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Abstract
We propose a trust region method for policy optimization that employs Quasi-Newton approx-
imation for the Hessian, called Quasi-Newton Trust Region Policy Optimization (QNTRPO).
Gradient descent is the de facto algorithm for reinforcement learning tasks with continuous
controls. The algorithm has achieved state-of-the-art performance when used in reinforce-
ment learning across a wide range of tasks. However, the algorithm suffers from a number of
drawbacks including: lack of stepsize selection criterion, and slow convergence. We investi-
gate the use of a trust region method using dogleg step and a Quasi-Newton approximation
for the Hessian for policy optimization. We demonstrate through numerical experiments over
a wide range of challenging continuous control tasks that our particular choice is efcient in
terms of number of samples and improves performance.
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Abstract: We propose a trust region method for policy optimization that employs
Quasi-Newton approximation for the Hessian, called Quasi-Newton Trust Region
Policy Optimization (QNTRPO). Gradient descent is the de facto algorithm for re-
inforcement learning tasks with continuous controls. The algorithm has achieved
state-of-the-art performance when used in reinforcement learning across a wide
range of tasks. However, the algorithm suffers from a number of drawbacks in-
cluding: lack of stepsize selection criterion, and slow convergence. We investigate
the use of a trust region method using dogleg step and a Quasi-Newton approxima-
tion for the Hessian for policy optimization. We demonstrate through numerical
experiments over a wide range of challenging continuous control tasks that our
particular choice is efficient in terms of number of samples and improves perfor-
mance.
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1 Introduction

Reinforcement Learning (RL) is a learning framework that handles sequential decision-making
problems, wherein an ‘agent’ or decision maker learns a policy to optimize a long-term reward
by interacting with the (unknown) environment. At each step, an RL agent obtains evaluative feed-
back (called reward or cost) about the performance of its action, allowing it to improve (maximize
or minimize) the performance of subsequent actions [1]. Recent research has resulted in remark-
able success of these algorithms in various domains like computer games [2, 3], robotics [4, 5],
etc. Policy gradient algorithms can directly optimize the cumulative reward and can be used with a
lot of different non-linear function approximators including neural networks. Consequently, policy
gradient algorithms are appealing for a lot of different applications, and are widely used for a lot
of robotic applications [6, 7, 8]. As a result, it has attracted significant attention in the research
community where several new algorithms have been proposed to solve the related problems. How-
ever, several problems remain open including monotonic improvement in performance of the policy,
selecting the right learning rate (or step-size) during optimization, etc.

Notably, the Trust Region Policy Optimization (TRPO) has been proposed to provide monotonic
improvement of policy performance [9]. TRPO relies on a linear model of the objective function
and quadratic model of the constraints to determine a candidate search direction. Even though a
theoretically justified trust region radius is derived such a radius cannot be computed and hence,
linesearch is employed for obtaining a stepsize that ensures progress to a solution. Consequently,
TRPO is a scaled gradient descent algorithm and is not a trust region algorithm as the name suggests.
More importantly, TRPO does not inherit the flexibility and convergence guarantees provided by the
trust region framework [10]. As a consequence, the impact of trust region algorithms have not been
fully investigated in the context of policy optimization.

Our objective in this work is to show that a classical trust region method in conjunction with
quadratic model of the objective addresses the drawbacks of TRPO. It is well known that incor-
porating curvature information of the objective function (i.e. quadratic approximation) allows for
rapid convergence in the neighborhood of a solution. Far from a solution, the curvature informa-
tion should be incorporated in a manner that ensures the search direction improves on the reduction
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obtained by a linear model. We propose the Quasi-Newton Trust Region Policy Optimization (QN-
TRPO) which uses a dogleg method for computing the step, i.e. both the search direction and
stepsize are determined jointly. The Quasi-Newton (QN) method allows for incorporating curvature
information by approximating the Hessian of the objective without the need for computing exact
second derivatives. In particular, we employ the classical BFGS approximation [10]. The dogleg
method is well known to produce at least as much reduction obtained using a linear model [10], thus
ensuring that QNTRPO does at least as well as the TRPO. The choice of QN method and search
direction are chosen to ensure that global convergence properties are retained and the computational
cost is comparable to that of TRPO. We want to investigate if QNTRPO, which has a different step
from TRPO, can

(i) accelerate the convergence to an optimal policy, and

(ii) achieve better performance in terms of average reward.

QNTRPO computes the stepsize as part of the search direction computation and stepsize is naturally
varied according to the accuracy of the quadratic model of the objective. QNTRPO learns faster than
TRPO due to the quadratic model and improved search direction. We test the proposed method on
several challenging locomotion tasks for simulated robots in the OpenAI Gym environment. We
compare the results against the original TRPO algorithm and show that we can consistently achieve
better learning rate as well as performance.

2 Background

We first introduce notation and summarize the standard policy gradient framework for RL and the
TRPO problem.

2.1 Notation

We address policy learning in continuous/discrete action spaces. We consider an infinite horizon
Markov decision process (MDP) defined by the tuple (S,A, P, r, γ), where the state space S is
continuous, and the unknown state transition probability P : S × S × A → [0, 1] represents the
probability density of the next state st+1 ∈ S given the current state st ∈ S and action at ∈ A and γ
is the standard discount factor. The environment emits a reward r : S ×A → R on each transition.

Let π denote a stochastic policy π : S × A → [0, 1], and let η(π) denote the expected discounted
reward:

η(π) = Es0,a0,...
[ ∞∑
t=0

γtr(st)

]
, where s0 ∼ ρ0(s0), at ∼ π(at|st), st+1 ∼ P (st+1|st, at).

where, ρ0 is the state distribution of the initial state s0. Then, we use the standard definition of
the state-action value function Qπ , the state value function Vπ , advantage function Aπ , and the
unnormalized discount visitation frequencies ρπ:

Qπ(st, at) = Est+1,at+1,...

[ ∞∑
l=0

γlr(st+l)

]
, Vπ(st) = Eat,st+1,...

[ ∞∑
l=0

γlr(st+l)

]
.

Aπ(s, a) = Qπ(s, a)− Vπ(s), ρπ(s) =

∞∑
t=0

γtPr(st = s|π, ρ0)

where in the definition of ρπ , s0 ∼ ρ0 and the actions are chosen according to π.

In [11], the authors derived an expression for the expected return of the another policy π̃ in terms of
advantage over π, accumulated over timesteps:

η(π̃) = η(π) + Es0,a0,...,∼π̃
[ ∞∑
t=0

γtAπ(st, at)

]
= η(π) +

∑
s
ρπ̃(s)

∑
a
π̃(a|s)Aπ(s, a). (1)
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Figure 1: Exact and Dogleg approximation for Trust Region Optimization

A local approximation to η(π̃) can then be obtained by making an approximation of the state-
visitation frequency using the policy π which is expressed as

Lπ(π̃) = η(π) +
∑
s

ρπ(s)
∑
a

π̃(a|s)Aπ(s, a).

In [9], the authors present an algorithm to maximize Lπ(π̃) using a constrained optimization ap-
proach. For simplicity, we denote Lπ(π̃) as Lθold(θ), where θ represents the policy parameters.

2.2 Trust Region Policy Optimization (TRPO)

In this section, we first describe the original TRPO problem and then we present our proposed
method to contrast the difference in the optimization techniques. Using several simplifications to
the conservative iteration proposed in [11], authors in [9] proposed a practical algorithm for solving
the policy gradient problem using generalized advantage estimation [12]. In the TRPO, the following
constrained problem is solved at every iteration:

maximize Lθold(θ) subject to D̄KL(θold, θ) ≤ δ

where Lθold(θ) is the following term.

Lθold(θ) =
∑
s

ρθold(s)
∑
a

πθ(a|s)Aπθold
(s, a)

For simplicity of notation, we will denote Lθold(θ) as L(θ) in the following text. The optimization
algorithm in TRPO works in two steps: (1) compute a search direction, using a linear model of the
objective and quadratic model to the constraint; and (2) perform a line search in that direction, en-
suring that we improve the nonlinear objective while satisfying the nonlinear constraint. The search
direction in TRPO and its variants is ∆θ = αF−1g where g = ∇L(θ) is gradient of L(θ) evalu-
ated at θold and F is the Fisher information matrix, i.e., the quadratic model to the KL divergence
constraint D̄KL(θold, θ) = 1

2 (θ − θold)TF (θ − θold) and F is the Hessian of the KL divergence
estimation evaluated at θold.

In contrast, the proposed algorithm approximates the objective by a quadratic model and uses the
Dogleg method [10] to compute a step. Figure 1 depicts the idea behind the Dogleg approximation
for the trust region optimum. As seen in Figure 1 the Dogleg method smoothly transitions between
the scaled gradient step and a Quasi-Newton step, which is the unconstrained minimizer of the
quadratic model. Thus, the step automatically changes direction depending on the size of the trust
region. The size of the trust region is modified according to the accuracy of the quadratic model to
ensure global convergence of the algorithm.

3 Quasi-Newton Trust Region Method (QNTRM)

QNTRM has three distinctive elements that sets it apart from TRPO. First, the use of a quadratic
approximation for the objective via a Quasi-Newton approximation of the Hessian. Second, the
Dogleg method that defines the step. Finally, the adaptive change of the stepsize through the classical
trust region framework. We describe each of these in the following. In the rest of the paper, let
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f(θ) = −L(θ) so that maximization of L(θ) can be equivalently expressed as minimization of
f(θ). We use θk to refer to the value of the parameters at the k-th iterate of the algorithm. For sake
of brevity, fk denotes f(θk),∇fk denotes∇f(θk) and∇2fk denotes∇2f(θk).

3.1 Quadratic Approximation via BFGS

QNTRM approximates the objective using a quadratic model fqk (θ) defined as

fqk (θ) = fk +∇fTk (θ − θk) +
1

2
(θ − θk)TBk(θ − θk)

where Bk ≈ ∇2fk is an approximation to the Hessian of f at the point θk. We employ the BFGS
approximation [10] to obtain Bk. Starting with an initial symmetric positive definite matrix B0, the
approximation Bk+1 for k ≥ 0 is updated at each iteration of the algorithm using the step sk and
a difference of the gradients of f along the step yk = ∇f(θk + sk) − ∇fk. The update Bk+1 is
the smallest update (in Frobenius norm ‖B − Bk‖F ) to Bk such that Bk+1sk = yk (i.e. the secant
condition holds), and Bk+1 is symmetric positive definite, i.e.

Bk+1 = arg min
B
‖B −Bk‖F subject to Bsk = yk, B = BT .

The above minimization can be solved analytically [10] and the update step is

Bk+1 = Bk −
Bksks

T
kBk

sTkBksk
+
yky

T
k

yTk sk
(2)

Observe the effort involved in performing the update is quite minimal. The above update does not
enforce positive definiteness of Bk+1. By recasting (2) after some algebraic manipulation as

Bk+1 =

(
I − 1

sTkBksk
Bksks

T
k

)
Bk

(
I − 1

sTkBksk
sks

T
kBk

)
+
yky

T
k

yTk sk

it is easy to see that Bk+1 is positive definite as long as yTk sk > 0.

3.2 Dogleg Method

The search direction in QNTRM ∆θk is computed by approximately solving
min
∆θ

fqk (θk + ∆θ) subject to (∆θ)TFk(∆θ) ≤ δk
i.e. minimizing the quadratic model of the objective subject to the KL-divergence constraint. The
above problem is only solved approximately since the goal is only to produce a search direction ∆θk
that furthers the overall objective of minimizing f(θ) at moderate computational cost. However, the
search direction ∆θk should incorporate both the curvature and attain sufficient progress towards
a solution. In fact, we desire at least as much progress as the step in TRPO. The Dogleg method
does precisely this by combining the scaled gradient direction ∆θGDk = −βkF−1

k ∇fk and the QN
direction ∆θQNk = −B−1

k ∇fk. The search direction ∆θDLk is obtained using Algorithm 1.

The algorithm first computes the QN direction ∆θQNk and accepts it if the trust region constraint
defined by the KL-divergence holds (Step 4). If not the algorithm computes the scaled gradient
direction (Step 5) and a stepsize βk so as to minimize the quadratic model, i.e.

βk =
∇fTk F

−1
k ∇fk

(F−1
k ∇fk)TBk(F−1

k ∇fk)
. (3)

Unlike the TRPO, observe that due to the curvature in the objective we can now define an optimal
stepsize for the gradient direction. If the gradient direction scaled by the optimal stepsize exceeds
the trust region then it is further scaled back until the trust region constraint is satisfied and accepted
(Step 7). If neither of the above hold then the direction is obtained as a convex combination of
the two directions ∆θ(τk) := (∆θGDk + τk(∆θQNk − θGDk )). This is the Dogleg direction. The
parameter τk is chosen so that the direction ∆θ(τk) satisfies the trust region constraint as an equality
(Step 10). The computation of τk requires finding the roots of a quadratic equation which can be
obtained easily.

Note that QNTRM requires the solution of linear system in order to compute B−1
k ∇fk and

F−1
k ∇fk. Both of these can be accomplished by the Conjugate Gradient (CG) method since Bk, Fk

are both positive definite. Thus, the computation QNTRM differs from TRPO by an extra CG solve
and hence, comparable in computational complexity.
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Algorithm 1: Dogleg Method
Data: ∇fk, Bk, Fk, δk
Result: Dogleg direction ∆θDLk

1 Compute QN direction ∆θQNk = −B−1
k ∇fk;

2 if (∆θQNk )TFk(∆θQNk ) ≤ δk then
3 return ∆θQNk
4 end
5 Compute Gradient direction ∆θGDk = −βkF−1

k ∇fk where βk is defined in (3);
6 if (∆θGDk )TFk(∆θGDk ) ≥ δk then
7 return

√
δk

(∆θGDk )TFk(∆θGDk )
∆θGDk

8 end
9 Find largest τk ∈ [0, 1] such that ∆θ(τk) := (∆θGDk + τk(∆θQNk − θGDk )) satisfies

(∆θ(τk))TFk(∆θ(τk)) = δk;
10 return (∆θGDk + τk(∆θQNk − θGDk ));

3.3 Trust Region Algorithm

QNTRM combines the curvature information from QN approximation and Dogleg step within the
framework of the classical trust region algorithm. The algorithm is provided in Algorithm 2 and in-
corporates safeguards to ensure that Bk’s are all positive definite. At each iteration of the algorithm,
a step ∆θDLk is computed using Algorithm 1 (Step 3). The trust region algorithm accepts or rejects
the step based on a measure of how well the quadratic model approximates the function f along the
step ∆θDLk . The commonly used measure [10] is the ratio of the actual decrease in the objective and
the decrease that is predicted by the quadratic model (Step 4). If this ratio νk is close to or larger than
1 then the step computed using the quadratic model provides a decrease in f that is comparable or
much better than predicted by the model. The algorithm uses this as an indication that the quadratic
model approximates f well. Accordingly, if the ratio (Step 4) is larger than a threshold (ν), the
parameters are updated (Step 6). If in addition, the ratio is larger than ν and ∆θk satisfies the trust
region size as an equality then the size of the trust region is increased in the next iteration (Step 8).
This condition indicates that the quadratic model matches the objective f with high accuracy and
that the progress is being impeded by the size of the trust region. Hence, the algorithm increases
the trust region for the next iteration. With the increased trust region size the algorithm promotes
the possible acceptance of a direction other than the scaled gradient direction. On the other hand, if
the ratio is below ν then the computed direction is rejected (Step 11) and the size of the trust region
is decreased (Step 12). This reflects the situation that the quadratic model does not the capture the
objective variation well. Note that as the size of the trust region decreases the performance of the
algorithm mirrors that of TRPO very closely. Thus, QNTRM is naturally designed to be no worse
than the TRPO and often surpass TRPO’s performance whenever the quadratic model approximates
the objective function well. Finally, we update the QN approximation whenever the sTk yk is greater
than a minimum threshold. This ensures that the matricesBk are all positive definite (Step 16). Note
that this safeguard is necessary since the Dogleg step cannot be designed to ensure that sTk yk > 0.

4 Quasi-Newton Trust Region Policy Optimization (QNTRPO)

QNTRPO is the trust region algorithm that we propose in this paper for policy optimization, The
algorithm differs from TRPO in the step that is computed at every iteration of policy iteration. For
completeness of the paper, it is presented as an Algorithm 3. It is noted that the only difference
between QNTRPO and TRPO is the way the trust region optimization problem is solved (see line 4
in Algorithm 3). It is noted that in the original TRPO formulation, the line 4 in Algorithm 3 is per-
formed using the scaled gradient method as discussed earlier. This is the major difference between
the proposed and the algorithm proposed in TRPO. Note that QNTRM is an iterative procedure and
that the step for every iteration of Algorithm 3 is computed by iterating over K steps of QNTRM
(see Algorithm 2). This is yet another difference over TRPO where a single gradient descent step
is computed for each episode. As a result, the computational time per episode for QNTRPO is no
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Algorithm 2: Quasi-Newton Trust Region Method (QNTRM)

Data: Parameters of algorithm – 0 < ν < ν < 1, δ ∈ (0, 1), κ ∈ (0, 1), 0 < ω < 1 < ω.
Data: Initial policy parameters – θ0

Data: Convergence tolerance – ε > 0, Limit on iterations K
Result: θ∗

1 Set k = 0;
2 while ‖∇fk‖ > ε and k < K do
3 Compute the Dogleg step ∆θDLk using Algorithm 1;

4 Compute νk =
f(θk+∆θDLk )−f(θk)

fqk (θk+∆θDLk )−fqk (θk)
;

5 if νk ≥ ν then
6 Set θk+1 = θk + ∆θDLk ;
7 if νk ≥ ν and (∆θDLk )TFk(∆θDLk ) = δk then
8 Set δk+1 = min(δ, ω · δk);
9 end

10 else
11 Set θk+1 = θk;
12 Set δk+1 = ω · δk;
13 end
14 Set sk = ∆θDLk and yk = ∇f(θk + ∆θDLk )−∇f(θk);
15 if sTk yk ≥ κ then
16 Update Bk+1 using (2);
17 else
18 Set Bk+1 = Bk;
19 end
20 Set k = k + 1;
21 end
22 return θ∗ = θk

more than (2×K) that of TRPO owing to the possibly two linear systems solves in Dogleg method
and K iterations in QNTRM.

Algorithm 3: QNTRPO
1 Initialize policy parameters θ0

2 for i = 0, 1, 2, . . . until convergence do
3 Compute all Advantage values Aπθi (s, a) and state-visitation frequency ρθi ;
4 Define the objective function for the episode Lθi(θ) = −f i(θ);
5 Obtain θi+1 using QNTRM to minimize f i(θ) with initial policy parameters θ0 = θi

6 end
7 ;

5 Experimental Results

In this section, we present experimental results for policy optimization using several different envi-
ronments for continuous control from the openAI Gym benchmark [13]. In these experiments, we
try to answer the following questions:

1. Can QNTRPO achieve better learning rate (sample efficiency) than TRPO consistently
over a range of tasks?

2. Can QNTRPO achieve better performance than TRPO over a range of tasks in terms of
average reward?

In the following, we try to answer these two questions by evaluating our algorithm on several con-
tinuous control tasks. In particular, we investigate and present results on four different environments
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(a) Humanoid-v2 (b) HalfCheetah-v2 (c) Hopper-v2 (d) Walker 2d-v2

Figure 2: The four continuous control benchmark tasks considered in this paper.

(a) Humanoid-v2

(b) HalfCheetah-v2

(c) Hopper-v2

(d) Walker 2d-v2

Figure 3: Results of our method compared against the TRPO method in [9] compared on four
benchmark continuous control environments in OpenAI gym. The plots show the average batch
reward obtained by both methods averaged over three different runs.

in Mujoco physics simulator [14]. We implement four locomotion tasks of varying dynamics and
difficulty: Humanoid [15, 5], Half-Cheetah [16], Walker [17] and Hopper [9]. The goal for all these
tasks is to move forward as quickly as possible. These tasks have been proven to be challenging to
learn due to the high degrees of freedom of the robots [5]. A great amount of exploration is needed
to learn to move forward without getting stuck at local minima. During the initial learning stages, it
is easy for the algorithm to get stuck in a local minima as the controls are penalized and the robots
have to avoid falling. The state and action dimensions of these tasks are listed in Table 1.

We run both TRPO and QNTRPO for 500 episodes and average all results across five different runs
with different random seeds for the environment initialization. All hyperparameters for the algo-
rithms – batch size, policy network architecture, step size and the generalized advantage estimation
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Humanoid-v2 HalfCheetah-v2 Walker2d-v2 Hopper-v2
State Dimension 376 17 17 11

Action Dimension 17 6 6 3
Table 1: State and action dimensions of the RL tasks considered in the paper.

coefficient (λ) – are identical for both algorithms. As TRPO (and thus QNTRPO ) performs better
with bigger batches, we use a batch size of 15000. In each of these episodes, trajectories are gen-
erated for a maximum length of 2000 and then restarted either if the terminal condition is met or
the trajectory length is satisfied. The network architecture is kept the same across all the tasks. The
trust region radius is chosen to be 0.1 (note that this is the parameter δ̄ in Algorithm 2). At lower
trust region radius both algorithms performed slower and thus the results are not reported here. The
discount factor γ is chosen to be 0.99 and the constant λ for advantage function estimation is chosen
to be 0.97. The parameters for QNTRM were chosen to be the following: K = 10, ν = 0.75,
ν = 0.1, ω = 0.3, ω = 2 and κ = 10−3. Codes for running these experiments are available at
www.merl.com/research/license#QNTRPO.

Results of our experiments are shown in Figure 3. For all four tasks, we can demonstrate that
QNTRPO can achieve faster learning, and thus better sample efficiency than the original TRPO.
Furthermore, the performance of QNTRPO is also significantly better than TRPO. This is evident
from the fact that QNTRPO achieves higher rewards than TRPO, which also has longer transitory.
For high complexity problems like Humanoid, QNTRPO takes about 350 episodes with the current
batch size to reach the maximum score (of around 3000). These results show that QNTRPO can
calculate a better step for the constrained optimization problem for policy iteration using QNTRM.

6 Conclusions and Future Work

In this paper, we presented an algorithm for policy iteration using a Quasi-Newton trust region
method. The problem was inspired by the policy optimization problem formulated in [9] where a
linesearch is performed to compute the step size in the direction of steepest descent using a quadratic
model of the constraint. In this paper, we proposed a dogleg method for computing the step during
policy iteration which has theoretical guarantees [10] of better performance over the scaled gradi-
ent descent method used in [9]. The proposed method was compared against the original TRPO
algorithm in four different continuous control tasks in Mujoco physics simulator. The proposed
algorithm outperformed TRPO in learning speed as well performance indicating that the proposed
method can compute better step for the policy optimization problem.

Despite the good performance , there are a number of open issues for which we do not have a com-
plete understanding. We have observed that the maximum trust region radius (δ) plays an important
role in speed of learning. However, choosing this arbitrarily might result in poor convergence.
Furthermore, to achieve monotonic improvement in policy performance, one has to select the trust
region radius very carefully which is undesirable. It would also be interesting to study the interplay
of batch size and trust region radius. This can help address the issue of steplength selection. In the
future, we would like to further investigate several features of the proposed algorithm including the
following.

• Analyze the stability of the proposed algorithm to the size of trust region radius and batch
size. We believe that the proposed method can be used to fine tune the hyperparameter of
trust region radius which controls the maximum step size in each iteration of the algorithm.

• Evaluate the proposed algorithm on much higher dimension learning problem for end-to-
end learning using a limited memory version of the proposed algorithm.

• Use ideas from ensemble methods [18], scalable bootstrapping [19] and factored methods
to curvature [20] for better and efficient approximation of the objective function.

• Evaluate the performance on challenging, sparse reward environments [21, 22].
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A Derivation of the Dogleg step for QNTRM

The Dogleg method aims to obtain an approximate solution of the trust region problem

min
∆θ

fqk (θk + ∆θ) subject to (∆θ)TFk(∆θ) ≤ δk (4)

where fqk (θk + ∆θ) = fk + ∇fTk (∆θ) + 1
2 (∆θ)TBk(∆θ). In this section, we derive the Dogleg

step under the trust region defined by the KL-divergence constraint.

We begin by first transforming the trust region problem in (4) into standard form. Let Fk = LkL
T
k

which can be obtained for example by Cholesky factorization since the Fischer matrix Fk is positive
definite. Note that the factorization is only used for deriving the step and is never required for the
computations.

Defining ∆̂θ = LTk ∆θ we can recast the quadratic model as

f̂qk (θk + δ̂θ) = fk + ∇̂f
T

k (∆̂θ) +
1

2
(∆̂θ)T B̂k(∆̂θ) (5)

where ∇̂fk = L−1
k ∇fk and B̂k = L−1

k BkL
−T
k . It is easily verified that fqk (θk + ∆θ) = f̂qk (θk +

LTk ∆θ) and (∆θ)TFk(∆θ) = (∆̂θ)T (∆̂θ). Hence, the trust region problem in (4) can be recast as
the standard trust region problem

min
∆̂θ

f̂qk (θk + ∆̂θ) subject to (∆̂θ)T (∆̂θ) ≤ δk (6)

In the following, we will derive the Quasi-Newton, Gradient and Dogleg steps based on (6) and then,
transform these steps to the original space using the transformation ∆̂θ = LTk ∆θ.

The Quasi-Newton step for (6) is

∆̂θ
QN

= −B̂−1
k ∇̂fk = −LTkB−1

k ∇fk (7)

where the second equality is obtained by substitution. Thus, the Quasi-Newton step in the original
space of parameters is

∆θQN = −B−1
k ∇fk. (8)

The gradient direction for (6) is ∆̂θ
gd

= −∇̂fk = −L−1
k ∇fk. The optimum stepsize βk along the

gradient direction is obtained from

min
β
f̂qk (θk + β∆̂θ

gd
). (9)

Hence, the optimal stepsize along the gradient direction is

βk =
∇̂f

T

k ∇̂fk
∇̂f

T

k B̂k∇̂fk
=

∇fTk F
−1
k ∇fk

(F−1
k ∇fk)TBk(F−1

k ∇fk)
(10)
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and the scaled gradient direction is

∆̂θ
GD

= −βk∇̂fk. (11)

Thus, the scaled gradient step in the original space of parameters is

∆θGD = −βkF−1
k ∇fk. (12)

The Dogleg step for (6) computes a τk such that∥∥∥∆̂θ
GD

+ τk(∆̂θ
QN
− ∆̂θ

GD
)
∥∥∥2

= δk

=⇒
∥∥LTk ∆θGD + τk(LTk ∆θQN − LTk ∆θGD)

∥∥2
= δk

=⇒ ∆θ(τk)Fk∆θ(τk) = δk

(13)

where ∆θ(τk) = ∆θGD + τk(∆θQN −∆θGD).

B Time performance comparison

In Table 2 we compare the wall clock time for each of the four tasks. For each task we average the
time needed to perform each single episode over all the episodes. The performance are computed
on a Linux desktop with i7-6700K Intel Core.

Algorithm Humanoid-v2 HalfCheetah-v2 Hopper-v2 Walker2d-v2
TRPO 9.68 ±0.13 [s] 3.19 ±0.018 [s] 3.79 ±0.04 [s] 4.29 ±0.06 [s]

QNTRPO 91.99 ±10.87 [s] 54.66 ±8.65 [s] 30.02 ±7.22 [s] 37.98 ±6.78 [s]

Table 2: Average and standard deviation in seconds of wall clock time for each episode of all the
experiments for the 4 environments on a Linux desktop with i7-6700K Intel Core.

QNTRPO is slower than the standard TRPO due to multiple inner iteratins that are performed for
each episode. The time performance is consistent with the computational analysis described in the
paper.

The QNTRM is an iterative procedure and the step for every iteration of Algorithm 3 is computed
by iterating over K steps of QNTRM (see Algorithm 2). Instead, in TRPO a single gradient descent
step is computed for each episode. As a result, the computational time per episode for QNTRPO
is no more than (2 ×K) that of TRPO owing to the possibly two linear systems solves in Dogleg
method and K iterations in QNTRM. In our experiments K is chosen to be 10 and it is clear from
Table 2 that the ratio in performance time between QNTRPO and TRPO is below 20.
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