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Abstract
Soft delivery, i.e., analog transmission, has been proposed to provide graceful video/image
quality even in unstable wireless channels. However, existing analog schemes require a sig-
nificant amount of metadata for power allocation and decoding operations. It causes large
overheads and quality degradation due to rate and power losses. Although the amount of
overheads can be reduced by introducing Gaussian Markov random field (GMRF) model, the
model mismatch can degrade reconstruction quality. In this paper, we propose a novel analog
transmission scheme to simultaneously reduce the overheads and yield better reconstruction
quality. The proposed scheme uses a deep neural network (DNN) for metadata compression
and decompression. Specifically, the metadata is compressed into few variables using the pro-
posed DNN-based metadata encoder before transmission. The variables are then transmitted
and decompressed at the receiver for high-quality video/image reconstruction. Evaluations
using test images demonstrate that our proposed scheme reduces overheads by 80.0 % with
11.2 dB improvement of reconstruction quality compared to the existing analog transmission
schemes.
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Abstract—Soft delivery, i.e., analog transmission, has been
proposed to provide graceful video/image quality even in unstable
wireless channels. However, existing analog schemes require a
significant amount of metadata for power allocation and decoding
operations. It causes large overheads and quality degradation
due to rate and power losses. Although the amount of overheads
can be reduced by introducing Gaussian Markov random field
(GMRF) model, the model mismatch can degrade reconstruction
quality. In this paper, we propose a novel analog transmission
scheme to simultaneously reduce the overheads and yield better
reconstruction quality. The proposed scheme uses a deep neural
network (DNN) for metadata compression and decompression.
Specifically, the metadata is compressed into few variables using
the proposed DNN-based metadata encoder before transmission.
The variables are then transmitted and decompressed at the
receiver for high-quality video/image reconstruction. Evaluations
using test images demonstrate that our proposed scheme reduces
overheads by 80.0 % with 11.2 dB improvement of reconstruction
quality compared to the existing analog transmission schemes.

I. INTRODUCTION

Multimedia delivery, i.e., image and video delivery, is one
of the major applications in the wireless environment —
according to Cisco visual networking index studies, around
82 % of the world’s mobile data traffic will be video contents
by 2022 [1]. In conventional multimedia streaming, the digital
compression and digital wireless transmission are carried out
in sequence [2]–[4]. For example, in wireless digital video
delivery, the video compression part uses H.264/Advanced
Video Coding (AVC) [5] or H.265/High-Efficiency Video
Coding (HEVC) [6] standards to generate a compressed bit
stream using quantization and entropy coding. The wireless
transmission part uses channel coding and a digital modulation
scheme to reliably transmit the encoded bit stream.

However, the digital-based conventional schemes have the
following problems due to the unreliable wireless channel.
First, the encoded bit stream is highly vulnerable to bit errors.
When the channel’s signal-to-noise ratio (SNR) falls under a
certain threshold, the image/video quality drops significantly.
This phenomenon is referred to as the cliff effect. Second, the
image/video quality does not gracefully improve even when
the wireless channel quality is improved. Finally, quantization
is a lossy process, whose distortion cannot be recovered at
the receiver. Some studies [7], [8] have been proposed to
mitigate the cliff effect in the digital transmission by intro-
ducing scalable source coding and scalable channel coding.
However, in these studies, the cliff effect is converted into
the so-called staircase effect [9]. In the staircase effect, the

multimedia quality discontinuously improves as the wireless
channel quality improves.

To overcome the above-mentioned problems, analog trans-
mission schemes [10]–[14] have been proposed for wireless
image/video delivery. For example, SoftCast [10] directly
transmits linearly-transformed video signals over a lossy chan-
nel and allocates power to the signals to maximize the re-
ceived quality, instead of using digital compression and digital
modulation. In contrast to the conventional digital scheme,
the received video quality of SoftCast can be gracefully
improved according to the wireless channel quality. Fovea-
Cast [11] extends SoftCast to wireless image delivery to reduce
perceptual redundancy by considering user’s foveated point.
Specifically, FoveaCast adaptively assigns transmission power
to linear-transformed image signals based on the foveated
point to simultaneously realize graceful quality improvement
and user’s interest-aware quality adaptation.

However, the performance of soft delivery schemes depends
strongly on the chunk size. In both SoftCast and FoveaCast, a
sender allocates transmission power to the image/video signals
such that the receiver noise can be minimized. The power
allocation is based on the power of each linearly-transformed
signal. Hence, the sender needs to transmit the power infor-
mation of all the image/video signals to decode the signals at
the receiver. The transmission of this metadata causes large
overhead, resulting in image/video quality degradation due
to power and rate loss. To reduce metadata overhead, both
schemes divide the signals into multiple chunks and transmit
a smaller number of metadata corresponding to each chunk.
In turn, the chunk division may degrade performance due to
improper power allocation, in particular when a large chunk
size is used for lower overhead.

To reduce the amount of overheads, the existing studies [13],
[14] use a fitting function based on Gaussian Markov random
field (GMRF) [15], [16] model to approximate the power in-
formation of linearly-transformed video signals only with few
parameters. Specifically, [13] realizes overhead reduction in
soft delivery of single-view video using a GMRF-based fitting
function. They demonstrated that the fitting function brings
significant overhead reduction since the power information can
be fit by the fitting function with four parameters. [14] extends
the fitting function to free viewpoint soft video delivery.
Although the free viewpoint video signals are five-dimensional
(5D) video signals, the fitting function based on first-order 5D-
GMRF can approximate the corresponding power information



Fig. 1. Overview of the proposed soft delivery, employing DNN-based metadata encoder/decoder.

using nine parameters. Although the existing schemes yield
low metadata overhead, they still remain degraded reconstruc-
tion quality since the fitting functions suffer model mismatch
for real single-view/multi-view signals.

In this paper, we propose a novel analog scheme to achieve
better reconstruction quality under nearly zero overhead re-
quirement. To obtain the power values of linear-transformed
signals without transmitting large-overhead metadata, the pro-
posed scheme uses a deep neural network (DNN) employing
denoising auto-encoders [17] for metadata encoding and de-
coding. Specifically, the proposed metadata encoder obtains
a few variables from the pixel values of all the images
before transmission and the proposed decoder decodes the
accurate power information from the received variables for
proper power allocation. For better reconstruction quality, the
weights in both DNN-based metadata encoder and decoder
are trained beforehand based on synthetic datasets generated
through offline Monte–Carlo simulations. Evaluations using
test images show that the proposed scheme improves recon-
struction quality by 11.2 dB with 80.0 % reduction in the
metadata overhead compared with the existing analog scheme
employing the GMRF model [13].

Our contribution is three-fold: 1) we introduce denoising
auto-encoders for metadata compression/decompression, em-
ploying new loss function to maximize image quality in the
presence of power mismatch, 2) we verify that the power
information can be reliably shared by the DNN-based metadata
decoder even in the presence of noise, and 3) we demonstrate
that only one variable metadata is sufficient to realize high-
quality image reconstruction for soft delivery over wireless
channels.

II. SOFT DELIVERY WITH DNN-BASED METADATA
COMPRESSION

The objectives of our proposed scheme are 1) to achieve
reconstruction quality that gracefully improves according to
the wireless channel quality and 2) to reduce the amount of
metadata. Fig. 1 shows the schematic of our proposed scheme.
The encoder first performs two-dimensional discrete cosine
transform (2D-DCT) operation on the original images. At the
same time, according to the pixel values of the original images,
the DNN-based metadata encoder compresses the pixel values
into several variables, i.e., metadata. The DCT coefficients are
then scaled according to the metadata and analog-modulated
for transmissions. In addition, the metadata is also scaled and

analog-modulated in prior to transmission. Finally, the encoder
sends the analog-modulated image symbols and metadata
symbols to the receiver over a wireless channel with additive
white Gaussian noise (AWGN).

At the receiver side, the decoder first reconstructs the power
information from the received metadata symbols by using
DNN-based metadata decoder. The reconstructed power values
are used for minimum mean-square error (MMSE) filter. The
DCT coefficients are then obtained from the received analog-
modulated image symbols through the use of MMSE filtering.
The reconstructed pixel values can be reconstructed by taking
inverse 2D-DCT operation for the filtered DCT coefficients.

A. Encoder
The encoder first performs 2D-DCT operation on each

original image to obtain the corresponding DCT coefficients.
In addition, the original images are encoded into variables
by using DNN-based metadata encoder. The DCT coefficients
and encoded variables are mapped to I (in-phase) and Q
(quadrature) components after the following power allocation.

Let xi denote the ith analog-modulated symbol of the DCT
coefficients/encoded variables. Each analog-modulated symbol
is scaled by gi for noise reduction:

xi = gi · si. (1)

Here, si is the ith DCT coefficient/encoded variable and gi
is the scale factor which determines the power allocation.
The transmitter performs optimal power control by selecting
gi to achieve the highest reconstruction quality. Specifically,
the best gi is obtained by minimizing the mean-square error
(MSE) under the power constraint with total power budget P
as follows:

min MSE = E
[
(si − ŝi)2

]
=

N∑
i

σ2λi
g2i λi + σ2

, (2)

s.t.
1

N

N∑
i

g2i λi = P, (3)

where E[·] denotes expectation, ŝi is an estimate of the trans-
mitted symbol, λi is the power of ith DCT coefficient/encoded
variable, N is the number of DCT coefficients/encoded vari-
ables, and σ2 is a receiver noise variance. The near-optimal
solution is expressed as

gi = λ
−1/4
i

√
P∑
j

√
λj
. (4)



Fig. 2. End-to-End DNN-based metadata coding/decoding networks, analogous to denoising auto-encoders [17].

B. Decoder

After transmission over the wireless channel, each symbol
of the DCT coefficients and encoded variables at the receiver
can be modeled as follows:

yi = xi + ni, (5)

where yi is the ith received symbol and ni is an effective noise
having a variance of σ2. The receiver first obtains the encoded
variables from the received symbols. The variables are then
decoded to the power information of the DCT coefficients λ′i
by using DNN-based metadata decoder. The receiver extracts
DCT coefficients from I and Q components, and reconstructs
the coefficients using the reconstructed power information and
MMSE filter [10] as follows:

ŝi =
g′iλ
′
i

g′2i λ
′
i + σ2

· yi, (6)

where g′i is the power allocation estimate by replacing λi with
λ′i in (4). The decoder then obtains corresponding image by
taking the inverse 2D-DCT for the filter output ŝi.

C. Deep Neural Network-based Overhead Reduction

In order for the receiver to carry out proper MMSE filtering
in (6), the sender needs to transmit the power information
of all coefficients λi as metadata such that g′i = gi and
λ′i = λi. Although it yields the best reconstruction quality, the
amount of metadata can be significantly large. For example,
when the sender transmits a color image with the resolution
of 176 × 144, the sender needs to transmit metadata for all
DCT coefficients of 176 × 144 × 3 = 76,032 to the receiver.
Such a high overhead can impose rate and power losses in
practice. To reduce the overheads, the existing methods divide
coefficients into chunks and carry out power allocation and
MMSE filter for each chunk. However, overheads are still high
and the chunk division causes performance degradation due
to improper power allocation. When the chunk is a size of
44 × 36 pixels, 96 metadata are still required every images.

To further reduce the overheads, the existing study used first-
order GMRF-based fitting function to approximate the power
values λi from few parameters. Specifically, the sender needs
to transmit five metadata for every images. Although the fitting
function can decrease the amount of metadata, it suffers a low
image quality due to a fitting error (λ′i 6= λi).

To reduce the metadata overheads with keeping better recon-
struction quality, the proposed scheme uses DNN-based meta-
data coding networks to reconstruct clean images from few
variables for a variety of images. Fig. 2 shows the proposed
end-to-end DNN-based metadata encoder and decoder. Both
proposed metadata encoder and decoder networks use multi-
layer perceptron (MLP). Specifically, the proposed encoder
network encodes the pixel values into m variables. Here, the
number of neurons at the input and output layers is 3×H×W
and m, respectively, where H and W are the number of pixels
in horizontal and vertical domains. For the kth hidden layer,
the number of neurons is 2Nhidden−k · m where Nhidden is
the number of hidden layers. The m metadata variables are
analog-modulated and transmitted over wireless channels.

The proposed decoder reconstructs the pixel values from
noisy m variables, and then obtains the corresponding power
values λ′i from the reconstructed pixel values. Specifically, the
number of neurons in input and output layers of the proposed
decoder are m and 3×H×W , respectively. For the kth hidden
layer, the number of neurons is 2k ·m. Our scheme uses the
reconstructed power information λ′i for the MMSE filter (6).

In this case, the compression and reconstruction perfor-
mance of the encoding and decoding networks depend on
the pre-trained weights in both networks. To learn better
weights, noisy datasets are generated offline via Monte–
Carlo simulations. Specifically, all potential distortions due to
additive noise, 2D-DCT, and MMSE filter are synthetically
analyzed by DNN-based encoder and decoder in off-line
learning phase. By using synthetic datasets for the pairs of
original and reconstructed image signals at specific channel
models, the proposed scheme can learn better network weights



depending on wireless channel quality. For stochastic gradient
optimization, the proposed scheme uses the following loss
function of soft delivery’s MSE:

lMSE = E
[
(si − ŝi)2

]
= E

[
λi + λ′i

√
λ′i

1
α′σ2

(1 +
√
λ′i

1
α′σ2 )2

]
, (7)

where α′ = 1/
∑√

λ′i is a normalization factor.
It should be noted that the proposed DNN method is similar

to denoising auto-encoders [17] while the MSE loss function
is not conventional because we do not directly minimize auto-
associative errors between input and output signals. Because
the modified MSE loss function takes the presence of AWGN
noise and power mismatch λ′i 6= λi into account, learning
the network weights under the proposed loss function (7)
can reconstruct clean image signals for soft image delivery.
We note that the proposed scheme uses adaptive momentum
(ADAM) optimizer [18] for joint weight learning of metadata
coding/decoding networks.

III. PERFORMANCE EVALUATION

A. Simulation Settings

Metric: We evaluate the reconstruction quality of the reference
schemes in terms of MSE between the original images and the
reconstructed images sent over wireless AWGN channels.
Test Images: We used the benchmark dataset, namely, CIFAR-
100 [19] for evaluations. CIFAR-100 consists of multiple
training images and testing images with 100 classes. The
training images are used for learning the network weights
while the testing images are used for comparison in terms
of image and visual quality. We consider 50,000 training
images and 100 testing images for evaluations of the proposed
metadata coding networks.
Amount of Metadata: As we mentioned in Sec. II-C, the
proposed scheme sends analog-modulated m variables for
each image. We first evaluate the baseline performance of the
proposed scheme with m = 1 variable, and then discuss an
impact of the number of variables on the reconstruction quality
in Sec. III-C. SoftCast [10] transmits mean and variance as
metadata variables for each chunk. GMRF-based scheme [13]
sends five parameters for each image.

B. Reconstruction Quality

We first evaluate the image reconstruction quality of the pro-
posed and four existing schemes in different wireless channel
quality. For the comparison, we measure the proposed scheme,
GMRF-based soft delivery scheme [13], and SoftCast [10]
schemes with different chunk sizes: 1× 1, 2× 2, and 32× 32
pixels. The corresponding amount of metadata in SoftCast and
GMRF-based soft delivery schemes become 3072, 1536, 6,
and 5 for each image, respectively. GMRF-based soft delivery
and SoftCast schemes directly map linear-transformed 2D-
DCT coefficients on the I and Q components for image
delivery to prevent cliff effect and gracefully improve image
quality according to wireless channel quality.

Fig. 3 shows the reconstructed image quality of the proposed
and existing soft delivery schemes as a function of wireless
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Fig. 3. MSE performance of the proposed and existing soft delivery schemes
as a function of wireless channel SNR.

channel SNRs. Here, the amount of metadata in the proposed
scheme is one variable. From the evaluation results, we can
see the following key observations:

• The proposed scheme realizes graceful quality improve-
ment with the improvement of wireless channel quality
and yields better reconstruction quality compared with
the existing soft delivery schemes.

• Even though CIFAR-100 has 100 different classes, i.e.,
large-class data set, the proposed DNN-based encoder can
represent the metadata with only one variable.

• Although SoftCast with chunk size of 1× 1 pixel needs
to send all the power values of the DCT coefficients as
metadata to realize graceful quality improvement, the pro-
posed scheme achieves better and graceful reconstruction
quality even with one metadata.

• SoftCast with chunk size of 32×32 pixels can reduce the
overheads. However, it has a low reconstruction quality
irrespective of wireless channel SNRs due to improper
power allocation.

• GMRF-based soft delivery scheme reduces the overheads
and realizes better reconstruction quality compared with
SoftCast with a large chunk size, i.e., 32× 32 pixels. On
the other hand, it still has a low reconstruction quality
compared with the proposed scheme due to a fitting error.

Especially, it is demonstrated that the MSE performance of
the proposed scheme is better than SoftCast scheme with a
chunk size of 1 × 1 pixel irrespective of wireless channel
SNRs. This may be because the proposed method directly
maximizes the image quality with the modified MSE loss
function in (7), whereas SoftCast schemes assign sub-optimal
power without taking the mismatch of the original and recon-
structed power information into account. Since the proposed
scheme optimizes the weights of the DNN-based metadata
coding networks under the consideration of the mismatch of
the power information, it can keep better MSE performance.

For example, the proposed scheme achieves quality im-



(a) Original

(b) SoftCast (1×1 chunk)
SNR: 0 dB
MSE: −24.9 dB

(c) Proposed
SNR: 0 dB
MSE: −26.6 dB

(d) SoftCast (1×1 chunk)
SNR: 10 dB
MSE: −33.8 dB

(e) Proposed
SNR: 10 dB
MSE: −39.0 dB

Fig. 4. Snapshot of a reconstructed image from CIFAR-100 at SNRs of 0 dB
and 10 dB.

provement by 11.2 dB, 7.0 dB, 7.6 dB, and 21.2 dB on average
over GMRF-based soft delivery scheme, SoftCast with chunk
size of 1 × 1 pixel, 2 × 2 pixels, and 32 × 32 pixels across
wireless channel SNRs of 0 to 25 dB with 80.0%, 99.97%,
99.93%, and 83.33% of overhead reduction, respectively.

To discuss reconstructed visual quality of each reference
scheme, Figs. 4 and 5 show snapshots at different wireless
channel SNRs. For example, in Figs. 4(b) and (d), the recon-
structed images are severely distorted even after an optimized
MMSE filter. The proposed scheme in Figs. 4(c) and (e) can
effectively denoise the images in Figs. 4(b) and (d) by using
the power values of all the DCT coefficients obtained from
the proposed DNN-based metadata decoder.

C. Effect of Amount of Metadata

We then discuss the reconstructed image quality with differ-
ent amount of overheads in the proposed scheme. Fig. 6 shows
the reconstructed image quality of the existing soft delivery
and proposed schemes with different amount of metadata
overheads as a function of wireless channel SNRs. Here, we
consider three proposed schemes with different amount of
metadata m: one, two, and four variables. We can see that
the proposed schemes achieve the better reconstruction quality
in low wireless SNR regimes irrespective of the overheads.

(a) Original

(b) SoftCast (1×1 chunk)
SNR: 0 dB
MSE: −24.9 dB

(c) Proposed
SNR: 0 dB
MSE: −26.6 dB

(d) SoftCast (1×1 chunk)
SNR: 10 dB
MSE: 33.8 dB

(e) Proposed
SNR: 10 dB
MSE: −39.0 dB

Fig. 5. Another snapshot of the reconstructed image from CIFAR-100 at
SNRs of 0 dB and 10 dB.

In addition, the proposed scheme with four variables offers
only a little improvement in the reconstructed image quality
compared with the proposed scheme with one variable across
the wireless channel SNRs of 0 to 10 dB. It is hence verified
that the proposed metadata compression based on DNN can
realize nearly zero overhead for soft image delivery.

We also observe that the proposed scheme with four vari-
ables can degrade the reconstruction quality at high wireless
SNR regimes. Fig. 7 shows the learning curves of testing
images for the proposed DNN-based metadata coding net-
works with different number of variables. We plot the best
loss function, i.e., MSE, obtained from testing images in
each epoch. From the learning curves, the proposed scheme
with one variable realizes a low MSE after 70 epochs. It is
demonstrated that the proposed scheme with four variables
still has a high MSE even in 100 epochs. In order to improve
the learning convergence, another DNN architecture such as
convolutional counterparts can be considered. Detail analysis
and discussion for another DNN architecture will be left as
future works.

IV. CONCLUSION

This paper proposed a low overhead analog transmission
scheme, employing DNN-based metadata encoder/decoder.



-70

-60

-50

-40

-30

-20

-10

 0  5  10  15  20  25

M
S

E
 (

d
B

)

SNR (dB)

SoftCast (6 metadata)
GMRF-based Scheme (5 metadata)
Proposed (1 metadata)
Proposed (2 metadata)
Proposed (4 metadata)

Fig. 6. MSE performance of the proposed and existing soft delivery schemes
with different amount of metadata m as a function of wireless channel SNR.

-70

-60

-50

-40

-30

-20

-10

 0

 0  10  20  30  40  50  60  70  80  90  100

M
S

E
 (

d
B

)

# of epochs

Proposed (1 metadata)
Proposed (2 metadata)
Proposed (4 metadata)

Fig. 7. Learning curves of the proposed schemes with different amount of
metadata m as a number of epochs at wireless channel SNR of 25 dB.

Specifically, the proposed scheme encodes the pixel values of
original images into a few variables using pre-trained DNN-
based metadata encoder and the variables are decoded by
the pre-trained DNN-based metadata decoder. To improve the
image quality over noisy wireless channels, we derived a
new loss function which directly accounts for the presence of
noise and power information errors. Performance evaluations
show that our proposed scheme achieves graceful and higher
reconstruction quality compared to existing analog schemes
with the improvement of wireless channel quality. In addition,
the proposed scheme is found to realize one variable metadata,
which significantly reduces the required amount of overheads.
This reduction saves transmission power and may result in fur-
ther quality improvement especially for band-limited wireless
channels.
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