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Abstract
In this paper, we propose a power encoding method for converting a high-resolution OFDM
baseband signal into a signal that assumes only a finite number of values. This is achieved
by the series interconnection of, optimally (co)designed, delta-sigma and digital pulse-width
modulators (DPWM). Given an input signal class with a known amplitude distribution (e.g.,
OFDM), parameters of the multilevel DPWM are designed such that the mean squared
error of the inherent DPWM quantization noise is minimized. Parameters of the delta-sigma
are then chosen with respect to the designed DPWM, so to optimally shape the inherent
quantization noise out of the spectral band of interest. The superior performance of the
proposed novel power encoding scheme is demonstrated by Matlab simulations on several
standardized LTE test signals.
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Abstract—In this paper, we propose a power encoding method
for converting a high-resolution OFDM baseband signal into
a signal that assumes only a finite number of values. This is
achieved by the series interconnection of, optimally (co)designed,
delta-sigma (∆ΣM) and digital pulse-width modulators (DPWM).
Given an input signal class with a known amplitude distribution
(e.g., OFDM), parameters of the multilevel DPWM are designed
such that the mean squared error of the inherent DPWM
quantization noise is minimized. Parameters of the ∆ΣM are
then chosen with respect to the designed DPWM, so to optimally
shape the inherent quantization noise out of the spectral band
of interest. The superior performance of the proposed novel
power encoding scheme is demonstrated by Matlab simulations
on several standardized LTE test signals.

I. INTRODUCTION

Power efficiency of conventional RF power amplifiers (PA)
suffers under modern communication standards that require
signals with highly varying envelope (e.g., LTE) which, con-
sequently, have large peak-to-average power ratio (PAPR). In
order to satisfy the required linearity and spectral measures,
the PA has to work at a larger power back-off resulting
in lower efficiency of the PA. RF switched-mode power
amplifiers (SMPA) have recently shown as a good alterna-
tive to traditional PAs, due to their high power efficiency
mode of operation [1]-[3]. While traditional PAs are driven
by conventional high resolution communication signals, the
SMPAs are driven by piece-wise constant signals or pulse
trains. Therefore, a reduction in amplitude resolution (i.e.,
quantization) of conventional signals is needed in order to
adjust for the switched-mode operation. This mapping of high
resolution signals into pulse trains is commonly called power
encoding, and is typically done in the form of delta-sigma
modulation (∆ΣM) [4], pulse-width modulation (PWM) [5]-
[6], or a combination thereof [7].

Even though the electrical efficiency of the SMPA can be
high (theoretically, close to 100% [3]), the overall power
efficiency of the transmitter, employing the SMPA, mainly
depends on the utilized power encoding method. Namely,
after an encoded pulse train is amplified by the SMPA, the
passband output signal has to be reconstructed by a bandpass
filter. However, the pulse trains contain significant amount of
out-of-band spectral power (i.e., quantization noise) which is
dissipated at the filter, therefore reducing the overall power
efficiency of the transmission system. For that reason, coding

efficiency (CE) is introduced as a figure of merit to evaluate
encoder performance in terms of power efficiency. Coding
efficiency of a power encoder is defined as a ratio of the
desired in-band power to the total power of the encoder output.
It is, therefore, not a surprise that there were many attempts
at optimizing coding efficiency of the most popular power
encoding schemes. For example, in [8], coding efficiency
of a delta-sigma modulator is improved by decreasing the
energy of the quantization noise by appropriately choosing the
∆ΣM quantization levels. Another important power encoder
performance metric is linearity which can be measured in
terms of in-band signal-to-noise ratio (SNR) of the encoder
output. In general, delta-sigma modulators provide very good
linearity but their coding efficiency suffers due to the high
amount of out-of-band quantization noise (even in the opti-
mized case like [8]). Pulse-width modulation has, in general,
much better coding efficiency properties than ∆ΣM, and there
has been a significant work at optimizing the CE of various
transmitter architectures employing PWM encoding schemes:
two and multi-level continuous-time (CT) PWM for quadrature
[9] and polar transmitter architectures [10], radio-frequency
CT PWM [11], etc. PWM-based encoders can, in general,
achieve high coding efficiency but the linearity suffers when
PWM is digitally implemented (in which case it is abbreviated
as DPWM). In DPWM, high in-band harmonic distortion
(commonly called the aliasing noise) is present in the output
which limits the usage of DPWM in transceivers realized
for software defined radio [12]. In [13], coding efficiency of
band-limited DPWM schemes was analyzed and a method
was proposed in which linearity of the PA is sacrificed for
achieving lower in-band harmonic noise. It was shown recently
that this in-band harmonic noise in the DPWM output is a
consequence of an inherent quantization process, dubbed the
hidden quantization, that the DPWM input is subject to [14].
It was shown in [15], that this harmonic noise can be effec-
tively mitigated by pre-conditioning the DPWM input with
a carefully designed delta-sigma modulator (∆ΣM), whose
quantization parameters (decision boundaries and quantization
levels) correspond exactly to those of the hidden quantization.
In [15], only digital pulse-width modulation schemes with
equidistant output levels are considered, in which case the
hidden quantization is uniform over the input signal dynamic
range. This clearly limits the performance of such ∆ΣM-



DPWM power encoders since sub-optimal performance is
achieved when encoding the standard communication signals
with non-uniform amplitude distributions like, e.g., OFDM
signals [16].

In this paper, we propose an optimal ∆ΣM-DPWM power
encoding system which exploits statistical properties of the
input signal to achieve better harmonic noise rejection for the
input signal class for which it is optimized. Namely, given a
fixed input signal class (with i.i.d. time-samples, e.g, normally
distributed), the DPWM output levels are selected so that the
expected hidden quantization error is minimized. Then the
∆ΣM parameters are chosen so to match those of the optimal
hidden quantization. Due to a mismatch between the optimized
and actual hidden quantization levels in non-uniform DPWM,
a compensation signal is generated and subtracted from the
DPWM output, ensuring minimal harmonic noise in the output
signal. We show, by Matlab simulations, that, by the above co-
design of ∆ΣM and DPWM, it is possible to increase power
efficiency of the DPWM encoded LTE test signals by, roughly,
15% to 20%, in comparison to that of the unoptimized (i.e.,
uniform) ∆ΣM-DPWM encoding scheme. This is achieved
while preserving similar in-band SNR quality.

II. BACKGROUND AND PROBLEM FORMULATION

A. Digital Pulse-Width Modulation

Pulse-width modulation is a method of mapping an input
signal into a digital pulse train, where amplitude information
of the input is encoded into a time-varying width of the
output pulses. Forthcoming communication standards envision
the whole transmitter front-end realized in digital domain
[2] and, therefore, PWM has to be realized digitally as well
(DPWM). Let M and N be positive integers such that N > 1.
Let A = {A0, A1, . . . , AM} and C = {c1, . . . , cM} be
the sets of real numbers and N -periodic discrete sawtooth
signals, respectively, such that A0 < A1 < · · · < AM , and
Am−1 ≤ cm[n] ≤ Am for all n ∈ Z and m = {1, . . . ,M}.
Signals cm ∈ C are called the DPWM reference signals, and
N is called the oversampling ratio of the DPWM. In the rest
of this paper, for simplicity, we assume that N is an even
number and that reference signals cm are symmetric double-
edge discrete-time sawtooth signals (e.g., black colored signals
in Fig. 1). Let a = a[n] be a bounded real-valued scalar
discrete-time signal. Digital pulse-width modulation (DPWM)
system defined by A, C, and N , maps input signal a = a[n]
to output signal y = y[n] as defined by the following formula

y[n] =


A0, a[n] ≤ c1[n],

Am, cm[n] < a[n] ≤ cm+1[n], 1 ≤ m ≤M − 1,

AM , cM [n] < a[n].
(1)

Therefore, DPWM acts as a comparator, where the output y
is generated by comparing input a to signals cm ∈ C. An
example of DPWM output signal generation is shown in Fig.1,
where the system parameters are given as N = 4, M = 2,
A = {0, 3/4, 1}. Without loss of generality, in the rest of this

Fig. 1. An example of time-domain waveforms of the DPWM input (blue),
reference (black), and output (red) signals.

Fig. 2. In-band power spectra of the DPWM input signal (red), and DPWM
output signals for three sets of parameters: L = 6, with N = 4,M = 3
(black); L = 30, with N = 4,M = 15 (blue); L = 60, with N = 4,M =
30 (green).

paper, we assume that the input signal is bounded in amplitude
by A0 and AM , i.e., a[n] ∈ (A0, AM ) for all n ∈ Z.

Performance of a DPWM based encoder is measured in
terms of the achieved coding efficiency (CE) and signal-to-
noise ratio (SNR) of the DPWM output signal. Let BW ∈
(0, 2π) be the bandwidth of the DPWM input signal a, and
let y be the response of DPWM to signal a. The CE and SNR
of the DPWM output signal are defined as follows:

CE(y) =
PBW (y)

Ptot(y)
× 100, SNR(y) = 10 log

PBW (a)

PBW (y − a)
,

where PBW (x) and Ptot(x) denote the in-band and total power
of signal x, respectively.

Let Qu : (0, 1) → (0, 1) be a uniform quantizer map such
that

Quξ =
2i− 1

N
, when ξ ∈

(
2i− 2

N
,

2i

N

]
,∀i =

{
1, . . . ,

N

2

}
.

For m ∈ {1, . . . ,M}, let Im = (Am−1, Am] and let
∆m = 2(Am − Am−1)/N . For i = {1, . . . , N/2} let Iim =
(Am−1 + (i− 1)∆m, Am−1 + i∆m]. For m ∈ {1, . . . ,M},
let Qm : Im → R be a quantizer map such that

Qmξ = Am−1 + i∆m, when ξ ∈ Iim, ∀i =

{
1, . . . ,

N

2

}
.

Therefore, Qm has uniformly distributed decision boundaries
over the interval Im but is not a uniform quantizer since
its quantization levels do not lie in the middle of the cor-
responding decision intervals Iim. In fact, the quantization
level corresponding to Iim lies on the upper boundary of that
interval, as can be seen from the definition of Qm.



Let Qh : (A0, AM ) → R be a quantizer map such that
Qhξ = Qmξ when ξ ∈ Im, for all m ∈ {1, . . . ,M}. In the
rest of this paper, we call Qh the hidden quantizer.
Now the input-output model of DPWM can be written as ([17])

y[n] = Qh(a[n])+

N
2∑

k=1

Bk[n] sin (πkQu(d[n]))

N sin
(
πk
N

) cos

(
2π

N
kn

)
,

(2)
where

d[n] =
a[n]−Am−1
Am −Am−1

, Bk[n] = 2(Am−Am−1)·(−1)k(m−1),

(3)
when a[n] ∈ [Am−1, Am), for all m ∈ {1, . . . ,M}, all
k ∈ {1, . . . , N/2} and n ∈ Z. Let signal aq = aq[n], be
defined by aq[n] = Qh(a[n]), for all n ∈ Z. It can be seen
from (2) that the DPWM output signal y is a sum of the base-
band component aq and the amplitude modulated harmonics
oscillating at the positive integer multiples of the fundamental
frequency equal to 2π/N . Therefore, the baseband of the
DPWM output signal mainly depends on the quantized version
aq of the high-resolution baseband input signal a, that is, not
on a directly.

B. ∆ΣM-PWM Based Power Encoders

The DPWM input-output model (2) suggests that the leading
in-band harmonic distortion in the output comes from the
’baseband’ quantization Qh of the input signal (see the red and
black colored signals in Fig. 2). This quantization is dubbed
the hidden quantization in order to distinguish it from the
quantization operation of the DPWM itself [14]. Consequently,
we will call the in-band harmonic noise, caused by the action
of Qh, the hidden quantization noise. It follows from the
definition of Qh that it has L = MN/2 quantization levels.
It is clear that by increasing either M or N , the number of
quantization levels of Qh increases and, therefore, the amount
of quantization noise in the DPWM output decreases (and,
equivalently, the amount of in-band harmonic noise reduces).
The effects of increasing L on the in-band output signal power
spectrum are depicted in Fig. 2. Unfortunately, the upper limits
on M and N are specified by hardware constraints and it is not
possible to satisfactorily decrease the hidden quantization error
while using feasible values for parameters M and N . It was
shown in [15], that the hidden quantization noise can be shaped
to out-of-band frequencies by pre-quantizing the DPWM input
with a carefully designed delta-sigma modulator (∆ΣM). In
order to have no in-band spectral regrowth once such pre-
quantized signal is passed through the DPWM, it is necessary
that the parameters of the underlying quantizer in ∆ΣM match
those of the hidden quantizer Qh. That is, the output signal,
denoted ãq , of the delta-sigma modulator driven by the input
signal a, should assume the same amplitude levels as signal
Qh(a). When driven by such a signal ãq , the DPWM would
generate an output signal y such that its baseband component
aq satisfies aq[n] = Qh(ãq[n]) = ãq[n]. Therefore, the total
quantization noise in the baseband signal aq will correspond
to that of the ∆ΣM output ãq , which is shaped to out-of-band
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Fig. 3. Block diagram of the ∆ΣM-DPWM power encoder proposed in [15].

frequencies, ensuring low in-band noise in the DPWM output
y. A block diagram of such a ∆ΣM-DPWM power encoder
is shown in Fig. 3.

It is not hard to see, from the input-output model (2), that
in the case of equidistant DPWM output levels, i.e., when
Am = (AM − A0)m/M for all m, the hidden quantizer Qh

becomes a uniform quantizer. It should be noted that only this
type of DPWM was investigated in [14]-[15]. Clearly, DPWM
power encoding schemes with uniform hidden quantization
(i.e., with equidistant output levels) have simplistic appeal
from a hardware perspective. On the other hand, modern
baseband communication signals (e.g., LTE) have amplitude
distributions which are highly non-uniform. For example,
the I/Q components of an OFDM signal have approximately
Gaussian distribution [16]. It follows that power encoders with
uniform quantization do not fully exploit the available infor-
mation about the underlying communication signals and might
lead to sub-optimal performance of the transmitters employing
them. Namely, the number L of the hidden quantization levels
of Qh is commonly relatively small leading to uniform hidden
quantizers of low resolution which cannot achieve satisfy-
ing out-of-band noise rejection for signals with highly non-
uniform amplitude distribution. In the next section we show
how ∆ΣM-DPWM power encoder can be optimally designed
to incorporate information about the input signal statistics in
order to not just reduce the hidden quantization (i.e., in-band)
noise but also minimize the out-of-band harmonic noise and,
therefore, improve coding efficiency.

III. OPTIMAL CO-DESIGN OF ∆ΣM AND DPWM

Let a be a real-valued scalar discrete-time signal whose
amplitude samples are i.i.d. according to the probability den-
sity function pa = pa(x), where pa : R → [0,∞). The
mean squared error of quantizing a by an arbitrary quantizer
Q : R→ R is given by

Jp(Q) =

∫ ∞
−∞

(x−Q(x))
2
pa(x)dx. (4)

In practice, the utilized baseband communication signals have
finite dynamic range due to hardware or some other constraints
(e.g., amplitude clipping due to PAPR reduction). For that
reason, in the rest of this paper, we assume that pa(x) = 0
for all x /∈ [a0, aM ], for some fixed a0, aM ∈ R.

For all m ∈ {1, . . . ,M}, let bnm and qnm be the decision
boundaries and quantization levels, respectively, of the m-th



sub-quantizer Qm. Dependence of bnm and qnm on the elements
of A = {A0, . . . , AM} is given by the following expressions

bnm = Am−1 +
2n

N
(Am −Am−1), 0 ≤ n ≤ N/2, (5)

qnm = bnm, 1 ≤ n ≤ N/2. (6)

For L = MN/2, let B = {b0, . . . , bL} and Q = {q1, . . . , qL}
be the decision boundaries and quantization levels of Qh,
respectively. By the definition of Qh we have

bk = bnm, when k = (m− 1)
N

2
+ n, (7)

for all n ∈ {0, . . . , N/2} and m ∈ {1, . . . ,M}, and

qk = bk, for all k ∈ {1, . . . , L}. (8)

The mean-squared error cost (4) for Q = Qh is, therefore, a
function of A and can be written as

Jp(Qh) =

M∑
m=1

N/2∑
n=1

∫ bnm

bn−1
m

(x− qnm)2pa(x)dx. (9)

Assume now that DPWM is driven by the above described
signal a with amplitude distribution pa. It follows that the
out-of-band harmonic noise in the DPWM output can be
decreased by choosing the output levels Am such that the hid-
den quantizer Qh minimizes the above defined mean squared
quantization error (MSQE). Unfortunately, the structure of Qh

is significantly restricted: decision boundaries bk are piece-
wise uniformly distributed and quantization levels qk are at
the boundary of each individual decision interval (bk−1, bk].
This implies that, in general, one can expect very poor MSQE
performance of such a quantizer (even in the case of optimal
MSQE!). This problem can be mitigated in the following way.

Let Q̃ : [A0, AM ] → R be a quantizer whose decision
boundaries b̃k, for k ∈ {0, . . . , L}, and quantization levels q̃k,
for k ∈ {1, . . . , L}, satisfy the following

b̃k = bk q̃k ∈ (b̃k−1, b̃k]. (10)

Clearly, quantizers Q̃ and Qh have identical decision bound-
aries (for a fixed choice of A), while the quantization levels of
Q̃ are unrestricted unlike those of Qh. Now we want to find
b̃k and q̃k such that the quantizer Q̃ minimizes mean squared
error (4). This problem can be formulated as follows

min
A1,...,AM ,q̃1,...,q̃L

Jp(Q̃)

s.t. a0 = A0 < A1 < · · · < AM = aM ,

b(m−1)N/2+n = Am−1 +
2n

N
(Am −Am−1), (11)

∀m ∈ {1, . . . ,M}, ∀n ∈ {0, . . . , N/2},
q̃k ∈ (bk−1, bk], ∀k ∈ {1, . . . , L}.

Let Q̃∗ be the argument of minimum of (11) (more precisely,
let Q̃∗ be a quantizer whose parameters are the arguments of
minimum of (11)).

Remark 1: It should be noted that, in general, the optimal
solution Q̃∗ of the above optimization problem is not a Lloyd-
Max quantizer [18], since the decision boundaries of Q̃∗ are
fixed to be uniformly distributed on sub-intervals (Am, Am+1].

Remark 2: It is easy to see that, in general, Jp = Jp(Q̃) is
a non-convex function of A0, A1, . . . , AM , q̃1, . . . , q̃L, and the
optimal problem (11) cannot be solved explicitly. Furthermore,
there is no guarantee that a global optimum would be achieved
by applying any of the standard non-convex optimization
algorithms. In practice, one calculates off-line the parameters
of Q̃∗ and then programs digital hardware that the power
encoder should be implemented on. For that reason, we find
an approximate optimal solution of (11) by performing a
grid search. The number M of output levels of DPWM is
commonly low (for high power amplifiers to be used in base
stations it is typically not larger than 5 [19]), and performing
a grid search to find an approximate optimal solution of (11)
commonly imposes just a mild computational burden.

The optimal quantization parameters, as defined above,
cannot, in general, match the quantization parameters of Qh

for any DPWM. That is, quantizer Q̃∗ is, in general, not
equivalent to Qh. Hence, if the optimal quantizer Q̃∗ was
used in the ∆ΣM pre-quantizer system of a ∆ΣM-DPWM
encoder, then amplitude values of the ∆ΣM output would
not match those of the hidden quantization. This implies that
the DPWM system would then generate significant in-band
harmonic noise in the output and any benefit of the ∆ΣM
pre-quantization would be lost. This problem can be mitigated
by introducing a compensation signal that should be added to
the DPWM output to compensate for the difference between
the quantization levels of Q̃∗ and Qh. A block diagram
of such an optimal power encoder is shown in Figure 4.
The ∆ΣM subsystem utilizes the optimal quantizer Q̃∗ and
maps baseband input signal a to a quantized signal aq . Since
Q̃∗ 6= Qh, the output ỹ of the DPWM subsystem will be
equal to ỹ = aq + e+harmonics, where e is the error signal
e = Qh(aq) − aq . Compensator C takes input signal a and
generates the error signal e, as defined above. More precisely,
the compensator system C, mapping signal a into signal e is
defined as follows:

e[n] = qk − q̃∗k,when a[n] ∈ (b̃∗k−1, b̃
∗
k] ≡ (bk−1, bk], (12)

for all k ∈ {1, . . . , L} and all n ∈ Z. The compensator C is
such that

e[n] = (Ca)[n] = Qh(aq[n])− aq[n].

In other words, signal e should cancel the hidden quantization
error that is caused by the difference in the quantization level
values of Q̃∗ and Qh.
Remark: It should be noted that the compensation signal takes
at most L amplitude values and has much smaller power than
the main signal. Therefore, its power added cost to the overall
system design is minimal since a low-power linear PA can be
used to amplify this signal.
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Fig. 4. Block diagram of the proposed optimal power encoder.

IV. SIMULATION RESULTS

Performance of the proposed optimal ∆ΣM-DPWM power
encoding scheme was evaluated by Matlab simulations, where
CE and SNR of the encoder output were used as a measure
of performance. The proposed encoder was compared to the
non-optimized ∆ΣM-DPWM power encoder (i.e, the one with
uniform quantization in ∆ΣM [15]) and the regular DPWM
encoder (i.e., without ∆ΣM pre-conditioning of the input).

Simulations were performed for two types of input signals,
both E-UTRA test models as specified in [20]. The simulation
parameters, as well as the test signals’ parameters, for each
case, are presented in Table I. As can be seen, the DPWM
parameters N and M take relatively small values and, as a
consequence, the number L of the hidden quantization levels
is also relatively small (see Table I). In both cases, test signals
in FDD mode were used, and the order of the ∆ΣM was set
to 1, so to simplify the power encoder design.

The signal flow of the simulation is as follows: the I and
Q components of the input LTE signal, generated through
Matlab’s LTE System Toolbox [21], are fed into the above
described power encoders, and their outputs combined to get
the complex baseband output signal. For simplicity, the input
signals are normalized so that their amplitude values fully
span the DPWM dynamic range which was set to (−1, 1)
(i.e., A0 = −1 and AM = 1). For the optimal ∆ΣM-DPWM
encoder, the input signal amplitude pdf parameters are first
estimated and then used to calculate the optimal decision
boundaries and quantization levels (both of these tasks are
done off-line).

The performance results of the compared encoding methods
are reported in Tables II and III. The wideband and in-band
output spectra, for each power encoding method, are depicted
in Figs. 5, 7 and 6, 8, respectively. As can be seen, the in-band
harmonic noise of both ∆ΣM-DPWM encoders is significantly
lower than that of the regular DPWM encoder, which was to be
expected from [15]. It should be noted that the optimal encoder
is slightly better than the uniform one in terms of SNR (by
1-3 dB). On the other hand, in terms of coding efficiency, the
proposed optimal power encoder significantly outperforms (by
15%-20%) the other two methods. This can also be inferred
from the wideband output spectra plots in Figs. 5 and 7.

Fig. 5. Wideband output spectra for E-TM3.1 test signal.

Fig. 6. Baseband (zoom-in) output spectra for E-TM3.1 test signal.

Fig. 7. Wideband output spectra for E-TM3.1a test signal.

Fig. 8. Baseband (zoom-in) output spectra for E-TM3.1a test signal.



TABLE I
SIMULATION PARAMETERS AND TEST SIGNALS

Test Signal Bandwidth Modulation PAPR fsamp N M L

Case 1 E-TM 3.1 20 MHz
(100 RB) 64QAM 11.1 dB 6.14 GS/s 4 3 6

Case 2 E-TM 3.1a 20 MHz
(100 RB) 256QAM 11 dB 9.21 GS/s 6 4 12

TABLE II
PERFORMANCE COMPARISON FOR E-TM 3.1 TEST SIGNAL

DPWM ∆ΣM-DPWM [15] New Model

CE 30.33% 29.94% 45.26%

SNDR 19.62 dB 43.2 dB 46.32 dB

TABLE III
PERFORMANCE COMPARISON FOR E-TM 3.1a TEST SIGNAL

DPWM ∆ΣM-DPWM [15] New Model

CE 46.47% 46.1% 66.13%

SNDR 28.63 dB 42.73 dB 43.15 dB

V. CONCLUSION

In this paper, we propose a power encoding method for
converting a high-resolution baseband communication signal
into a piece-wise constant signal, of low resolution, which
is suitable for efficiently driving a switched-mode PA. We
consider power encoders in the form of a series intercon-
nection of delta-sigma and pulse-width modulators. In the
proposed method, information about the input signal amplitude
distribution is exploited in order to jointly optimize ∆ΣM and
DPWM subsystems and maximize the output coding efficiency
of the overall encoder system. Output levels of the digital
pulse-width modulator are chosen such that the mean squared
error of the inherent DPWM quantization noise is minimized.
Parameters of the ∆ΣM are then chosen with respect to the
designed DPWM, so to optimally shape the inherent quantiza-
tion noise out of the spectral band of interest. We illustrate the
performance gains of the proposed power encoding method by
Matlab simulations with several standardized LTE test signals.
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