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Abstract
In this work, we introduce a scalable, decentralized deep reinforcement learning (RL) scheme
for optimizing vehicle traffic consisting of both autonomous and human-driven vehicles. The
control inputs to the system are the following distance and lane placement of the autonomous
vehicles and the human-vehicles are uncontrolled. One point of novelty of the scheme is that
it is trained on images of traffic, where pixels are colored based on how much they are
occupied by humandriven or autonomous vehicles. Another point of novelty is in how the
scheme achieves scalable decentralization; it does so by training multiple RL agents, each
responsible for its own region of control, but able to at least partially observe neighboring
agents’ regions of control. In this way, the scheme is infinitely scalable because an RL agent
does not need to communicate with its neighbors, and can be applied in systems in which
neighboring controllers are not RL-based. We perform a case study of two simulations on a
two-lane oval highway in the Simulation of Urban MObility (SUMO) environment. In the
first simulation, a single RL agent is applied so that its region of control coincides with an
area of traffic congestion. In the second simulation, we apply multiple RL agents over the
entire network. The results of the first simulation show that the single RL agent is able to
improve traffic congestion. The results of the second simulation show that the decentralized
RL scheme is able to achieve even better results.
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Large-scale traffic control using autonomous vehicles and decentralized
deep reinforcement learning

Harshal Maske Tianshu Chu Uroš Kalabić

Abstract— In this work, we introduce a scalable, decentral-
ized deep reinforcement learning (RL) scheme for optimizing
vehicle traffic consisting of both autonomous and human-driven
vehicles. The control inputs to the system are the following
distance and lane placement of the autonomous vehicles and
the human-vehicles are uncontrolled. One point of novelty of
the scheme is that it is trained on images of traffic, where pixels
are colored based on how much they are occupied by human-
driven or autonomous vehicles. Another point of novelty is in
how the scheme achieves scalable decentralization; it does so by
training multiple RL agents, each responsible for its own region
of control, but able to at least partially observe neighboring
agents’ regions of control. In this way, the scheme is infinitely
scalable because an RL agent does not need to communicate
with its neighbors, and can be applied in systems in which
neighboring controllers are not RL-based.

We perform a case study of two simulations on a two-lane
oval highway in the Simulation of Urban MObility (SUMO)
environment. In the first simulation, a single RL agent is
applied so that its region of control coincides with an area of
traffic congestion. In the second simulation, we apply multiple
RL agents over the entire network. The results of the first
simulation show that the single RL agent is able to improve
traffic congestion. The results of the second simulation show
that the decentralized RL scheme is able to achieve even better
results.

I. INTRODUCTION

With the introduction of connected vehicles and au-
tonomous vehicles (AVs) on roadways, it will become possi-
ble to impact traffic by controlling individual vehicles based
on knowledge of the traffic state and, in this work, we
propose a control scheme that controls traffic by sending
commands to AVs. The scheme we develop is based on
model-free reinforcement learning (RL), which is a method
used to find approximate solutions to dynamic programming
problems with complex system dynamics. The motivation for
pursuing a model-free approach is that, due to interactions
between human agents and machines, traffic system dynam-
ics are very complex and, although many models exist [1],
some of which even consider multiple classes of vehicles [2],
none capture all the complexities of traffic behavior. For this
reason, our aim being the development of a generalized con-
troller for traffic, we desire that our controller be model-free.
We therefore pursue a deep RL (DRL) approach, which uses
machine learning to learn an approximate model of system
behavior and approximate the control policy. Specifically,
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(a) Road with regional RL controllers
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Fig. 1: Decentralized RL strategy based on controlling road
network segments

we use the actor/critic deep-deterministic policy gradient
(DDPG) algorithm [3] to train the neural networks (NNs)
used in approximating the dynamics and optimal policy.

Apart from considering complex system behavior, the
approach needs to also be appropriate for application to
large-scale traffic systems. We propose a novel, scalable, de-
centralized RL approach. Specifically, we design our scheme
so that each RL agent is responsible for the control of a
certain segment of traffic, as shown in Fig. 1. To ensure
scalability, we allow each agent to observe an area that is
larger than what it controls, i.e., the observed region contains
the controlled region, as shown in Fig. 1b. Each agent,
therefore, is trained on an image of traffic and, specifically,
this image is pixelated so that the intensity of the “color”
of each pixel represents vehicle density. Training NNs on
images is a very successful approach in the field of machine
learning and RL in general. A popular application thereof
has been the development of RL for the playing of video
games [4], [5] and, in a sense, our RL approach could also
be seen as playing a game, but with vehicle traffic.

Instead of controlling AVs directly, our RL policy informs
individual agents of control commands that are treated as set-
points by the vehicles. In this way, we preserve the on-board



safety features and lower-level control system properties of
each AV. The specific commands that we send are the desired
headway distance and desired lane choice for each AV. The
choices of command inputs are informed by the way in which
actual vehicles drive. Namely, if we assume that AVs of the
future will be designed to emulate the behaviors of human-
driven, heteronomous vehicles (HVs), then it is reasonable
to assume that AVs will modify driving behavior based on
changes in headway and lane choice commands. In fact,
this is a fair assumption given that the automotive industry
measures a vehicle’s level of autonomy by the number of
driving functions that it relieves from the driver [6]. For this
reason, we use the optimal velocity model (OVM) [7], [8],
which is a model that relates following distance to vehicle
speed, to design the longitudinal controller of our vehicle.
For lane-change requests, we use a simple thresholding
logic that requests a lane change whenever the RL action
corresponding to a lane-change request passes a threshold.

Decentralized RL approaches include [9], [10] and some
of them are specific to DDPG, e.g., [11]–[13], with more
references reviewed in [14]. However, in most of these
applications it is necessary for neighboring RL agents to
communicate with each other. Our approach is different
in that, because we consider an agent as responsible for
its own region, it is not necessary to know its neighbors’
control commands when it is possible to instead observe their
behavior. As such, it is possible to implement the approach in
a traffic system where neighboring territories are controlled
by non-RL schemes. Note that other methods that use AVs
as actuators in a traffic system are not decentralized, e.g.,
[15]–[17] for routing and [18]–[21] for control.

To test the performance of our RL approach, we perform
a case study of two numerical simulations. The simulations
are done in the Simulation of Urban MObility (SUMO)
environment and consider vehicles driving on a circular two-
lane track, of which 25% are AVs. In both simulations, a
vehicle stops in one of the tracks and thereby slows down
vehicle traffic. The first simulation considers an RL agent
controlling the quarter-segment of the track in which the
vehicle stops and its results show that traffic is improved
by our algorithm. In the second simulation, an RL agent is
applied to each quarter-segment of the track; its results show
further improvement in system behavior.

The rest of the paper is structured as follows. Section II
describes the decentralized RL scheme. Section III presents
the case study. Section IV is the conclusion.

II. DECENTRALIZED RL FOR TRAFFIC CONTROL

In this section, we present a decentralized DRL approach
used for the control of traffic using AVs. As shown in Fig. 1a,
the system consists of roads, each of whose segments are
controlled by different RL agents, making the approach fully
scalable. Instead of implementing an explicit communication
protocol between agents, we allow each agent to observe
an area larger than it controls. In this way, agents’ regions
of control do not overlap, but their regions of observation
overlap with neighboring regions of control. In the following,

we describe the models used in vehicle control, the determi-
nation of states and actions, the choice of reward function,
and the DRL algorithm.

A. Longitudinal Vehicle Control Model

We model the longitudinal control of AVs and HVs using
the OVM. Acceleration of a vehicle i at time t is given by,

ui,t = αi (vo(hi,t)− vi,t) + βi(vi−1,t − vi,t), (1)

where hi,t is its headway or bumper-to-bumper distance
between vehicle i and its leading vehicle i − 1, vi,t is its
velocity, vi−1,t is the velocity of its leading vehicle, αi and
βi are its headway and relative velocity gains, respectively.
The function vo(h) is a headway-based velocity policy,

vo(h) =


0 if h ≤ hs,
1
2vmax

(
1− cos

(
π h−hs

hg−hs

))
if hs < h < hg,

vmax if h ≥ hg,

where hs is the stopping headway, hg is the full-speed
headway, and vmax is the maximum speed.

Given that we assume that AVs emulate HV behavior, this
model is the same for both types of vehicles. To control
AVs, we send a desired full-speed headway command hgi to
an AV i. For HVs, their corresponding hg is maintained at a
constant value. The stopping headway hs is fixed in both AVs
and HVs. The parameters αi and βi differ among HVs, and
are set to be constant and equal for all AVs. For all vehicles
i, the acceleration ui,t is saturated to lie in the interval
[umin, umax], where umin and umax are the minimum and
the maximum values of acceleration, respectively.

B. Lane Change Control Models

The lane change request logics are different for HVs and
AVs. For HVs, we implemented a simple request model, the
use of which avoids an excessive number of lane change
requests: At each time-step, we record the average speed vavg
of vehicles moving in the available lane and then randomly
determine whether to request a lane change with some
probability p. An HV has a probability of requesting a lane
change on two conditions: firstly, the HV must have non-
positive acceleration, i.e., it must either be stopped, moving
at constant velocity, or decelerating; secondly, the average
speed in the adjacent lane vavg must exceed the HV’s current
speed vi by no less than a certain amount ∆v`,

vavg ≤ vi + ∆v`. (2)

For AVs, the lane change request is an action of the RL
agent. The lane change request command is denoted by `i ∈
[−1, 1] for the i-th AV. The lane change request may be
towards the left or right lane, provided the corresponding
lane is available. The logic for an AV lane-change request
is, {

left if `i ≥ 0.5 and left lane available,
right if `i ≤ −0.5 and right lane available,

and nothing otherwise.



Fig. 2: Example of traffic image state passed to RL

For both HVs and AVs, we used the SUMO model [22] to
execute a lane change. Note that, although SUMO provides
models for requesting a lane change, in order to override the
SUMO model for AVs, we also had to implement a model
for HVs, choosing to implement the SUMO model.

C. States

Given an observed region of the road network at a time-
instant t, we take a snapshot of the observed part of the road
network. An example image is shown in Fig. 2, where we
can see that the size of pixels is on the order of the size of a
vehicle; intuitively, this makes sense, as a denser grid will not
capture more information about system behavior. In general,
we choose the grid so that its elements coincide with lane
demarcations and their along-track width is between half the
length and the full length of a car, i.e., between 2.5m and
5m. The grid elements are colored so that red represents an
AV and white represents an HV, so the state of each grid
element, or pixel, is given by (cr, cw), where cr, cw ∈ [0, 1]
are the proportions of the grid occupied by AVs and HVs,
respectively. We represent the image by a vector Xt, which
contains all values cr and cw for all pixels in the observed
segment.

The state is then set to be the three most recent snapshots
of traffic,

st =

Xt−2
Xt−1
Xt

 . (3)

In this way, we capture the position and approximate velocity
and acceleration data corresponding to the traffic segment.
Conceivably, it is possible to consider snapshots at additional
time-instants; we have settled on 3 after some experimenta-
tion.

Note that the image-based approach does not rely on
directly estimating vehicles states, and can be used with
cameras observing traffic flow or with observers providing
vehicle state estimates. We believe it is also more robust for
RL-based application than, for example, setting the state to
be a vector of vehicle states as in [18]; using the image-
based approach, it is straightforward to apply RL to an open
network since the number of states does not change. As
an example of grid-based application, [23] applies DRL to
traffic light control and utilizes a non-pixelated {0, 1} grid
to feed vehicle position, but still resorts to using numerical
values of speed for input. In all, learning from images has

played a pivotal role in the successes of DRL, and we expect
that its adoption to the problem of traffic control will likely
improve controller performance.

D. Actions

The control actions available to each RL agent are gov-
erned by the positions of AVs in its region of control. For
every AV, the algorithm chooses 2 commands, headway and
lane choice, whose details were described previously. We set
NA to be the maximum number of AVs that an agent can
control, so that the action vector at is an 2NA-dimensional
vector,

at =
[
hg1(t) `1(t) · · · hgNA

(t) `NA
(t)
]T
. (4)

Each action is applied to the number of AVs that are present
in the control region, with the i-th couple of commands being
applied to the i-th AV until there are no AVs left or i = NA.
In this way, we only control the first NA AVs in a region,
the ordering of which is pre-set and fixed.

E. Reward Function

Our goal is to minimize traffic delay in the observed
region. We define the delay di for some vehicle i to be the
ratio of the difference between the free-flow velocity vf and
the vehicle current velocity vi and the free flow velocity,
with the ratio floored at 0,

di = max{0, 1− vi/vf}. (5)

The reward function that we maximize is given by,

rj = − 1

|V |
∑
i∈V

Cdi − 1, (6)

where V = ∪iVi and Vi is the set of vehicle indexes
containing i, the index of the i-th AV, the indexes of all
vehicles j whose distance to the AV is less than some
maximum distance xmax, and C > 0 is some weighting
constant.

The choice of reward function therefore only considers the
average penalty Cdi − 1 for vehicles which can be impacted
by an AV. Therefore xmax is chosen to be no greater than the
maximum headway hmax. The penalty itself is related to the
delay so that it is increasing when di = 0 and monotonically
increasing for all possible values of di ∈ [0, 1]; this way, we
penalize higher increases in individual delays more than an
equivalent decrease in delay for the whole system, penalizing
the situation where an AV overly deteriorates its own delay
in order to improve the performance of the system.

Note that, during exploration an agent might cause the
headway between two vehicles to go below stopping distance
hs, indicating a failure or, worse, a collision. To sufficiently
penalize this sort of behavior, when this occurs we set rt =
−G, where G is a very large number, and terminate the
training episode.

F. Algorithm Implementation Details

To learn the policy for each decentralized agent, we use
DDPG, a policy gradient algorithm that has been widely



Fig. 3: DDPG actor and critic DNN structures, with different
layer types in different colors

applied for continuous control or robotics and whose ef-
fectiveness has been verified in various applications. The
gradient update procedure we use can be found in [3] and
we avoid repeating here due to space considerations.

1) Inputs and outputs: The input to the critic and actor
networks, shown in Fig. 3 is st given in (3). The output of
the actor network πθ(st) is a 2NA-dimensional with each
element lying in the interval [−1, 1]. To obtain an action
according to equation (4), elements corresponding to the
headway are scaled to the interval [40m, 80m].

2) NN settings: We adopt the deep NN (DNN) structure
proposed in [3] and illustrated in Fig. 3. The DNN contains
two hidden layers of rectified non-linearity with 400 and
300 units respectively. The final layer of the critic network
is linear with a scalar output of the Q-value, and the final
layer of the actor network is tanh with a 2NA dimensional
vector output of combined headway and lane change recom-
mendations. The actions are not included until the second
hidden layer of the critic network. Default hyper-parameters
are used for training DNN weights: the learning rates are
10−4 and 10−3 for actor and critic networks, respectively,
and the critic network has a 10−2-weighted L2-norm weight
regularization. The global gradient norm is clipped at 40 for
stabilizing the update.

3) Training settings: Default hyper-parameters are used
for DDPG training The reward parameter C is set to 2. The
reward penalty corresponding to failure or collision is G =
1000. The DDPG model is trained over 3 million steps, and
each episode simulates the vehicle dynamics for 60 seconds,
i.e., T = 600 steps. Thus, the training takes place for 500
episodes. We use the following constraint parameters adopted
from [24], [25]: umin = −6m/s2, umax = 4m/s2, vmax =
30m/s, hs = 5m, hg = 60m.

III. CASE STUDY IN SUMO

We performed two numerical simulations in SUMO: A
simulation of a single RL agent controlling a segment of the
road and a simulation of multiple, decentralized RL agents
whose regions of control cover the entire traffic network.
The control logic has been implemented in Python and the
interface between Python and SUMO is done by the TRAffic
Control Interface (TRACI) [26].

Fig. 4: Screenshot of traffic network in SUMO

A. Simulation set-up

In this section, we describe the simulation set-up and sim-
ulations that we performed. We describe the traffic network,
the simulation scenario, the two simulations we performed
and results.

1) Traffic Network: The traffic network, whose screenshot
is presented in Fig. 4, consists of a two-lane oval-shaped
highway with total length of 793m. The network is split into
four quadrants corresponding to regions of control. Observed
regions are 20% larger than and are centered around the
controlled regions. The traffic is composed of 4 AVs and 12
HVs, equivalent to a 25% penetration of AVs. Each training
episode lasts 60s and both the control and simulation are
updated using a time step of 0.1s. In order to be able to
control all AVs, the parameter NA is set to 4.

At the beginning of each episode, vehicles are placed in
groups of two and are equidistant from each other, as shown
in Fig. 4; to increase variability in the initial condition, a
Gaussian random signal is generated and used to shift the
vehicles’ position slightly.

2) Scenario: In each episode, the same HV performs a
braking maneuver in the right lane at t = 5s, decelerating by
1m/s2 until stopping, and remaining stopped until t = 55.5s.
The HV’s maneuver causes vehicles in its lane to brake,
being unable to change lane due to the fast-moving traffic.
Without additional control, this causes congestion behind the
stopped HV. This extreme example of slow-down in a single
lane will be used to test the performance of our scheme in
alleviating congestion.

3) Simulations: In the first simulation, we implement a
single, regional RL agent, choosing the region to be the one
in which the slowdown occurs. For the section simulation, we
implement multiple, regional RL agents with control regions
that cover the entire network, but do not overlap, and with
observation regions that overlap with neighboring agents’
regions of control.

B. Results

1) Single regional RL agent: The results corresponding
to the simulation with a single RL agent are presented in
Figs. 5-8. The results show that a single RL agent is able to
learn a policy that improves traffic congestion.
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Fig. 6: HVs with (bottom) and without (top) control corre-
sponding to single-agent simulation

Fig. 5 presents the average and the standard deviation of
reward during learning over 500 episodes. The convergence
to steady state is uniform, indicating sample efficiency of our
decentralized approach.

In Fig. 6, we show the speed profiles of the HVs that have
been most affected by congestion. HV 2 is the HV that is
commanded to brake to a full stop. In the results, we show
that HVs 0, 4 and 6 are relieved from congestion at about
t = 32s, and HVs 1 and 5 at about t = 45s. The speed
profiles of AVs is shown in Fig. 7. From the results, we can
see that the speeds of AVs 3 and 11 are most impactful on
traffic congestion.

In Fig. 8, we show the delay and speed averaged over
all vehicles in the controlled region. The results show that
the RL agent achieved better delay and speed performance
over the course of the entire simulation. Better performance
is achieved by the full decentralized DRL scheme, whose
simulation results are discussed in the following.
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Fig. 7: AVs with (bottom) and without (top) control corre-
sponding to single-agent simulation

2) Decentralized RL: The results corresponding to the
simulation with multiple, decentralized RL agents are pre-
sented in Figs. 8 and 9. In Fig. 8, we see that we achieve
further improvement in congestion alleviation over the single
RL case. This is because the RL agent controlling the
congestion region is now aided by the RL agent controlling
the region preceding the region with congestion. In Fig. 9,
we show the behavior of AVs in the preceding region.
We observe that, in this region, the scheme increases the
speed of AVs 3 and 15, while slowing down AV 11 when
compared to the baseline. We therefore conclude that the RL
agent controlling the inflow is able to improve congestion
without knowledge of downstream traffic. Note that the RL
agents controlling the other two regions do not contribute to
congestion alleviation as their reward feedback stays constant
due to the fact that they are too far removed from the
occurrence of congestion.

IV. CONCLUSION

In this paper, we presented a scalable, decentralized RL
scheme for controlling vehicle traffic using AVs. One point
of novelty is the use of an image of traffic for input to the
DRL algorithm used in determining the policy. Another point
of novelty is the achievement of scalable decentralization by
applying RL agents to regions of control, but allowing them
to partially observe neighboring agents’ control regions.

We presented a case study consisting of two simulations.
The first simulation implemented a single RL agent respon-
sible for a region of traffic congestion; the second simulation
implemented RL agents over the entire network. From the
results, it is clear that a single agent is able to improve traffic
and that multiple agents are able to perform even better.
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