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Abstract
Existing fingerprint-based indoor localization uses either fine-grained channel state infor-
mation (CSI) from the physical layer or coarse-grained received signal strength indicator
(RSSI) measurements from the MAC layer. In this paper, we propose to use an intermedi-
ate channel measurement — spatial beam signal-to-noise ratios (SNRs) that are inherently
available during the beam training phase as defined in the IEEE 802.11ad standard — to
construct the feature space for location-and orientation-dependent fingerprinting database.
We build a 60-GHz experimental platform consisting of three access points and one client
using commercial-off-the-shelf routers and collect realworld beam SNR measurements in an
office environment during regular office hours. Both position/orientation classification and
coordinate estimation are considered using classic machine learning approaches. Comprehen-
sive performance evaluation using real-world beam SNRs demonstrates that the classification
accuracy is 99.8% if the location is only interested, while the accuracy is 98.6% for simulta-
neous position-and-orientations classification. Direct coordinate estimation gives an average
root-mean-square error of 17.52 cm and 95% of all coordinate estimates are less than 26.90
cm away from corresponding true locations. This concept directly applies to other mmWave
band (e.g., 5G) devices where beam training is also required.
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Abstract—Existing fingerprint-based indoor localization uses
either fine-grained channel state information (CSI) from the
physical layer or coarse-grained received signal strength indicator
(RSSI) measurements from the MAC layer. In this paper, we
propose to use an intermediate channel measurement — spatial
beam signal-to-noise ratios (SNRs) that are inherently available
during the beam training phase as defined in the IEEE 802.11ad
standard — to construct the feature space for location-and-
orientation-dependent fingerprinting database. We build a 60-
GHz experimental platform consisting of three access points and
one client using commercial-off-the-shelf routers and collect real-
world beam SNR measurements in an office environment during
regular office hours. Both position/orientation classification and
coordinate estimation are considered using classic machine learn-
ing approaches. Comprehensive performance evaluation using
real-world beam SNRs demonstrates that the classification accu-
racy is 99.8% if the location is only interested, while the accuracy
is 98.6% for simultaneous position-and-orientations classification.
Direct coordinate estimation gives an average root-mean-square
error of 17.52 cm and 95% of all coordinate estimates are less
than 26.90 cm away from corresponding true locations. This
concept directly applies to other mmWave band (e.g., 5G) devices
where beam training is also required.

I. INTRODUCTION

WiFi-based indoor localization has received long attrac-
tion over the past two decades [1]. Among all frameworks,
fingerprinting-based method provides an efficient solution for
online localization with low computational complexity [2]. On
the other hand, it requires enormous time and resources to con-
struct an offline database with chosen fingerprinting features
at locations-of-interest to enable fast online localization.

Existing WiFi-based fingerprinting systems have used re-
ceived signal strength indicator (RSSI) as the feature to
construct the offline training database due to easy access to
commercial 802.11ac devices and low hardware requirements.
Machine learning methods such as the k-nearest neighbor
(kNN), linear/quadratic discriminant analysis (LDA/QDA),
support vector machine (SVM) and decision trees (DT) can
be applied to the RSSI-based fingerprinting data and show
improved localization accuracy [3], [4]. The common issues
of RSSI include 1) instability of RSSI measurements at a given
location and 2) coarse-grained channel information.

The use of channel state information (CSI) for
fingerprinting-based localization gains momentum at 2.4-GHz
and 5-GHz frequency bands in [5]–[10] (references therein)
due to open-source WiFi network interface cards (NICs)
such as Intel WiFi Link 5300 NIC. Specifically, these NICs
provide subcarrier channel frequency responses (CFR) in

an orthogonal frequency-division multiplexing (OFDM)
system and capture the multipath effect via wideband channel
responses. Compared with RSSI measurements, these CSI
measurements are more stable and provide location-sensitive
features. For instance, FIFS leverages the weighted average
of CSI amplitudes over three antennas [5], while DeepFi
exploits 90 CSI amplitudes from all 30 subcarriers at all three
antennas with a deep autoencoder network [7], [8]. To address
the firmware problem for phase information, [11] proposed
to use CSI phase for angle of arrival (AoA) estimation with
5-GHz WiFi signals. [12] used a capture device to extract
the CSI from the CSI feedback step from the user to the
access point, converted into so-called angle measurements for
fingerprinting data, and applied machine learning algorithms
on such fingerprinting data.

For higher frequency bands beyond 5-GHz frequency band,
e.g., 28-GHz band for 5G wireless communications and 60-
GHz for 802.11ad WiFi [13], obtaining real-world fingerprint-
ing measurements is significantly more challenging and usu-
ally requires dedicated prototyping device platforms [14]–[18].
One of unique features of these millimeter-wave (mmWave)
applications is to employ high-resolution beampatterns, via
either analog beamforming, fully digital beamforming, or
hybrid beamforming [19], [20], to compensate for higher path
loss at mmWave bands. More specifically, during the so-
called beam training phase, a pre-determined set of varying
spatial beampatterns is used to probe the environment. For
each probing beampattern, a spatial beam SNR is recorded and
beampatterns with the strongest beam SNR are selected for
subsequently transmitting and receiving. For a given probing
beampattern, spatial beam SNR is RSSI-like coarse-grained
channel measurement. However, with multiple varying beam-
patterns, a set of spatial beam SNRs embed more spatial
channel responses than the traditional RSSI measurement.
Furthermore, spatial beam SNRs are inherently available in the
5G and IEEE 802.11ad standard, that enables zero overhead
for the overall hardware and software infrastructure.

The use of beam information in mmWave frequency bands
has been considered in the past for indoor localization in
[21], [22] and references therein. Particularly, [21] proposed
a direct localization (as opposed to the fingerprinting-based
approach) with particle filters along with linear programming
and Fourier analysis to real-world beam SNR measurements
from commercial-off-the-shelf (COTS) 60-GHz WiFi routers.
Another related work is to use two-dimensional power delay



Fig. 1: Real-world spatial beam SNR measurements at one AP
using a commercial 802.11ad device in an office environment,
where 36 irregular beampatterns (sector index) are used by the
device to report 36 beam SNR values for a packet.

profile (PDP) over multiple beampatterns as fingerprints at 28-
GHz band for outdoor localization [22]. It mainly exploits
the fact that users’ locations can be registered by multipath
delays due to surrounding obstructions (e.g., buildings and
trees). To obtain high-resolution PDP, it assumes that base
stations transmit short pulses with a sequence of directive
beamforming patterns and a high sample rate is required at the
user to separate closely-spaced delays. Moreover, this concept
was verified only using ray-tracing simulated datasets.

As opposed to using the two-dimensional PDP in [22]
that requires additional hardware modifications, this paper
proposes to use spatial beam SNRs1, conveniently available
during the beam training phase in the 5G and 802.11ad stan-
dards, as location-and-orientation-depdenent fingerprints with
zero overhead. Based on the open source software framework
[24] to extract 60-GHz beam SNR measurements, we build
an experimental platform consisting of multiple access points
(APs) and collect comprehensive indoor measurements in an
office environment during regular office hours. Note that these
real-world measurements account for hardware constraints
such as quantization of beam SNR values (i.e., beam SNRs
are acquired at a resolution of 0.25 dB) and non-ideal system
factors such as irregular antenna beampatterns.

With these real-world beam SNR measurements at several
locations-of-interest, we construct a fingerprinting dataset in
the offline training phase. For the online localization phase,
both position-and-orientation classification and coordinate es-
timation are considered using, among classic machine learning
approaches, the (weighted) nearest neighboring (NN) and
Gaussian process (GP) regression approaches. Comprehensive
performance evaluation using real-world beam SNRs demon-
strates that we can achieve an accuracy of 98.6% for simul-
taneously localizing 7 positions with a sub-meter separation
and 4 orientations that are 90◦ apart, while conventional
approaches using RSSI-like single-SNR measurements offer
an accuracy around 40%. If location is the only interest, the
accuracy increases to 99.8% for using spatial beam SNRs,
which is significantly higher than the accuracy around 54%
for using single-SNR measurements. The beam SNR-based

1Separately, Part-I of this work [23] proposes to use RSSI along with beam
indices for fingerprinting-based indoor localization.

fingerprinting localization also shows robustness when the
test data were collected at several off-grid locations that are
different from those used for training data. In this case, the
coordinate estimation with the Gaussian process method gives
an average root-mean-square error (RMSE) of 17.52 cm and
95% of all coordinate estimates are less than 26.90 cm away
from their true locations.

II. FINGERPRINTING-BASED INDOOR LOCALIZATION
WITH BEAM SNR MEASUREMENTS

In the following, we introduce the beam SNRs, a type of
zero-overhead measurement available in the 802.11ad stan-
dard. The beam SNRs feature is a coarse-grained channel mea-
surement but carries rich information on spatial propagation
paths, for fingerprinting-based indoor localization.

A. Beam SNRs Measurements from 802.11ad Devices

To compensate for higher path loss in mmWave bands, IEEE
802.11ad standards use directional antenna beampatterns to
focus transmitting energy on a desired direction. To search for
this desired direction, a series of pre-defined beampatterns or
sectors are used by APs to send beacon messages to potential
clients which in a listening mode with a quasi-ominidirectional
beampattern. Then, clients send a series of beampatterns while
the APs are in a listening mode. After the sector sweeping,
the connection can be established by choosing the pair of
beam sectors by the AP and user. Such sector sweep is
periodically repeated and the beam sectors are updated to
adapt to the environmental changes. As a result, the beam
SNR measurements from multiple beam sectors are inherently
available from 802.11ad devices without any overhead. As one
of commercial 60-GHz WiFi devices, TP-Link AD7200 router
uses a phased array of 32 antenna elements to send 36 pre-
defined directional beampaterns. Due to the antenna housing
and calibration, irregular antenna beampatterns are effectively
formed in the phased array [21].

Given the antenna beampatterns, the beam SNR for the mth
beampattern is defined as

hm = Beam SNRm =
1

σ2

I∑
i=1

γm(θi)Pi(θi), (1)

where I is the total number of paths, θi is the azimuth angle
for the ith path, Pi(θi) is the signal power at the ith path,
γm(θi) is the mth antenna beampattern gain at the ith path,
and σ2 is the noise variance. For TP-Link AD7200 routers,
the beam SNRs are recorded in a stepsize of 0.25 dB.

B. Offline Training Dataset

To construct the fingerprinting dataset, we stack all SNR
measurements from all beam sectors as a vector, e.g., h =
[h1, h2, . . . , hM ]T with [·]T denoting the transpose. When
multiple APs are used, we combine beam SNR measure-
ments from each AP to form one fingerprinting snapshot, i.e.,
h̃ = [hT

1 ,h
T
2 , . . . ,h

T
P ]T ∈ RMP×1, where P is the number

of APs. For a given location and orientation, R fingerprinting
snapshots, h̃1(l, o), · · · , h̃R(l, o), are collected to construct the



Fig. 2: Constructing offline training datasets with beam SNRs
measured at L locations and O orientations.

offline training dataset, where l and o are the indices for the
location and orientation, respectively.

Fig. 1 shows an example of real-world beam SNR mea-
surements at one AP using the commercial TP-Link AD7200
router in an office environment, where M = 36 beam sectors
are swept to measure SNRs. It is seen that the beam SNR
patterns remain stable over time (packet index) with a few
fluctuations at some packet indices. The distinct pattern over
the beam index is the fingerprinting feature we capture in the
training dataset. By collecting many realizations of beam SNR
measurements at multiple APs over L locations-of-interests
and O orientations, we will have LO sets of MP × R beam
SNR measurements in the training dataset. The training dataset
is illustrated in Fig. 2.

C. Online Localization Using Spatial Beam SNRs

When new fingerprinting measurements from an unknown
location are available, the problem of interest is to, with a
chosen performance metric, find the best match of the new
measurements in the offline training dataset and determine
its location. In the following, we introduce the NN and GP
algorithms for classification and coordinate estimation.

1) Position/Orientation Classification: One simple ap-
proach to classify new fingerprinting measurements into one
of training locations is the kNN method. The kNN method
relies on a metric of distance, e.g., Euclidean distance and
Minkowski distance of `p norms, between the beam SNR
measurements. A decision is made by examining the labels
on the k nearest neighbors with respect to new fingerprinting
measurements and taking a vote. Specifically, we define the
distance metric between two beam SNR vectors as follows

d(h,h′) =

√
1

M
(h− h′)TW(h− h′), (2)

where W is a diagonal matrix with diagonal elements denoting
the importance of corresponding beam sectors. This weighted
distance metric can be straightforwardly extended to the case
of multiple SNR measurements and multiple APs.

We first train the kNN classification model based on all
beam SNR measurements in the training data in Fig. 2 with
both location and orientation labels. Then, for a candidate
location and orientation, we collect a batch of Q beam SNR
snapshots, h̄1, · · · , h̄Q, and compute the batch of all Q test

snapshots with a window of Q measurements sliding through
the training dataset

dt(l, o) =

√√√√√ Q∑
q=1

(h̃t+q−1(l, o)− h̄q)TW(h̃t+q−1(l, o)− h̄q)

MQ
,

(3)

where t = 1, . . . , R−Q+ 1, l = 1, · · · , L and o = 1, . . . , O.
From all (R − Q + 1)LO computed distances, the k nearest
samples are selected and, from their labels of locations and
orientations, the most frequently appeared label is picked as
the predicted label for the candidate location and orientation.
When k = 1, the location and orientation are determined by
choosing the one giving the smallest distance:

(l̂, ô) = arg min
l,o

[
min

t=1,··· ,R−Q+1
dt(l, o)

]
. (4)

When only the location is of interest, we can simply repeat
the above process by only using the location label from the
training dataset. Similarly, one can apply other classification
methods to the beam SNR measurements. In Section. III-C, we
will evaluate localization performance of various classification
methods on real-world beam SNR measurements collected in
an office environment.

2) Coordinate Estimation: We can also estimate coordi-
nates of test locations using fingerprinting datasets. One widely
used approach is the weighted kNN method which uses a
weighted mean of the coordinates of k nearest training loca-
tions as the estimated coordinates. The weight coefficients are
computed using the Euclidean distance in the feature space. In
this paper, due to multiple orientations at a given location and
a limited number of training locations, we adopt a weighted
kNN method directly on the beam SNR measurement space.
Specifically, the above classification step obtains the smallest
k distances between the new measurement and the training
dataset. For each of the k beam SNR measurements in training
data, we compute the distance {di}Ki=1 as (3). Then the
coordinates of test data are estimated as follows

(x̂, ŷ) =

k∑
i=1

wi × (xi, yi)∑K
i=1 wi

, (5)

where (xi, yi) is the coordinate of training locations with
the k smallest distances, and wi is the corresponding weight
determined by wi = γ/di + ε with ε is a small positive
number to prevent the denominator from zero and γ is a
normalized parameter.

It it noted that the weighted kNN method still relies on
the classification results. Instead, we can directly estimate
the coordinate of test locations by directly formulating the
coordinate estimation as a supervised regression problem from
the multi-AP beam SNR measurements to two-dimensional
(2-D) coordinates. Specifically, we first apply the GP with
a choice of kernel function (e.g., exponential and radial-basis
function) to labeled fingerprinting data at training locations. A



Fig. 3: Experimental setup with 3 APs (denoted by triangles)
in 7 locations-of-interest (denoted by crosses) in an office
environment.

set of hyperparameters of the chosen kernel is optimized with
beam SNR measurement as input and training coordinates as
output by maximizing the log marginal-likelihood (ML) with
an equally likely prior on all training locations. Then, the direct
coordinate estimation is obtained by applying the optimized
GP to the new beam SNR measurement.

III. INDOOR EXPERIMENT

In the following, we evaluate the fingerprinting-based indoor
localization with beam SNR measurements collected from a
testbed platform in an office environment during office hours.

A. Testbed Platform

The testbed consists of four 802.11ad devices, three serving
as APs and one serving as the client, in a configuration shown
in Fig. 3. These 4 devices are connected via wire cables to a
workstation to allow configurations of the role of each device
and to access the beam SNR measurements. Particularly, we
chose Talon AD7200 routers that use a Qualcomm QCA9500
60 GHz chipset that comes with a phased antenna array of
32 antenna elements and fully implements the IEEE 802.11ad
standard. During the beam training phase, a total number of 36
predefined antenna patterns are swept by changing the weights
in the antenna elements. When the router is in reception mode,
quasi omni-directional antenna pattern is used.

To access the raw beam SNR measurements, we follow the
work in [21], [25], [26] and used the open-source software
package in [24]. Particularly, we used the Nexmon firmware
patching framework [27], which enables the development of
binary firmware extensions in C.

B. Experiment Configuration

The testbed is deployed in an office environment during
office hour, as shown in Fig. 3. There are 6 offices on both
sides and 8 cubicles in the middle. All 6 offices and 4 cubicles
on the right are occupied by staff. Furniture including chairs,
tables, desktops are present in the cubicles.

These 3 APs, denoted as red triangles, are fixed in the
aisle with fixed orientations. Specifically, AP1, AP2 and AP3

Fig. 4: Spatial beam SNR measurements at AP1 when the
client is positioned at a) three locations with the same orienta-
tions; and b) the same location but with different orientations.

point to 90◦, 180◦ and 0◦, respectively, where the orientation
reference is marked out in Fig. 3. To collect fingerprinting
training data, we position the client at one of 7 locations-
of-interest marked by crosses in Fig. 3. At each of the 7
locations, we collect beam SNR measurements by rotating the
client to 4 orientations at [0◦, 90◦, 180◦, 270◦]. Overall, the
offline training dataset consists of beam SNR measurements
from L = 7 locations and O = 4 orientations.

Samples of the collected data at AP1 are shown in Fig. 4.
It is seen from Fig. 4 that all beam SNR measurements are
stable over time (packet index) with only a few fluctuations at
a few packets, possibly due to people moving. On the other
hand, the measurements are sensitive to the client’s position
and orientation as beam SNRs change more rapidly over beam
indices.

IV. PERFORMANCE EVALUATION

A. Location and Orientation Classification

In this section, we present our results for the fingerprinting-
based localization system. For this purpose, we use the con-
fusion matrix as the performance metric for position and
orientation classification

C(i, j) =
1

Ti

Ti∑
t=1

1[l̂(h̃t(j)) = i], (6)

where i and j are indices, respectively, for the estimated
and true locations/orientations, Ti is the number of sample
batches in the test dataset, and 1(·) is the indicator function

TABLE I: Number of training (test) samples for each location
and orientation.

Loc. / Ori. 0◦ 90◦ 180◦ 270◦

1 417 (480) 594 (549) 562 (361) 560 (326)
2 572 (140) 546 (302) 582 (176) 402 (224)
3 207 (319) 267 (253) 565 (328) 428 (299)
4 520 (204) 510 (192) 453 (167) 129 (223)
5 511 (287) 498 (322) 396 (307) 118 (303)
6 507 (427) 419 (220) 300 (190) 281 (156)
7 530 (199) 210 (72) 413 (139) 510 (196)



(a) Beam SNRs (b) Single SNR

Fig. 5: Confusion matrices for simultaneous position-and-
orientation classification using the kNN method (k = 3).
Indices represent 28 combinations of 7 positions and 4 ori-
entations.

TABLE II: Impact of Classification Methods

Location + Orientation Location Only
Single SNR Beam SNRs Single SNR Beam SNRs

LDA 41.1% 96.2% 47.7% 100%
QDA 41.0% 92.3% 54.2% 100%
SVM 39.9% 96.7% 54.1% 99.7%
DT 31.3% 72.1% 46.1% 91.7%

1NN 33.2% 98.5% 46.7% 99.9%
3NN 35.6% 98.6% 48.1% 99.8%

which equals 1 when the argument is true or 0 otherwise. In
addition, l̂(h̃t(j)) is the location/orientation estimate by using
the tth sample batch from the test data collected at jth lo-
cation/orientation. To evaluate the classification performance,
we collected independent test datasets at the same 7 locations
with 4 orientations on a different date, where the number of
test data is shown in parentheses of Table I.

1) Beam SNRs versus Single SNR: Fig. 5 compares the
confusion matrix using the kNN method of k = 3 with
a) beam SNR measurements and b) single SNR (RSSI-like)
measurements. Particularly, we extract only one SNR mea-
surement (from the highest average SNR) from all 36 beam
SNRs at each AP. It is clear to conclude from Fig. 5 that
the kNN method is able to localize both position and orien-
tation accurately by using spatial beam SNRs. Specifically, a
classification accuracy of 98.55% is achieved on average by
the kNN method with beam SNRs, whereas the kNN method
with the single SNR offers an average success rate of 35.6%.
For location-only classification, using spatial beam SNRs can
significantly improve the classification accuracy from 48.1%
of the single SNR case to 99.81%.

TABLE III: Classification accuracy for different combinations
of APs using independent test dataset

APs Location + Orientation Location Only

1 AP
AP1 83.27% 98.19%
AP2 84.85% 92.88%
AP3 81.26% 90.51%

2 APs
AP1 + AP2 97.50% 99.26%
AP1 + AP3 91.98% 99.59%
AP2 + AP3 93.00% 97.53%

All 3 APs 98.55% 99.81%

2) Impact of Classification Methods: To evaluate the impact
of classification methods, we apply other classical machine
learning methods, namely LDA, QDA, SVM and DT methods,
to the same training and test datasets used by the kNN method.
The results are shown in Table III. Overall, we observe that
1) classification using beam SNRs significantly improves the
classification accuracy over that using single SNR and 2)
all classification methods except the DT show comparable
performance for both simultaneous location-and-orientation
and location-only classifications.

3) Impact of the Number of APs: Next, we evaluate the
localization performance by using single AP or combinations
of 2 APs. The classification accuracy is shown in Table III.
When only one AP is used, the success probabilities of
simultaneous location-and-orientation classification can reach
at 83.27%, 84.85% and 81.26%, respectively, for AP1, AP2
and AP3. When one more AP is available, the probabilities
of successful determination is increased to 97.50%, 91.98%
and 93.00%, respectively. The best performance is achieved
by using all three APs. Similar observation can be made for
the location-only classification.

B. Coordinate Estimation

In practice, it is unlikely that the test data are collected
at the same location or orientation in the training dataset.
Therefore, we next evaluate the performance of coordinate
estimation using 4 off-grid test locations, as shown as Loc-
A/B/C/D in green squares in Figs. 6 (a) and (b). The test
dataset at 4 off-grid locations was collected 4 month later than
the fingerprinting training dataset collected in 7 fingerprinting
locations.

We apply the weighted kNN method and the GP-based
regression method as detailed in Section II-C.2) to the off-grid
test dataset. Figs. 6 (a) shows the distribution of coordinate
estimates for the GP method (Corresponding results for the
weighted kNN method are skipped due to page limit). It is
seen that the GP method gives clustered estimates around
true positions. It is notable that the coordinate estimates at
Loc-D are biased to the right, while the estimates at Loc-C
are more centered at Loc-C. By computing distances between
these estimates and the true locations, we plot the cumulative
distribution function (CDF) in Fig. 6 (b) for estimation dis-
tance errors for all 4 off-grid locations for the GP method.
It is found that he GP method gives an average RMSE of
17.52 cm, while the weighted kNN shows an average RMSE
of 27.18 cm. Out of all coordinate estimates at these 4 test
locations, 95% of them are less than 26.90 cm away from
corresponding true locations.

V. CONCLUSIONS

To the best of our knowledge, our study is the first-
of-its-kind to use spatial beam SNRs, collected during the
beam training phase from commercial 802.11ad devices, to
construct the offline fingerprinting database. This concept also
applies to mmWave band 5G devices where beam training
is also required. With a multi-AP testbed in an indoor office



(a) Estimated coordinate (GP) (b) CDF (GP)

Fig. 6: Coordinate estimates (blue circles) at 4 off-grid test locations (referred to as Loc-A/B/C/D in green squares) for the
GP method and corresponding CDF curves. The horizontal and vertical axes denote, respectively, the x-axis and y-axis in cm.

environment, localization performance was evaluated by con-
sidering various factors such as the number of training data,
different combinations of access points, and various machine
learning algorithms. The classification accuracy is 98.6% for
simultaneous location-and-orientation classification and above
99.8% for location-only classification. The robustness of direct
coordinate estimation was tested when the test data were
collected at several off-grid locations. Next, we plan to further
exploit deep-learning approaches for direct coordinate estima-
tion and evaluate the impact of the blockage of human body
on the localization performance.
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