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Abstract
In this paper, we propose a reinforcement learning-based algorithm for trajectory optimiza-
tion for constrained dynamical systems. This problem is motivated by the fact that for most
robotic systems, the dynamics may not always be known. Generating smooth, dynamically
feasible trajectories could be difficult for such systems. Using samplingbased algorithms for
motion planning may result in trajectories that are prone to undesirable control jumps. How-
ever, they can usually provide a good reference trajectory which a model-free reinforcement
learning algorithm can then exploit by limiting the search domain and quickly finding a dy-
namically smooth trajectory. We use this idea to train a reinforcement learning agent to learn
a dynamically smooth trajectory in a curriculum learning setting. Furthermore, for gener-
alization, we parameterize the policies with goal locations, so that the agent can be trained
for multiple goals simultaneously. We show result in both simulated environments as well
as real experiments, for a 6-DoF manipulator arm operated in position-controlled mode to
validate the proposed idea. We compare the proposed ideas against a PID controller which
is used to track a designed trajectory in configuration space. Our experiments show that our
RL agent trained with a reference path outperformed a model-free PID controller of the type
commonly used on many robotic platforms for trajectory tracking.
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Abstract— In this paper, we propose a reinforcement
learning-based algorithm for trajectory optimization for con-
strained dynamical systems. This problem is motivated by the
fact that for most robotic systems, the dynamics may not
always be known. Generating smooth, dynamically feasible
trajectories could be difficult for such systems. Using sampling-
based algorithms for motion planning may result in trajectories
that are prone to undesirable control jumps. However, they can
usually provide a good reference trajectory which a model-free
reinforcement learning algorithm can then exploit by limiting
the search domain and quickly finding a dynamically smooth
trajectory. We use this idea to train a reinforcement learning
agent to learn a dynamically smooth trajectory in a curriculum
learning setting. Furthermore, for generalization, we parame-
terize the policies with goal locations, so that the agent can
be trained for multiple goals simultaneously. We show result
in both simulated environments as well as real experiments,
for a 6-DoF manipulator arm operated in position-controlled
mode to validate the proposed idea. We compare the proposed
ideas against a PID controller which is used to track a designed
trajectory in configuration space. Our experiments show that
our RL agent trained with a reference path outperformed a
model-free PID controller of the type commonly used on many
robotic platforms for trajectory tracking.

I. INTRODUCTION

In this paper, we present a trajectory optimization algo-
rithm for robots with unknown dynamics operating under
state and control constraints using Reinforcement Learning
(RL). Trajectory optimization is a procedure that produces
state and control sequences for a dynamical system under
relevant constraints for the system. Most of the state-of-
the-art motion planning algorithms generate a plan in the
configuration space of the robot, which is then followed
by the robot using a trajectory tracking controller [1]. With
unknown robot dynamics, the use of traditional PID con-
trollers for trajectory tracking is commonplace. Most of the
planning algorithms ignore the dynamics of the robot and
hence return a trajectory which is foten unsuitable for a
lot of target applications [1]. For example, many industrial
robots can achieve very high accelerations and torques that
can potentially damage the robot as well as the components
being manipulated. As an example, in Figure 1 we show a
manipulator arm trying to assemble parts of a computer. For
such applications, the robot is trying to assemble delicate
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Fig. 1: The proposed method is used to compute smooth
trajectories for assembling computer parts using a 6-DoF
manipulator arm.

parts connected with wires with fixed length that can easily
be broken if high torques are applied. Furthermore, many
users deploying such robots have access only to a high-
fidelity simulator for the system and its kinematic equations,
but not to the true robot dynamics. As a result, a lot of
existing results from model-based trajectory optimization
cannot be used. Consequently, for many applications, a lot
of time is spent in manually designing trajectory tracking
controllers. However, high-fidelity simulators provide a good
resource that can be used for training an RL agent in the
simulated environment, to be used on the real system later.

A model-free RL agent [2] can learn feasible trajectories
under dynamic constraints; however, it requires a lot of
time for convergence to good solutions. In light of this, we
propose to train an RL agent to generate dynamically fea-
sible trajectories, where a sampling-based motion planning
algorithm is used to guide the RL agent for faster learning
and convergence. We use a RRT-based [1] trajectory to guide
an RL agent to learn dynamically-feasible trajectories in the
presence of state and input constraints. The RL agent is
trained in a curriculum learning setting for faster conver-
gence, and we show that we can achieve good generalization
when conditioning the policy on the goal. The proposed
algorithm is tested in several simulated environments, as well
as with a real robot, by transferring the learned policy from
the simulator to the robot. In Figure 1, we show a manipu-
lator arm assembling parts in an environment cluttered with
obstacles (a desktop computer) using the proposed algorithm.



Contributions. Our paper has the following contributions.
1) We propose an RL-based algorithm to efficiently gen-

erate control-smooth trajectories for unknown con-
strained dynamical systems using a goal-directed ref-
erence trajectory.

2) The proposed algorithm can generalize to local pertur-
bations in goal position in the presence of obstacles.

3) We demonstrate the proposed algorithm in both simu-
lation and experimental environments, where the pro-
posed method outperforms a baseline method where a
trajectory generated by RRT is tracked by a fine-tuned
PID controller.

II. RELATED WORK

Reinforcement learning has recently made huge advances,
based on the success of deep learning techniques. Recent
RL algorithms have achieved very impressive performance
in learning in computer games [3], [4], robotics [5], etc.
Broadly, RL algorithms can be classified as model-based
or model-free [2], [6]. Model-based algorithms can achieve
good sample complexity and generalization, but are gener-
ally known to be harder to train for nonlinear dynamical
systems. Model-free algorithms, on the other hand, can
achieve good asymptotic performance, but suffer from high
sample complexity. A lot of recent research has focused on
leveraging ideas from control and optimization theory for
faster learning [7]–[9]. In a lot of robotics applications, it is
generally advantageous to initialize RL agents with demon-
strations which can provide them with an initial reference
solution [10]. Learning policies from reference trajectories
has been studied in [11]–[13]. Motivated by this idea, our
work mainly focuses on using reference trajectories that can
be provided by off-the-shelf planning algorithms to speed
up learning for our RL agent. The planning algorithm serves
as a demonstrator for the learning algorithm. The closest
work similar to ours is [13]. In [13], a model-based RL
agent is learned using a trajectory-centric RL (Guided Policy
Search) approach to learn a trajectory-tracking controller for
a trajectory provided by RRT [1]. However, using a model-
based RL in constrained state and control settings could be
difficult, because it is not clear how the underlying trajectory
optimization algorithm [14] can account for arbitrary state
constraints for manipulator-like systems.

Our combination of RL and reference trajectory tracking
can be seen as a form of reward shaping [15]. Reward
shaping speeds up learning by creating a more informative
reward signal. However, designing shaping rewards requires
significant non-trivial reward engineering, and may also alter
the optimal solution. To alleviate this problem, automatic
reward shaping has been researched [16], [17].

III. BACKGROUND

We consider the standard RL setting that consists of an
agent interacting with a stochastic environment. An envi-
ronment consists of a set of states S, a set of actions
A, a distribution of initial states p(s0), a reward function

r : S × A → R, transition probabilities p(st+1|st, at) :
S ×A → S, and a discount factor γ ∈ [0, 1].

An episode starts with an initial observation s0 sampled
from p(s0). At each time step t, the agent observes an
observation st and chooses an action at according to a policy
π(at|st), which is a mapping from observations to actions:
π : S → A. Then, the agent obtains a reward rt = r(st, at),
and the next state st+1 is sampled from p(st+1|st, at). The
goal of the agent is to maximize the expected discounted
sum of rewards J = Eπ[

∑∞
t=0 γ

tr(st, at)]. The quality of
the agent’s action at when receiving an observation st can
be measured by a Q function Q(st, at) = Eπ[J |st, at].

DDPG [18] is a model-free Q-learning-based reinforce-
ment learning algorithm for continuous action spaces. It is
an extension of the earlier DQN agent [4], using generating
distributions over continuous action spaces. In DDPG, we
maintain two neural networks: a deterministic policy (called
the actor) π and a Q function approximator (called the critic)
Q : S×A → R, parameterized by a set of parameters θπ and
θQ. An actor network deterministically maps observations
to actions and tries to maximize Q(st, at). DDPG employs
a critic neural network to estimate Q by minimizing the
Bellman loss:

Lcritic = (Q (st, at)− yt)2 , (1)

where the 1-step target yt is calculated using target networks
Q∗ and π∗ as

yt = rt +Q∗ (st+1, π
∗ (st+1)) . (2)

Each transition of the agent is stored in a replay buffer,
from which mini-batches are sampled to train the networks.
This stabilizes training by removing temporal correlations,
and therefore reduces the changes in the distributions the
networks are trying to learn. Additionally, a prioritized replay
buffer [19] assigns a priority pi to each transition, computed
as the last temporal difference (TD) error and a small hyper-
parameter ε. For more details, see [19].

However, earlier research has shown that DDPG is prone
to overestimating Q-values, and results in sub-optimal poli-
cies. TD3 [20] implements three improvements to address
the overestimation resulting from approximation errors. First,
it maintains two independent critic networks, and always
employs the minimum Q-value as the optimization target.
Second, it proposes to delay the propagation of weight
updates. Finally, it explicitly increases the smoothness of the
Q-function prediction by adding a clipped normal noise to the
action to the target Q-value. Using these three improvements,
we can replace the 1-step target of the critic defined in (2)
with

yt = rt + min
i=1,2

Q∗i (st+1, π
∗ (st+1) + clip(N (0, σ),−c, c)) .

(3)

IV. PROPOSED APPROACH

In this section, we present details of the algorithm and
some techniques which allow us to train the algorithm
efficiently. We train a TD3 agent (see Section III) using a



reference trajectory provided by RRT. Furthermore, due to
the constrained nature of the problem (presence of obstacles),
we use curriculum learning to simplify learning for the TD3
agent. These are explained in detail next, and presented as a
psuedo code for clarity in Algorithms 1 and 2.

A. Reinforcement Learning with Reference Trajectory

We consider the standard RL problem described in Section
III with a reference trajectory z ∈ Z . We include the
information about the reference trajectory into a reward
function as r : S × A × Z → R. Therefore, the reward
function can be written as

r(st, at, zt) = f(st, at) + h(st, at, zt). (4)

f(st, at) is the reward that originates from a pure RL
setting, and h(st, at, zt) is calculated using the reference
trajectory. The idea is to accelerate the learning process by
the additionally defined term h(st, at, zt) in the reward func-
tion. This term penalizes search too far from the reference
trajectory, and thus limits the search space for the agent.

In prior work, an expert trajectory is generally used to
define the function h(st, at, zt). In contrast, we use a stan-
dard RRT algorithm for generating a reference path, because
the computational cost for generating a path is much smaller
than that of doing RL. Due to the nature of random-sampling
based algorithms, RRT produces a jerky path, and it results
in jerky trajectories, because the critic directly optimizes
the reward function. In order to mitigate this problem, we
investigated two improvements.

First, we reduce the number of vertices that describe
the trajectory by randomly short-cutting between them, as
described in [21]. To do so, we randomly pick two vertices,
and divide the trajectory that connects the two points with
a fixed distance. Then, for each vertex, we check if it has
contact with obstacles or not, and if none of the vertices
collides with obstacles, we short-cut the path, i.e. omit the
vertices between the selected two vertices.

Second, we replace the reference trajectory in every
episode with a path found by the RL agent during training
that satisfies that: 1) the current path reaches the goal without
colliding with obstacles; 2) the number of total steps to
achieve the goal is the lowest, and 3) the cumulative reward
is the highest.

B. Resets to Reference Path

To overcome the problem of exploration, we reset some
training episodes to a reference path with a probability
of preset ∈ [0, 1]. Restarts from them makes the agent
explore more efficiently, because the reference trajectory is
guaranteed to reach the goal. Prior work [10] employs expert
trajectories and resets to a state in them; however, we do not
have such expert trajectories. Instead, we utilize a reference
path that ensures that the goal is reached. To reset to a
reference path, we uniformly sample joint angles θt from
the set of reference trajectories, and assign the start angle to
the sampled value.

C. Curriculum Learning

Generally, RL is harder to train if the reward function
is sparse, and if an episode is longer. To simplify learning
for the agent, we gradually increase the complexity of the
problem in a curriculum learning setting. We use curriculum
learning in two different settings. First, we train the RL agent
to learn a controller close to the reference trajectory without
any sparse penalty for collision (i.e., w3 = 0), with the
intuition that state constraints make the problem harder. This
in turn provides more dense rewards to reach the goal. Once
the agent learns successfully how to learn in the absence
of obstacles, we introduce penalty for collision, which we
gradually increase, to adapt to the obstacles. Second, to make
learning easier, we gradually decrease the goal region for the
agent. For our problem, we define an acceptable goal area as
rgoal, and we declare success when θdist = ‖θt − θgoal‖2 ≤
rgoal. (Note that θt is six-dimensional).

The gradual change in penalty for collision w3 forces the
critic to fit to noisy targets. This could lead the actor to
converge to a non-optimal local minimum, since the actor
learns with gradients computed using the critic network. To
avoid this, we store past good experiences in a replay buffer,
which is different from the prioritized replay buffer that was
described in III, and encourages the actor to choose the same
action as the past good experiences in any given state. The
additionally prepared buffer stores the past best K episodes
as in [22], in the sense that 1) the RL agent reaches the goal
without colliding with any obstacle, and 2) the RL agent gets
higher episode rewards.

To imitate from such good experiences, we use the be-
havioural cloning loss LBC which was proposed in [10] and
is defined as:

LBC =

{
(π (si)− ai)2 , if Q (si, ai) > Q (si, π (si))
0 otherwise

. (5)

After sufficient training, the agent might surpass the per-
formance of the past best experiences and thus LBC would
then become detrimental to the agent’s performance. The
Q-filter mitigates this problem by only applying LBC if the
critic judges that the action proposed by the actor is worse
than the action of the demonstrator, in out setting, past good
experiences. Based on adding a behavioral cloning loss, the
actor loss results in:

Lactor = −Lcritic (π (st)) + λBCLBC, (6)

where λBC ∈ R+ is a hyperparameter for actor to balance
learning from critic or past good experiences.

The whole learning procedure is provided as psuedo code
in Algorithm 1 and Algorithm 2. These algorithms are
implemented in a curriculum setting, as described above.

D. Goal Parameterization of Policy

To achieve generalization to perturbations in the target
state for the agent, we parameterize the policy of the agent
on the goal. The idea is that a goal-parameterized policy
represented by a network with enough capacity should be
able to generalize to perturbations in the goal location. This



is a very desirable property to have in the final policy,
because robots are often expected to adapt to some local
perturbations in the target state. We assume that the target
state g is sampled from the set G. We train a single network
to maximize the expected discounted reward over multiple
goal states. The learning problem is to optimize the following
expected discounted reward:

J(π) =
∑
g

J(πg) =
∑
g

Eπg

[ ∞∑
t=0

γtrg(st, at)
]

across all goals g ∼ G. The reward rg is now conditioned
on the goal to reflect the fact that rewards depend on the
particular goal (or task). This is achieved by increasing the
capacity of the network by adding additional input units
to the network. In the simplest setting, we achieve this by
simply padding extra inputs to the network that contain the
goal information.

Algorithm 1 Learning procedure

1: Initialize τ ′ . Buffer for reference trajectory
2: Initialize RA ← {} . Replay buffer for RL
3: Initialize RK ← {} . Replay buffer for top-K

episodes
4: Compute a reference trajectory τ using RRT
5: Smooth out τ by short-cutting . Reference trajectory

input to RL
6: while Termination condition is False do
7: tstep ← 0, τ ′ ← {}
8: Initialize st with initial state defined in each task
9: Replace the initial state with an uniformly sampled

state from τ with probability preset
10: while tstep < episode length or θdist ≤ rgoal do
11: Sample using Algorithm 2
12: end while
13: if Trajectory reaches the goal then
14: if τ ′ satisfies the update condition then
15: Update reference trajectory, τ ← τ ′

16: end if
17: Update curriculum learning setting
18: end if
19: end while

V. SYSTEM OVERVIEW

In this section, we provide relevant details of the simulator
and the real system we used in this paper for our experiments.

A. Hardware

We use a MELFA RV-FR robot, which is an industrial
robot that has 6 degrees of freedom [23]. The generated
trajectories must ensure that joint angles and angular ve-
locities that consist the trajectories are within a known
specified range. The robot used in the experiments in the
paper is operated in a position control mode where a position
command is sent to the robot every ∆t = 0.0035 seconds,
which comes from the minimum operational time of the

Algorithm 2 Environment sampling

1: Observe st and rt.
2: Store data for t into RA: {st, rt, at} and τ ′ ← τ ′∪{θt}
3: if st concludes an episode then
4: Perform step of TD3 . Update actor and critic

networks weights
5: if Current episode deserves top-K episodes then
6: Update top-K replay buffer RK
7: end if
8: else
9: Sample the current policy at ∼ π(a|st)

10: Advance the environment by performing at
11: end if

industrial robot we used in a real setting. As a result, the
control input is the velocity for each joints. We, however,
would like to minimize the acceleration (i.e., the derivative
of the control signal or the control jumps) during operation.
This is a desirable feature for a lot of industrial manipulators
where direct torque control is not accessible.

B. Simulator

We utilize a simulator to generate trajectories and then
deploy them in a real setting. The simulator is a high-fidelity
simulator for the MELFA RV-FR called RT ToolBox3 [24].
The baseline controller we use to compare the RL agent in
this work is a PID trajectory-tracking controller that can be
designed in the simulator given a reference trajectory. For
our experiment, this function is our initial baseline, which
is described in detail in VI. The simulator has a built-in
function for collision checking between the manipulator and
obstacles present in the environment, and we use the same
function for collision detection during planning. However,
the proposed algorithm is agnostic to the collision checking
method and simulation environment.

VI. EXPERIMENTS

In this section, we will describe several different environ-
ments in which we test our proposed algorithm. In particular,
we test it in two environments in simulation–a Book-shelf
environment (see Figure 2a) and an Open-Computer envi-
ronment (see Figure 2b). In these environments, the robot is
trying to manipulate objects that can be damaged if excessive
torque or acceleration is applied. Furthermore, we will show
experimental results with a real robot for the Open-Computer
environment (see Figure 2c). Videos of the learned behavior
of the robot could be seen in the supplementary material.

In our experiments, we try to investigate the following
questions:

1) Does the combination of a reference trajectory and
RL improve the performance of each one of them in
isolation?

2) Does the proposed algorithm generate feasible trajec-
tories in the presence of state and control constraints
better than some of the traditional control techniques
of trajectory tracking with a reference trajectory?



(a) Book-Shelf environment (b) Open-Computer environment (c) Open-Computer environment in real

Fig. 2: We show the trajectories obtained by the proposed method in the above figures for the three different settings.

3) Does curriculum learning helps the agent learn faster?

In the following text, we answer the above-mentioned ques-
tions, and demonstrate that we can generate smooth trajecto-
ries and the agent can generalize to unseen goal conditions
upon conditioning the policy on goal position.

A. Environment

1) States: The states of the system consist of current
angles θt and angular velocities θ̇t. Therefore, the state set
is represented in S ∈ R12. The initial angles and angular
velocities are deterministically reset to θ0 = θstart, and
θ̇0 = 0.

2) Actions: The action of the agent at is the vector of
angular velocities θ̇ for the next step. Since we consider a
six dimensional configuration space environment, the action
set is described as A ∈ R6. We define a time step described
as ∆t. Therefore, the angles of the next step θt+1 can be
calculated as

θt+1 = θt + at ×∆t. (7)

3) Rewards: As described in IV-A, we add h(st, at, zt),
which is calculated from the reference trajectory, to the
conventional reward term f(st, at). First, referring to [25],
we define the conventional reward term as

f(st, at) =w1dgoal + w2Igoal + w3Icollision
+ w4Ianglelimit + w5‖θ̈‖+ w6,

(8)

where dgoal is an Euclidean distance to the goal, i.e., dgoal =
‖θt− θgoal‖. Igoal, Icollision, and Ianglelimit are indicators of
whether the agent reaches the goal, and whether collision
between the agent and the obstacles occurs, and whether
the agent violates the constraint of joint angles respectively.
The fifth term encourages the agent to generate a smoother
trajectory, which is essential when operating the real system.
The final term is negative value, so it encourages the agent
to reach goal with smaller steps.

Then, we design an additional term by using a reference
path as

h(st, at, zt) = w7dpath + w8nprogress, (9)

where dpath is the distance to the reference path and nprogress
is the progress along the path. The first term penalizes search
too far from reference path, and second term encourages to
go towards goal target angles along with reference path.

In order to calculate dpath and nprogress, we divide the
reference path and agent’s path at regular intervals, as
shown in Fig. 3. By dividing the path, we obtain the
subsampled vertices p′0,p

′
1, · · · ,p′N ′

p−1 for the reference
path, and θ0t ,θ

1
t , · · · ,θ

Nt−1
t for the agent’s path, where

N ′p and Nt are the numbers of vertices in each divided
path. We can then define the distance to the given path as
dpath = max

i
D(θit), where D(θ) is the distance to the path

calculated as min
i
‖θ−p′i‖. We can also observe the progress

along the path as nprogress = NNI(θt)−NNI(θt−1), where
NNI(θ) is the vertex index of the nearest neighbor to θ, i.e.,
NNI(θ) = arg min

i
‖θ − p′i‖.

Fig. 3: Path division for calculating rewards. The blue line
is the agent’s path, and the red line is the reference path.
θt is the joint angles of the agent at time step t, and p′j is
the index of the divided path. The dashed lines indicate the
correspondence to the nearest neighbor.

4) Termination Condition: An episode terminates with
following two conditions: the joint angles of the agent θt
are sufficiently close to the goal state as described in IV-
C, or the number of steps of an episode is over a specified
threshold.



(a) Book-Shelf Task2 (b) Book-Shelf Task6 (c) Open-Computer Task

Fig. 4: A comparison between RL without reference paths, RL with reference paths, and RL with reference paths that are
updated in the course of learning. The experiments are conducted over 5 random seeds. The bold line shows the average
episode rewards, and the shaded region is one standard deviation from the average. The plot shows the faster and stable
learning that we achieve using a reference trajectory which is the updated for self imitation in each episode.

B. Book-Shelf Environment

The Book-Shelf environment consists of a two-row, three-
stage bookcase, simulating a pick and place task. Each of the
cube in the bookshelf is 300 mm deep, 200 mm high and
500 mm wide. The manipulator starts from an initial pose
denoted by θstart, and has to reach 6 different points specified
as θBL,θML,θTL,θBR,θMR,θTR, those are center positions
for each cube of the bookshelf, defined as θstart = [0, 8, 131,
0, 41, 180], θBL = [-52, 59, 106, -141, 78, 170], θML =
[-52, 28, 111, -134, 60, 152], θTL = [-52, 13, 95, -111, 42,
117], θBR = [-128, 59, 106, 141, 78, 190], θMR = [-128,
28, 111, 134, 60, 208], θTR = [-128, 13, 95, 111, 42, 243].
We define task 1 to 6 as reaching from θstart to those angles
defined above.

C. Open-Computer Environment

The Open-Computer environment is for simulating a com-
puter assembly, picking up a connector, and inserting it into
a socket mounted on a mother board as illustrated in Fig. 2b.
The picking part and insertion part is out of our focus, so
the simulation starts from just above the connector place
with an angle of θstart= [-47, -8, 113, 0, 75, -138], and the
goal is near the socket, denoted by θgoal = [-90, -1, 138, -
180, 46, 88]. The real setup shown in Fig. 2c is the same
as the above environment, except that the robot is grasping
a connector with a harness. A video of the implementation
of the algorithm on the real manipulator is provided in the
supplementary materials.

VII. EXPERIMENTAL RESULTS

This section presents results from experiments designed to
answer the questions described in VI. The baseline that we
compared our proposed method with is a combination of a
reference path and a PID-based trajectory tracking controller
implemented in our simulator, as described in V-B. Note that
the reference path is generated using RRT and is smoothed
out by short-cutting, as described in IV-A.

A. Accelerating RL by Using Reference Paths
First, we evaluate the effectiveness of using reference

paths to train an RL agent. We compare three learning
methods. Firstly, we train an RL agent without a reference
path by setting w7 = w8 = 0 in Eq.(9). Secondly, we train
with reference paths, and finally, we train with a reference
path while it is being updated in every episode if it satisfies
the conditions described in IV-A. The evaluation metric is
the cumulative episodic reward that an RL agent gets during
an episode. For fair comparison between methods with and
without reference paths, we omit reward terms that come
from the reference path by setting w7 = w8 = 0 in Eq.(9).

Figure 4 shows the resulting episodic returns. It suggests
that the use of reference paths improves convergence perfor-
mance with respect to the training without reference path.
Also, updating the reference path improves the performance
more, because the initial reference path is jerky, and that
may result in converging to a non-optimal trajectory. Thus,
we see that the use of a reference trajectory for training of
the RL agent helps in speeding up policy learning.

B. Generating Smoother and Shorter Trajectories using RL
Next, we compare the quality of the trajectories obtained

by the proposed algorithm against the baseline method. We
use two metrics to quantify the quality of the trajecto-
ries obtained: the time needed to reach the goal, and the
magnitude of acceleration. Recall that part of the initial
motivation to training the agent this way was to minimize
control jumps, and thus generate trajectories with limited
acceleration. Table I shows the time required by the proposed
algorithm to reach the goal using the proposed algorithm
and compared against the baseline. This clearly demonstrates
that the proposed method generates high quality trajectories.
Figure 5 shows the angular acceleration during a rollout of
the proposed method, compared against the baseline method.
It shows that the proposed method generates trajectories with
much lower acceleration profiles than those generated by the
baseline method in all joints, while also minimizing the time
taken to reach the goal.



TABLE I: Time [sec] to reach goal.

Task Open- Book-Shelf
Computer 1 2 3 4 5 6

Baseline 0.82 0.56 0.65 0.62 0.80 0.75 1.28
Ours 0.22 0.34 0.26 0.25 0.48 0.55 0.50

Fig. 5: Accelerations for Book-Shelf environment task1. Left
figure is the result of our proposed method and right figure is
generated by RRT and PID controller. Note lower is better.

C. Curriculum Learning

Next, we investigate how our curriculum learning helps
training our RL agent. We compare our full model with the
one without curriculum learning and self imitation for task 1
in the Book-Shelf environment. Note that in TD3, the actor
learns to maximize the Q function (critic) parameterized by
a neural network. Therefore, if the estimation of Q function
is insufficient, it gives undesirable gradients to the actor and
that would result in lower episode rewards.

Fig. 6 shows a comparison of convergence rates of the
agent using different methods. Without curriculum learning,
the agent achieves slower convergence, because the training
of the critic is harder due to a huge collision penalty, and it
is harder to get positive reward which the agent receives only
upon reaching the goal. Also, training without self imitation
results in unstable training, because the critic needs to fit the
noisy reward because of changing collision penalty w3 in
Eq. (8). Our full model is both stable and converges faster,
because curriculum learning makes it easier for the critic
to fit the Q function, and self imitation mitigates the noisy
reward problem by imitating past good experiences.

D. Generalization to Goal Perturbation

Next, we evaluate the generalization of our method with
respect to goal perturbation. As shown in IV-D, we add
the goal state to both the actor and critic networks, in the
expectation that the method can generalize over goal states.
The target task is task 2 of Book-Shelf environment, moving
from start angle θstart to θML defined in VI-B. As for targets,
we fix a plane in a cube of the Book-Shelf and change goal

Fig. 6: A comparison between our proposed model, remov-
ing curriculum learning, and removing self imitation. The
experimental conditions are same with Fig. 4

state within a W × H [mm2] rectangle. For training, we
randomly sample N different positions in the rectangle. After
training, we test the generalization by randomly sampling
50 positions in the same rectangle used during training,
recording whether the robot reached the goal or not. To
exploit the past good experiences, we prepared top-K buffer
for each goal, and tried to make the training more stable and
improve sample efficiency.

Table II shows the result of the experiments. It demon-
strates that the RL agent successfully generalizes to goal
perturbations over a reasonable area even in the presence of
state constraints.

TABLE II: Performance on generalization task in simulation

(W,H,N)
(100, 100, 10) (200, 200, 50)

Train Test Overall Train Test Overall

Number of 10/10 49/50 59/60 49/50 45/50 94/100successes
Success rate 1 0.98 0.98 0.98 0.90 0.94

VIII. CONCLUSION

The research reported in this paper is based on the idea
to combine RL with trajectory optimization for unknown
systems in the presence of constraints on state, control and
control-jumps. This kind of problems is common in robotics,
where a manipulator has to be used for tasks in an environ-
ment cluttered with obstacles, in a position-control mode.
We proposed a method based on RL, for the case when the
dynamics are unknown, that generates optimal trajectories
in the presence of obstacles and other constraints. For faster
learning, we use an off-the-shelf sampling-based algorithm
to first generate a reference trajectory which is then used
by the RL agent to converge to an optimal solution faster.
The proposed method was demonstrated on several simulated
environments using a high-fidelity simulator for an industrial-
grade manipulator. We compared the learned policy against a



baseline controller designed to track the trajectory obtained
by smoothing the initial reference trajectory. The proposed
algorithm was also tested for generalization to multiple new
target states.

In future research, we would like to investigate the pro-
posed algorithm by parameterizing it with the reference
trajectory. We expect that as long as we do not change
the environment, the agent would learn to produce a better
solution respecting all the constraints.
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APPENDIX

A. Curriculum Learning Setting

As written in IV-C, we used curriculum setting to train
our RL agents. Let tgoal be the number of goals reached
in an experiment. When 0 ≤ tgoal < 100, we train RL
agents without checking collision with obstacles, and linearly
decrease rgoal from 0.52 [rad] to 0.26 [rad]. Then, we linearly
increase the value of the collision penalty from 0 to −10 in
100 ≤ tgoal < 200.

For self imitation, we set K = 5 for the top-K replay
buffer, and do self imitation only when the buffer is filled
with K episodes. For goal generalization experiments in VII-
D, we set K = 2 for all different goal settings, and start self
imitation when more than 20% of the top-K replay buffer is
stored.

B. Training Details

Both the actor and critic networks have two hidden layers
with 128 and 64 units for each layer. The hidden layers use
the ReLU activation function, and the output layer of the
actor uses the tanh activation function, so that an action
lies in the range of [−1, 1]. We define the maximum step
for an episode to be 300, and the agent randomly resets
to a reference path with a probability of preset = 0.3, as
described in IV-B. We train our TD3 agent for at most one
million steps. Both the actor and the critic perform updating
every time an episode finishes, collecting 1, 000 samples,
with a minibatch of size 100 sampled from a prioritized
replay buffer. The prioritized replay buffer consists of 105

transitions with fixed α = 0.6 and β = 0.4. For the ADAM
optimization algorithm [26], we use learning rates of 0.001
for both the actor and the critic, and the default values from
the TensorFlow framework for the other hyperparameters.
The target networks are also updated every cycle using a
decay coefficient of 0.995. We use a discount factor of
γ = 0.9.
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