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Abstract
Online temperature monitoring of electric motors is essential to the safety of the system
under dynamic operation. The number of temperature sensors and their locations are often
limited due to physical constraints and cost of the hardware, and the temperatures for most
parts of a motor cannot be directly measured. To estimate the instantaneous temperature
distribution of a motor, we design an observer for the real-time temperature monitoring
using a thermal circuit model and limited measurements. Challenges imposed to the observer
design include unknown heat sources and measurement noises. The observer needs to be
able to simultaneously estimate all the hidden states and unknown inputs, while dealing with
measurement noises. In this paper, different observers, including Kalman filter, Luenberger
observer, adaptive observer, and modified proportional-derivative (PD) observer are designed
to address the problem. We first give some background information of the problem, and
introduce the thermal circuit model; then describe the observer designs with a focus on PD
observer, which is more recently developed. The proposed observers are then implemented
with simulations, and their performances are evaluated and compared.
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Abstract—Online temperature monitoring of electric motors is
essential to the safety of the system under dynamic operation.
The number of temperature sensors and their locations are often
limited due to physical constraints and cost of the hardware, and
the temperatures for most parts of a motor cannot be directly
measured. To estimate the instantaneous temperature distribution
of a motor, we design an observer for the real-time temperature
monitoring using a thermal circuit model and limited measure-
ments. Challenges imposed to the observer design include un-
known heat sources and measurement noises. The observer needs
to be able to simultaneously estimate all the hidden states and
unknown inputs, while dealing with measurement noises. In this
paper, different observers, including Kalman filter, Luenberger
observer, adaptive observer, and modified proportional-derivative
(PD) observer are designed to address the problem. We first give
some background information of the problem, and introduce the
thermal circuit model; then describe the observer designs with
a focus on PD observer, which is more recently developed. The
proposed observers are then implemented with simulations, and
their performances are evaluated and compared.

Index Terms—Electric motor; estimation; inverse problem;
measurement noise, observer.

I. INTRODUCTION

Temperature monitoring is critical in electric motor de-
velopment and operation to avoid overheating, which affects
the condition of the machine and causes various premature
degradation and damages [1]. For example, the overheat-
ing of stator windings may lead to insulation failures; the
overheating of permanent magnets may lead to irreversible
demagnetization, etc. Installing temperature sensors in all the
components, especially the rotating part, of a machine is
either technically challenging, or prohibitively expensive. For
example, in permanent magnet machines, the temperature of
the permanent magnets has to be monitored closely; however,
it is very difficult to measure the temperature directly.

On the other hand, the temperature rise in a motor is due to
the “heat sources” in the motor which converts energy of other
forms into thermal energy. Those heat sources include copper
loss in windings, core loss in stator core, eddy current loss in
permanent magnets, windage loss, and so on [2]. In practice it
is very difficult to identify the heat sources completely, either
by experimental measurements or theoretical modeling. For
example, the core loss in iron laminations, mainly caused by
the hysteresis loss and eddy current loss, can be affected by the
motor manufacturing process. Theoretically, no existing model

can describe the process accurately. Experimentally, there is
no good way to separate it apart from other heat sources.

The relationship between the heat sources and temperatures
at each component of a motor can be described by heat
equation. In practice, due to the complicated geometry, the
heat equation can be solved with numerical methods such as
finite-element simulations. Alternatively, it can be simplified
with an equivalent thermal circuit model, or a lumped thermal
circuit network [1], [2], where the circuit components, namely
thermal resistances and thermal capacitances, are determined
by the geometry and material properties of the motor. How-
ever, if the heat sources in the motor cannot be identified, the
temperature distribution cannot be calculated.

In this work, we combine a thermal model of the motor with
an estimator/observer and limited temperature measurements
to simultaneously estimate the unknown heat sources and tem-
perature distribution inside the motor. The proposed method is
able to conduct the estimation in real-time, making it suitable
for online condition monitoring for electric machines.

Solving joint estimation problem, e.g. online inverse heat
transfer problem, we simultaneously identify the heat sources
and temperatures based on the heat transfer model. Two main
challenges arise when it comes to electric motors. First is due
to measurement constraints. In practice only a few variables
can be measured due to technical or economic reasons [3], and
thus fails the detectability or observability test required in ob-
server design. Additional constraints on input are incorporated
into the thermal model to facilitate observer design. An insight
on measurements’ dimension and location can be obtained by
exploring the detectability or observability. Another challenge
is that, the estimation accuracy will be greatly affected by
measurement noise. An observer needs to be developed with
limited measurements corrupted by noises.

Unknown input observer (UIO) [4] can achieve joint es-
timation of system states and unknown inputs under certain
conditions. Early work of UIO design mainly focuses on the
state estimation by avoiding the influence of the unknown
inputs without reconstructing them. Later, the state estimation
and unknown input reconstruction problems are considered.
For example, the direct design procedure of full-order and
reduced-order observer for linear systems with unknown in-
puts are presented in [5]–[7]. Refs. [8], [9] deal with the
simultaneous state and input estimation problem based on
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reduced-order observers. Recently, UIOs for switched linear
systems are considered in [10], [11]. Handling of unknown
disturbances is discussed in [12], [13]. Because the output is
corrupted by measurement noise, measurement noise should
be taken into consideration when evaluating the performance
of observers. The problem of dealing with measurement
noise is discussed in [14]–[18]. A modified proportional and
derivative (PD) observer technique is presented to decouple
the measurement noise and to obtain the estimation of the
system states [14]. High-gain observer [15] switches between
two gain values to recover the system states and to reduce
the effect of measurement noise on estimation error. A high-
gain observer with a gain adapted online can handle with
measurement noise and uncertainties [16]. In [17], a reduced-
order observer is designed to estimate the system states, and
a kind of simultaneous reconstruction method of the unknown
inputs and measurement noises is developed. [18] developed
an L1 adaptive descriptor for simultaneous estimation of all the
hidden states, nonlinear uncertainties and measurement noises
as well as delivering a good tracking performance.

By augmenting the state vector with unknown inputs, we
first design Luenberger observer and Kalman Filter to solve
the joint estimation problem as a state estimation problem.
Second, by treating unknown inputs as parameters, the joint es-
timation problem is cast into a state and parameter estimation
problem, for which an adaptive observer [19]–[22] is designed.
Finally, a PD observer is designed to treat measurement noises
[14]. For PD observer design, the original system should be
detectable and measurement noise should be bounded. When
solving our joint estimation problem, we augment the original
system state with unknown inputs and measurement noise.
In this approach, two design parameters provide additional
degrees of freedom compared against Luenberger observer.
The freedom of selecting these parameters allows us to choose
the derivative gain to reduce the noise amplification, the
proportional gain to ensure the stability of the estimation error
dynamics.

The rest of the paper is organized as follows: Section II
gives the description of the problem. In Section III different
observers are designed for solving the online inverse heat
transfer problem. The stability analysis of the error dynamics
is given in Section IV for adaptive observer and PD observer.
Numerical simulation results are demonstrated in Section V.
A comparison is carried out to evaluate the performance of
different observers, including the quantification of convergence
speed and estimation error. Finally, the concluding remarks are
given in Section VI.

II. PROBLEM DESCRIPTION

Figure 1 illustrates a quarter cross-section of an electric
motor used in the study. The nodes, numbered 1 through 33,
represent spatial locations where the temperature is of interest.
By incorporating thermodynamics with red nodes, one can
derive a thermal circuit network, where the temperature of
each node, thermal flow between nodes, thermal conductivity,

Fig. 1. Geometry of simplified electric motor.

and thermal capacity are analogous to voltage, current, resis-
tance, and capacitance of an electric circuit network. Hence,
the thermal circuit network induces dynamics of temperature at
these locations, which can be fully described by the following
multi-input multi-output (MIMO) thermal circuit model:

Ṫ (t) = AT (t) +Bu(t) + V v
yn(t) = CT (t) + n(t)

(1)

where T ∈ Rn is the temperature at all nodes, u(t) ∈ Rm

contains the unknown heat sources, yn ∈ Rp is the measured
temperature, v ∈ Rq×1 corresponds to temperatures at the
boundary of the motor, and n(t) ∈ Rp is the measurement
noise. System matrices A,B, V,C are of appropriate dimen-
sions.

The thermal circuit model (1) contains four unknown heat
sources: u1-the stator iron loss, u2-the stator copper loss, u3-
the rotor copper loss, and u4-the magnet loss. Specifically,
u1 is evenly distributed among nodes {1,5,9,13,17,21}; u2
is evenly distributed among nodes {2,6,10,14,18,22}; u3 is
evenly distributed among nodes {25,26,27,31}; and u4 is
evenly distributed at nodes {28,29,30}. Our goal is to achieve
joint estimation of temperature and heat sources in real time,
which is abstracted as follows.

Problem 1: Given (1), construct a dynamical system as
follows

ξ̇ = f(ξ, yn)

T̂ = h1(ξ, yn)

û = h2(ξ, yn)

where ξ ∈ Rnξ such that ξ-dynamics are stable and
limt→∞ |T (t)− T̂ (t)| = 0, limt→∞ |u(t)− û(t)| = 0.

To solve Problem 1, without constraints, the number of
sensors should be at least the same as the number of unknowns,
which guarantees avoidance of the underdetermined cases.
Besides that, for higher estimation accuracy, at least one sensor
should be placed nearby each heat source. However, it is
desired to avoid attaching sensors in the rotating parts due
to technical difficulty and economic cost. To estimate the
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temperature and heat loss distribution in the electric motor
just using the measurements from stationary parts leads to
the ill-conditioned problems. Hence, we want to explore some
constraints that can help ease the problem. One reasonable
assumption is that the total heat source can be identified by
measuring the input electric power and output torque. Another
constraint we can add is the stator winding loss, which can be
measured by current and temperature sensors.

The constraints are formulated as below:
u1(t) = c1 + 3αT1(t)I2(t)R∑m

i=1 ui(t) = c2 + 3αT1(t)I2(t)R
(2)

where T1(t) is the temperature of stator winding, α is the
temperature coefficient of copper resistance, I(t) is current,
c1 and c2 are all known constants.

Since there are 4 inputs in total, denote

B =
[
b1 b2 b3 b4

]
(3)

where bi is the corresponding column vector to input ui (i =
1, 2, 3, 4).

Incorporating the constraints (2) into the circuit model
defined in (1), a modified thermal model is derived as below:

Ṫ (t) = AT (t) + b1u1(t) + V v + (c2 − 6c1) b4

+
[
b2 − 6b4 b3 − b4

] [ u2(t)
u3(t)

]
yn(t) = y(t) + n(t)

(4)

After adding constraints, there are only two unknown heat
sources in (4), u2 and u3. Denote

Bm =
[
b2 − 6b4 b3 − b4

]
(5)

Since the thermal circuit model has been established, next
step is to design observers for online estimation of the tem-
perature and heat loss distribution in the electric motor.

III. OBSERVER DESIGN

Four observers, namely, Kalman filter, Luenberger observer,
adaptive observer, and PD observer, are designed for Problem
1. Note that the observer design is developed on the basis
of general linear time-invariant (LTI) systems (1). Observers
design for the specific online inverse heat transfer problem
stated in (4) will be given in Section V.

For simplicity, we introduce the following assumption.
Assumption 2: Unknown heat losses u(t) are constant.
Given Assumption 2, one can augment the state T in (1)

by treating u as states, and have the following extended state-
space model [

Ṫ (t)
u̇(t)

]
= Ae

[
T (t)
u(t)

]
+ Vev

yn(t) = Ce

[
T (t)
u(t)

]
+ n(t)

(6)

where

Ae =

[
A B

0m×n 0m×m

]
, Ve =

[
V

0m×q

]
Ce =

[
C 0p×m

]
.

Denote

Co =

[
Ae

Ce

]
(7)

Since the output matrix C contains the information of mea-
surements’ size and location, the design of C should satisfy the
detectability requirement and it needs to be determined before
the observer design. For the determination of measurements’
size and location, check the rank and singular values of the
matrix Co. If rank(Co) = n+m, and all the singular values
are non-zeros, then the observer will work well with the
designed C. Even though rank(Co) = n + m, if there exist
some singular values equal to zeros or are almost zeros, it
means there exist some modes in the system are difficult to
be detected, it is time-consuming to tune such an observer for
higher estimation accuracy.

A. Luenberger Observer

Given Eq. 6, a Luenberger observer can be designed to
estimate T (t) and u(t) simultaneously. Its dynamics are for-
mulated as below:[

˙̂
T (t)
˙̂u(t)

]
=

[
A B
0 0

] [
T̂ (t)
û(t)

]
+

[
V

0m×q

]
v

+K
(
yn(t)− CT̂ (t)

) (8)

where T̂ and û denotes estimate of T and u respectively. The
resultant estimation error dynamics are[

˙̃T (t)
˙̃u(t)

]
= (Ae −KCe)

[
T̃ (t)
ũ(t)

]
+Kn(t) (9)

where T̃ = T − T̂ , ũ = u− û. From linear control theory, the
estimation error dynamics (9) are stable if and only if the pair
(Ae, Ce) is detectable. The error dynamics (9) are evidently
affected by the measurement noise.

B. Kalman filter

Different from Luenberger observer, Kalman filter (KF) of-
fers an elegant treatment of uncertainties in measurements and
process. For linear dynamical systems, KF produces optimal
estimates in the sense of minimal convariance of estimation
error. Next we briefly describe the steps to apply KF to the
model (6).

We discretize (6) to have its discrete-time representation[
Tk
uk

]
= Fk

[
Tk−1
uk−1

]
+

[
Vk

0m×q

]
vk + wk

zk = Hk

[
Tk
uk

]
+ nk

(10)
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where Fk is the discrete-time transition matrix. The priori
prediction step is given as below:[

T̂k|k−1
ûk|k−1

]
= Fk

[
T̂k−1|k−1
ûk−1|k−1

]
+

[
Vk

0m×q

]
vk

Pk|k−1 = cov

([
Tk
uk

]
−
[
T̂k|k−1
ûk|k−1

])
= FkPk−1|k−1F

T
k +Qk

(11)

where Pk|k−1 is the predicted error covariance. A posterior
correction updates the state and covariance as below

ỹk = zk −Hk

[
T̂k|k−1
ûk|k−1

]
Kk = (FkPk−1|k−1F

T
k +Qk)HT

k

(Rk +Hk(FkPk−1|k−1F
T
k +Qk)HT

k )−1[
T̂k|k
ûk|k

]
=

[
T̂k|k−1
ûk|k−1

]
+Kkỹk

Pk|k = cov

([
Tk
uk

]
−
[
T̂k|k
ûk|k

])
= (I −KkHk)(FkPk−1|k−1F

T
k +Qk)(I −KkHk)T

+KkRkK
T
k

(12)
where ỹk is the measurement residual, Kk is the optimal
Kalman gain, and Pk|k is the updated estimate covariance. KF
yields stable estimation error dynamics if and only if (Ae, Ce)
is detectable.

C. Adaptive observer

Adaptive observers are widely used for state and parameter
estimation which enables adaptive control or fault estimation
in fault detection and isolation [24]. By viewing u as unknown
parameters, one can readily solve Problem 1 by applying
existing linear adaptive observer design results.

First, we split the state T into two components T1 and
T2, which corresponds to known v and unknown excitation
u respectively. Their dynamics are derived as below:

Ṫ1(t) = (A−KC)T1(t) + V v +Ky(t)

Ṫ2(t) = (A−KC)T2(t) +Bu(t)
(13)

The estimators for the subsystems in (13) are given by
˙̂
T 1(t) = (A−KC) T̂1(t) + V v +Kyn(t)
˙̂
T 2(t) = (A−KC) T̂2(t) +Bû(t) + σ(t)

(14)

where û(t) is an estimate of unknown u(t), and σ(t) compen-
sates the estimation error caused by û(t). Since the subsystem
T̂2 is excited by û and T̂2(0) = 0, we know

T̂2(t) = γ(t)û(t) (15)

Substitute (15) into (14), we can derive:

γ̇(t) = (A−KC) γ(t) +B, σ(t) = γ(t) ˙̂u(t) (16)

Eventually, we have the adaptive observer as follows
˙̂
T (t) = AT̂ (t) +Bû(t) +K

(
yn(t)− CT̂ (t)

)
+γ(t) ˙̂u(t) + V v

(17)

˙̂u(t) = ΓγT (t)CT Σ
(
yn(t)− CT̂ (t)

)
(18)

The resultant estimation error dynamics are as below:
˙̃T (t) = (A−KC)T̃ (t) +Bũ(t) + γ(t) ˙̂u(t) +Kn(t)

˙̃u(t) = −ΓγT (t)CT Σ
(
yn(t)− CT̂ (t)

) (19)

Stability analysis of (19) is a little trickier than that of KF and
Luenberger observer, and we leave it to the next section.

D. PD Observer

PD observer is proposed for systems with measurement
noises. It estimates all states, unknown inputs and measure-
ment noises at the same time. The model (6) is further
extended by including the noise n(t) as state, which gives
the following dynamics

Ē ˙̄x(t) = Āx̄(t) +

[
V

0(m+p)×q

]
v + N̄np×1(t)

yn(t) = C̄x̄(t)

(20)

where

xn(t) = np×1(t), x̄(t) =

 T (t)
u(t)
xn(t)

 ,
N̄ =

[
0
Ip

]
, Ē =

[
In+m 0(n+m)×p

0p×(n+m) 0p×p

]
,

Ā =

[
Ae 0(n+m)×p

0p×(n+m) −Ip

]
,

C̄ =
[
C 0p×m Ip

]
(21)

Given (20), PD observer is derived as below:(
Ē + L̄C̄

)
ξ̇(t) =

(
Ā− K̄C̄

)
ξ(t) +

[
V

0(m+p)×q

]
v

+ Ā
(
Ē + L̄C̄

)−1
L̄yn(t)

ˆ̄x(t) = ξ(t) +
(
Ē + L̄C̄

)−1
L̄yn(t)

(22)

where L̄, K̄ ∈ R(n+m+p)×p are gain matrices, and ˆ̄x(t) is
the estimation of x̄(t) in (20). PD observer for Problem 1 is
depicted in Figure 2.

Compared with Luenberger observer, PD observer intro-
duces two design parameters L̄ and K̄ which offer better
tradeoff between the convergence rate of the observer and the
robustness to the measurement noise. In fact, the derivative
gain L̄ is chosen to minimize the amplification of the mea-
surement noise, and the proportional gain K̄ is selected to
guarantee the stability of the error dynamics. As shown in the
next section, if the matrix pair (Ae, Ce) is detectable and the
noise is bounded, these two design parameters will provide
more degrees of freedom.
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Fig. 2. Diagram of PD observer for Problem 1

IV. ANALYSIS

Stability analysis of the error dynamics result from PD
observer and adaptive observer is presented in this section.

A. Adaptive Observer

We first introduce a notation

η(t) = T̃ (t)− γ(t)ũ(t) (23)

Substitute (23) into (19), we have

η̇(t) = (A−KC)η(t) +Kn(t)

˙̃u(t) = −ΓγT (t)CT ΣC (γ(t)ũ(t) + η(t)) + ΓγT (t)CT Σn(t)
(24)

Stability of (24) depends on the following two Assumptions
Assumption 3: The matrix pair (A,C) is detectable.
Assumption 4: For γ̇(t) = (A−KC) γ(t) +B, there exist

positive constants α, β, T such that ∀t > 0,

αI ≤
∫ t+T

t

γT (τ)CT Σ(τ)Cγ(τ)dτ ≤ βI (25)

is satisfied.
Recalling stability analysis in [24], one can establish that

(24) are exponentially stable if Assumptions 3 and 4 hold.

B. PD Observer

First, we will give the following theorem [14].
Theorem 5: If the matrix pair (Ae, Ce) is detectable and

the noise is bounded, there exist the gain matrices L̄, K̄ ∈
R(n+m+p)×p for the observer defined in Eq. 22, such that
ˆ̄x(t) is an asymptotic estimate of x̄(t) in (20).
Proof : Notice that

rank

[
Ē
C̄

]
= rank

 In+m 0(n+m)×p
0p×(n+m) 0p×p

Ce Ip


= n+m+ p

(26)

then there exists L̄ ∈ R(n+m+p)×p such that
rank

(
Ē + L̄C̄

)
= n + m + p, which means

(
Ē + L̄C̄

)
is

invertible.

For explicit
(
Ē + L̄C̄

)
, write L̄ =

[
L1

L2

]
, where L1 ∈

R(n+m)×p, L2 ∈ Rp×p, it can be shown that

C̄
(
Ē + L̄C̄

)−1
L̄ = Ip (27)

Substituting ξ(t) = ˆ̄x(t)−
(
Ē + L̄C̄

)−1
L̄yn(t) into Eq. 22

and using Eq. 27, we can derive

(
Ē + L̄C̄

) ˙̄̂x(t) =
(
Ā− K̄C̄

)
ˆ̄x(t)

+

[
V

0(m+p)×q

]
v + K̄yn(t) + L̄ẏn(t)

(28)

Adding Lẏ(t) to both sides of (20), we get

(
Ē + L̄C̄

)
˙̄x(t) =

(
Ā− K̄C̄

)
x̄(t) +

[
V

0(m+p)×q

]
v

+ K̄yn(t) + L̄ẏn(t) + N̄np×1(t)

(29)

The error dynamics is formulated as below based on (28)
and (29):

˙̄e(t) =
(
Ē + L̄C̄

)−1 (
Ā− K̄C̄

)
ē(t)+

(
Ē + L̄C̄

)−1
N̄np×1(t)

(30)
The term which contains measurement noise in (30) can be

written as below:

(
Ē + L̄C̄

)−1
N̄np×1(t) =

[
−L1

Ip + CL1

]
(L2)

−1
np×1(t)

(31)
As we can see from (31), a low gain L1, for example, L1 =

0, and a high-gain L2 can be chosen to reduce the amplification
of measurement noise.
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Fig. 3. Current and field winding loss in the electric motors.

After doing some matrix computation, we have

rank

[
sIn+m+p −

(
Ē + L̄C̄

)−1
Ā

C̄

]
= rank

[
s
(
Ē + L̄C̄

)
− Ā

C̄

]
= rank

[
sĒ − Ā
C̄

]
= rank

 sIn+m −Ae 0(n+m)×p
0p×(n+m) Ip

Ce Ip


= rank

 sIn+m −
[
A B
0 0

]
Ce

+ p

(32)

If (Ae, Ce) is detectable, (32) means that((
Ē + L̄C̄

)−1
Ā, C̄

)
is detectable. Then we can select

K̄∗ such that
[(
Ē + L̄C̄

)−1
Ā− K̄∗C̄

]
is a Hurwitz matrix,

and K̄ =
(
Ē + L̄C̄

)
K̄∗.

V. SIMULATION

In this section, different observers are implemented for the
online estimation of temperature and heat source distribution
in electric motors. For the specified online inverse heat transfer
problem, u1(t) is time-varying, random measurement noise
between -1◦C and 1◦C are added. The current and field
winding loss are shown in Figure 3.

A. Sensor placement

Since u2 and u3 are unknown inputs, they can be taken as
state variables. The extended state-space model is established

as in (4). In this case, Ae =

[
A Bm

0 0

]
, Ce =

[
C 0

]
,

Co =

[
A Bm

C 0

]
. For the determination of measurements’

size and location, check the rank and singular values of the
matrix Co. If rank(Co) = n + 2, and all the singular values
are non-zeros, then the observer will work well with the
designed C.
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Fig. 4. Online estimation of temperature and heat loss distribution in electric
motors using Luenberger observer.

B. Luenberger observer

Based on (4), the Luenberger observer is formulated as
below: ˙̂

T (t)
˙̂u2(t)
˙̂u3(t)

 =

[
A Bm

0 0

] T̂ (t)
û2(t)
û3(t)

+ V v

+b1u1(t) +K
(
yn(t)− CT̂ (t)

)
+ (c2 − 6c1) b4

(33)

The numerical simulation results for online estimation of
temperature and heat loss distribution in electric motors using
Luenberger observer is shown in Figure 4. The left figure on
the top shows the temperature estimation results using the
Luenberger observer, in this figure, we pick up one node
from the coil, stator core, magnet, rotor core, respectively.
”Reference” is one of the nodes where the sensors are located.
The right figure on the top shows the temperature estimation
errors between the Luenberger observer and circuit model.
The left figure below shows the reconstruction results of the
heat loss distribution in the electric motor using Luenberger
observer, including the copper loss, iron loss, rotor core loss,
and magnet loss. The right figure below shows the heat loss
estimation errors between the Luenberger observer and circuit
model. As we can see from Figure 4, the estimation results are
corrupted by measurement noises using Luenberger observer,
which is evident from (9).

C. Kalman filter

The numerical simulation results for online estimation of
temperature and heat loss distribution in electric motors using
kalman filter are shown in Figure 5. As we can see from Figure
5, the estimation results are corrupted by measurement noises
using Kalman filter, which can be seen from (12).
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Fig. 5. Online estimation of temperature and heat loss distribution in electric
motors using kalman filter.
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Fig. 6. Online estimation of temperature and heat loss distribution in electric
motors using adaptive observer.

D. Adaptive observer

The adaptive observer for the specific inverse heat transfer
problem (4) is formulated as below:

˙̂
T (t) = AT̂ (t) +Bmû(t) +K

(
yn(t)− CT̂ (t)

)
+

γ(t) ˙̂u(t) + b1u1(t) + V v + (c2 − 6c1) b4
(34)

˙̂u(t) = ΓγT (t)CT Σ
(
yn(t)− CT̂ (t)

)
(35)

The numerical simulation results for online estimation of
temperature and heat loss distribution in electric motors using
adaptive observer are shown in Figure 6. As we can see from
Figure 6, the estimation results are corrupted by measurement
noises using adaptive observer, which is evident from (19).
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Fig. 7. Online estimation of temperature and heat loss distribution in electric
motors using PD observer.

E. PD observer

The PD observer is designed to estimate all the hidden
states, unknown inputs and measurement noises at the same
time. The extended state-space model is given as below:

Ē ˙̄x(t) = Āx̄(t) +

[
b1

0(m+p)×1

]
u1(t) +

[
V

0(m+p)×2

]
v

+

[
(c2 − 6c1) b4

0(m+p)×1

]
+ N̄np×1(t)

yn(t) = C̄x̄(t)
(36)

If the matrix (Ae, Ce) is detectable and the noise is
bounded, a modified PD observer for online estimation of
temperature and heat loss distribution in the electric motors
is derived as below:(

Ē + L̄C̄
)
ξ̇(t) =

(
Ā− K̄C̄

)
ξ(t) +

[
b1

0(m+p)×1

]
u1(t)

+

[
V

0(m+p)×2

]
v +

[
(c2 − 6c1) b4

0(m+p)×1

]
+Ā
(
Ē + L̄C̄

)−1
L̄yn(t)

(37)
ˆ̄x(t) = ξ(t) +

(
Ē + L̄C̄

)−1
L̄yn(t) (38)

where ˆ̄x(t) is an asymptotic estimation of x̄(t) in (36).
The numerical simulation results for online estimation of

temperature and heat loss distribution in electric motors using
modified PD observer are shown in Figure 7.

In terms of different observers design, Luenberger observer
is well known for output feedback of linear time-invariant
systems. Adaptive observer is often used for joint estimation of
hidden states and unknown parameters. Kalman filter has the
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optimal performance for linear time-invariant systems. Without
the presence of measurement noise, asymptotic estimation of
temperature field and heat loss distribution is achieved. Since
none of these three observers has something to do with the
measurement noise, the estimation results will be corrupted by
the measurement noise, as we can see in (9). As for the PD
observer, under the condition where the system is detectable
and the measurement noise is bounded, there exist two design
parameters which can provide more degrees of freedom. The
derivative gain is chosen to minimize the amplification of the
measurement noise, and the proportional gain is selected to
guarantee the stability of the error dynamics. Hence, the PD
observer can almost reject the measurement noise completely
with properly chosen parameters. Actually, the choice of
derivative gain is a trade-off between convergence speed and
estimation error for PD observer. A larger derivative gain will
reduce the amplification of measurement noise greatly, but the
convergence speed is really slow; a smaller gain will speed up
the convergence process, but the estimation error caused by
measurement noise is amplified.

VI. CONCLUSIONS

Different observers are designed for real-time estimation
of temperature and heat loss distribution in electric motors.
In view of the ill-posedness of the problem, physical con-
straints are imposed to remedy the limitation. Insights on
measurements’ size and location are provided by exploring
the detectability of the observer. Since the measurements are
corrupted by noises, the estimation accuracy will be greatly
affected in some cases, hence, measurement noises are taken
into consideration for estimation error analysis. In terms of
different observers design, Luenberger observer is well known
for output feedback of linear time-invariant systems. Adaptive
observer is often used for joint estimation of hidden states
and unknown parameters. Kalman filter has the optimal perfor-
mance for linear time-invariant systems. As for PD observer, it
can reject the measurement noise to some extent. Actually, the
choice of derivative gain is a trade-off between convergence
speed and estimation error for PD observer. A larger derivative
gain significantly reduces the amplification of measurement
noise greatly, at the cost of convergence speed; a smaller gain
will speed up the convergence process, but the estimation error
caused by measurement noise is amplified.
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