chosen uniformly at random between

−20 and +20 Hz [6]. For the sake of simplicity, the CFO

and ToA are assumed to be constant throughout an entire

NPRACH transmission for each user.

The activity indicator ak is modeled as Bernoulli random

variable with the probability of transmitting p and a1, . . . , aK
are independent and identically distributed (i.i.d.). The number

of concurrent active users is

Na =
K
∑

k=1

ak ∼ B(K, p), (4)

where B is the binomial distribution. We consider the case

with K = 4 and p = 0.5 throughout the paper.

IV. DEEP LEARNING ESTIMATOR

The goal of the estimator is to use the discrete signal

y[n] to estimate the activity indicator ak, ToA τk, CFO

∆fk, and channel coefficient hk of each user. Since the

activity indicator of each user is a random variable, the total

number of active users in the received signal is unknown. This

boils down to a notoriously challenging problem of source

separation with unknown number of users [12]. Deep learning

has significantly improved the field of source separation and

the general idea of using deep learning is to capture non-linear

relationship between inputs and corresponding targets that is

often difficult to model with analytically tractable expressions

[12]. In this paper, estimating the unknown parameters is dealt

with by splitting the problem into:

• Classification of the number of active users; and

• Estimation of ToAs, CFOs and channel coefficients given

the number of users.

The two separate tasks are combined such that the synchro-

nization parameters are accurately estimated for each detected

user.

A. Estimation of the Number of Users

Finding the number of active users, Na, is formulated

as a classification problem where p = OneHot(Na) is a

categorical random variable encoded as a one-hot vector

specifying Na. With a one-hot encoding, the true target

p = [p0, p1, . . . , pK ] has entry one at index Na, and zero

entries everywhere else. This is different from a typical way

of representing active users where users are ordered in a

vector and each index indicates the activity of a unique user.

The number of users Na can then be estimated as the l0
norm of that sparse vector. In this collision scenario users are

transmitting using the same spreading sequence and are not

uniquely distinguishable. For this reason, only the information

on the number of active users is represented in p.

Cross-entropy loss is typically used in classification prob-

lems [13], and [14] suggests that the cross-entropy loss in

classification problems leads to faster convergence and better

generalization compared to the Mean Squared Error (MSE).

For nonbinary classification, we typically use softmax cross

entropy loss (or negative log-likelihood) expressed as:

ℓNLL(p,q) = −
K
∑

k=0

pk log qk, (5)

where q is a continuous differentiable softmax function:

qk =
exp(πk)

∑

i exp(πi)
, (6)

where [π0, π1, . . . πK ] are the outputs from the last layer of the

neural network and [q0, q1, . . . qK ] represent the a posteriori

class probabilities. A hard class prediction could then be found

as argmaxi[πi]. The simple arg max is not differentiable,

and thus the softmax approximation of argmax is often used

[15].

B. Parameter Estimation

The parameters to be estimated are collected in a vector

xk =
[

τk,∆fk,ℜ[hk],ℑ[hk]
]T

. (7)



Fig. 3. Overview of Deep Neural Network (DNN) architecture for estimating synchronization parameters of up to 4 colliding users.

Note that it was found that representing the complex-valued

channel coefficient hk by Cartesian coordinate (i.e., real

and imaginary parts) shows superior performance to phasor

representation (i.e, amplitude and phase) as seen in Fig. 7.

For Na active users, the respective vectors are collected in a

matrix

X = [x0,x1, . . . ,xNa−1]. (8)

The neural network seeks to find an estimate X̂ such that

E‖X − X̂‖22 is minimal which is equivalent to a Minimum

Mean-Square Error (MMSE) estimator.

The above formulation is sufficient to derive an estimation

procedure. However, X consists of multiple parameters which

have values on different scales. When using a practical opti-

mization algorithm to find an estimate, any scaling difference

between the parameters will affect the impact each value has

on the gradient descent step.

To circumvent possible issues arising from error varia-

tions across parameters, we minimize the reconstruction error

instead. The actual received signal without additive noise,

s, with the parameters in matrix X can be reconstructed

using (2). The reconstruction is conveniently represented using

function f(·) such that s = f(X).
For each estimate X̂, the equivalent noise-free signal ŝ is

reconstructed and compared to the actual noise-free received

signal s. The noise-free signal is known during the training

procedure and is used so the output of the neural network

does not account for the distribution of the noise. The data

fidelity (i.e., reconstruction loss) is quantified using the MSE

metric such that

ℓr(X, X̂) = E
∥

∥f(X)− f(X̂)
∥

∥

2

2
= E

∥

∥s− ŝ
∥

∥

2

2
. (9)

The number of concurrent users in each sample is known

during training so when reconstructing the signal ŝ, the

contributions from the correct number of users are taken into

account when calculating the reconstruction loss ℓr for each

sample.

The loss function which the neural network seeks to mini-

mize is simply the sum of (5) and (9)

loss = ℓp(k,q) + ℓr(X, X̂). (10)

C. Network Implementation

An overview of the neural network that estimates both the

number of users and synchronization parameters is illustrated

in Fig. 3. The input to the network is the received signal which

consists of 4 NPRACH repetitions each with L(ǫ+1) symbol

periods. The total number of samples in the received signal

is: NrepL(ǫ + 1) = 4 · 4 · (5 + 1) = 96, where the real and

imaginary parts are represented in 2 individual channels.

The output of the network is the flattened matrix X and

the probability vector π. For 4 users there are 4 · 4 = 16
parameters in X and 5 possible classes in the number of

users (including the zero users case). The input to the net-

work is processed so as to extract common features that are

subsequently used for multi-task learning, that is, to detect the

number of users and estimate their parameters. The first layer

performs a 1-dimensional convolution over the input signal.

Since the number of users, ToA, CFO and channel coefficient

all are assumed to be constant throughout a transmission, a

convolution layer is chosen so as to extract translationally

invariant features of the input time-domain signal.

Following a typical Convolutional Neural Network (CNN)

structure, batch normalization, non-linear activation and max-

pooling are employed. The convolution layers, activations and

pooling layers are repeated to form a deep neural network.

The features found by the convolution layers are reshaped to

a single vector which is then used as input to two individual

feedforward neural networks. One of the networks performs

classification and detects the number of users based on the

output of the feature extraction layers. The other network

performs regression with the goal to yield parameters so

that the reconstructed signal is as close as possible to the

received signal in the MSE sense. Each feedforward network

has two fully connected layers followed by the Rectified

Linear Unit (ReLU) activation and a linear output layer.

The network and automatic differentiation are implemented

using the PyTorch framework [16] and trained using multiple

Graphics Processing Units (GPUs).

In the simulation ToA, CFO and channel coefficient are

all drawn according to the distributions given in the system

model and Na is drawn according to Pr(k) for each sample.

The input to the network y and each parameter in the output

X is scaled to have zero mean and unit variance. In general

the convergence of a neural network is faster if all inputs

to all layers have zero-mean and unit covariance between

training examples in the case when all examples are of equal

importance [17]. From the system model the variance and



mean of each parameter (CFO, ToA and hk) are known and

used to normalize the parameters to have mean zero and unit

variance. The mean and variance of τk can be derived from (3)

and the standardized ToA is given by

τ ′k =
τk − E[τk]

Var(τk)
. (11)

The CFO, ∆fk, is scaled similarly. No normalization is

necessary for the channel coefficients since hk ∼ CN (0, 1)
and thus no scaling is necessary for the signal y.

V. ESTIMATION RESULTS

A. Traditional Methods

The Phase-Difference (PD)-based method proposed in [6]

utilizes the relationship between the phase trace of the re-

ceived signal and the ToA and CFO. This method is used a

benchmark comparison and is a two-step procedure where first

the CFO-induced phase is estimated from phase-differences

between symbol groups in time-domain. This contribution

is then subtracted from the phase of the received signal to

estimate the ToA-induced phase which is found from phase-

differences between symbol groups on different frequencies.

The phase-trace of a noise-free received signal for user k
can be expressed [6]:

βk[n] = −2πτkfn − 2π∆fknTsym + C (12)

where C is a random constant phase offset. In practice the

phase-trace of the received signal is not straightforward to

obtain due to 2π-ambiguity but the unwrap-function and

complex argument function of the received signal provides

a good approximation [6]:

βk[n] = unwrap (arg(sk[n])) . (13)

Phase differences between symbols with the same subcar-

rier frequency fn can be used to estimate the phase contri-

bution of the CFO. Symbols groups contain five consecutive

identical symbols which phase-differences should be averaged

to reduce noise variance. The average of all these estimates

is used is used to estimate the CFO-induced phase [6]:

βk,∆f =
1

N

1

4

N−1
∑

n=0

4
∑

i=1

βk[5n+ i+ 1]− βk[5n+ i]. (14)

The CFO estimate of the kth user is then simply

∆̂fk =
1

2π
βk,∆f . (15)

The estimated CFO-induced phase is subtracted from the

phase-trace of the received signal and the ToA can be esti-

mated similarly. This estimate is only valid if the phase-trace

of the received signal only contains the contribution from a

single user.

As a benchmark for the detection of the number of users, a

crude amplitude-based estimator is devised. The mean ampli-

tude of the received signal for different number of colliding

users is compared to the amplitude of the received signal.

The closest match then yields an estimate of the number of

colliding users present in the received signal.

Fig. 4. Accuracy of estimating the number of colliding users. A signal is
deemed correctly detected if the number of users are estimated correctly. The
NN estimator is trained for signals with 10 dB SNR.

B. Simulation

The neural network is trained using samples generated with

up to K = 4 concurrent users and at an SNR of 10 dB. New

batches are generated for every step in the training procedure.

The learning rate is 0.0001 and each batch consists of 50,000
realizations of y from (1). The stochastic optimization method

based on adaptive momentum (ADAM) [18] is used and a total

of 20,000 different batches are used in training.

In Fig. 4, the estimation of collision multiplicity is shown

for the proposed classification method compared to a simple

amplitude-based method. As colliding signals will add non-

coherently, the amplitude of the signal is not a good indicator

on collision multiplicity. 1 and 2 users are successfully

identified with 98.0 % and 93.2 % at an SNR of 10 dB and the

estimation accuracy decreases with the number of concurrent

users. The proposed method often miss-classifies a signal

containing 4 colliding users as resulting from transmissions

of 3 users. Further it is counterintuitive to see a decrease

in probability of detection for 3 users as SNR increases.

However, using a data-driven approach the performance can

only be guaranteed under the same conditions as used during

training. In this case all the training signals has 10 dB SNR.

Since the loss function only depends on the reconstruction

error, the estimated parameters in X̂ are arbitrarily ordered

across users. To compare the output with the target X the

parameters are ordered according to the estimated amplitudes.

In cases where the estimated amplitudes are similar, the

ordering may be wrong which leads to an artificially high

error when evaluating performance for multiple users.

The RMSE of each parameter in X is calculated as:

RMSEk =
√

E
[

‖ek‖22
]

, (16)

where e.g. the estimation error of τ is: ek = τk − τ̂k. The

RMSE of the proposed neural network-based estimator is the



Fig. 5. Root-Mean-Square Error (RMSE) of ToA estimation across SNRs.

average of all RMSEs up to user k:

RMSENN,k =
1

k

k
∑

i=1

RMSEi. (17)

The conventional estimator is only able to estimate a single

set of parameters, regardless of the actual number of users k.

The error of the conventional estimator is therefore measured

as the estimate which has the smallest error over all actual

sets of parameters in X, e.g. the estimated ToA error is

eτ,PD = min
k

(|τk − τ̂PD|). (18)

This gives the conventional estimator an artificial advantage.

The RMSE of ToA and CFO estimation with a varying

number of users are shown in Figures 5 and 6. The neural

network-based estimator shows lower estimation error for

both ToA and CFO compared to the phase-difference-based

estimator even for a single user. The DNN approach achieves

better accuracy by jointly considering ToA and CFO instead

of the cascaded structure of the conventional method. For two

users the proposed estimator is superior to the conventional

estimator when estimating ToA. At 10 dB the proposed es-

timator has an RMSE of 0.99 µs and 1.61 Hz for a single

user compared to 15.85 µs and 8.05 Hz for the conventional

estimator. The relatively high RMSE of the conventional

estimator is likely due to the noise which causes wrong phase

unwrapping at low SNRs [6].

The accuracy in estimating the channel coefficient h is

shown in Fig. 7. The RMSE is 0.101 for the in-phase part and

0.103 for the quadrature part for a single user. The RMSE

shows a similar trend as in ToA and CFO estimation with

deteriorating performance as the number of concurrent users

increases.

Overall the proposed method presents considerably im-

proved performance compared to the traditional estimator in

scenarios with a single, as well as multiple users.

VI. DISCUSSION AND CONCLUSION

We proposed a novel approach to synchronization and chan-

nel estimation. The system model consists of a superposition

Fig. 6. RMSE of CFOs estimation across SNRs.

Fig. 7. RMSE of channel coefficient estimation across SNRs.

of an unknown number of users transmitting with the same

preamble sequence. Deep learning is used to classify the

multiplicity of collisions and estimate ToA, CFO and the

channel coefficients for all user simultaneously.

The method is demonstrated in NB-IoT NPRACH where

the number of orthogonal preambles is limited. The estimation

error of a conventional approach in NB-IoT is compared to the

performance of the proposed scheme. Traditional synchroniza-

tion methods fail in the case of collisions with high Signal-to-

Interference Ratio (SIR) whereas, with the proposed algorithm

users can be distinguished and respective synchronization pa-

rameters can still be estimated with a reasonable performance.

Deep learning is a promising tool for developing joint

estimation procedures, which are notoriously difficult in tra-

ditional model-based methods, and enables separation of syn-

chronization parameters even when users transmit using the

same preamble. Although deep learning-based estimation will

lead to sub-optimal estimators compared to an analytically

derived joint estimator, it allows for practical, straightforward

development and efficient computation.
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