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Abstract
In this work, we present and experimentally validate a framework for learning an autonomous
vehicle passenger’s preferred driving style. The study is performed with N = 3 human sub-
jects in a vehicle simulator that consists of a 3-DOF motion simulator, providing feelings of
longitudinal and lateral acceleration to the passenger, an automatically controlled steering
wheel, providing information about the steering controller behavior, and a computer monitor,
providing a virtual rendering of the view through the windshield. The vehicle controller is
designed to track speeds while satisfying limits on the maximum allowable longitudinal and
lateral accelerations. These accelerations are related to the passenger’s preferences and are
represented as a surface on a g-g plot. The passenger’s preferences are learned from comfort
labels provided by the passenger, which correspond to positive and negative assessments of
the vehicle’s current driving behavior. In the framework that we present, these labels directly
change the corresponding parametrization of the g-g plot, thereby modifying the limiting
constraints to be enforced by the controller on-line, which leads to a change in the behavior
of the vehicle. The collected data supports the hypothesis that there is a personalized driving
style preference, and also shows that our proposed preference-learning scheme converges to a
preferred driving style.
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Learning autonomous vehicle passengers’ preferred driving styles using
g-g plots and haptic feedback

Uroš Kalabić Ankush Chakrabarty Rien Quirynen Stefano Di Cairano

Abstract— In this work, we present and experimentally
validate a framework for learning an autonomous vehicle
passenger’s preferred driving style. The study is performed
with N = 3 human subjects in a vehicle simulator that consists
of a 3-DOF motion simulator, providing feelings of longitudinal
and lateral acceleration to the passenger, an automatically
controlled steering wheel, providing information about the
steering controller behavior, and a computer monitor, providing
a virtual rendering of the view through the windshield. The
vehicle controller is designed to track speeds while satisfying
limits on the maximum allowable longitudinal and lateral
accelerations. These accelerations are related to the passenger’s
preferences and are represented as a surface on a g-g plot.
The passenger’s preferences are learned from comfort labels
provided by the passenger, which correspond to positive and
negative assessments of the vehicle’s current driving behavior.
In the framework that we present, these labels directly change
the corresponding parametrization of the g-g plot, thereby
modifying the limiting constraints to be enforced by the
controller on-line, which leads to a change in the behavior
of the vehicle. The collected data supports the hypothesis that
there is a personalized driving style preference, and also shows
that our proposed preference-learning scheme converges to a
preferred driving style.

I. INTRODUCTION

As vehicles with autonomous capabilities become more
widely available to the general public, it becomes important
to consider the interaction between these vehicles and their
human users. One aspect of interaction is the identification
of a preferred driving style, one of whose purposes is the
customization or modification of vehicle behavior to a user’s
preferences. To this end the majority of research has consid-
ered the replication of human driving styles, both inside and
outside the context of autonomy. There are two directions
to this research. The focus of the first direction has been
the categorization of driving styles into coarse behavioral
clusters such as calm, normal, and aggressive [1] to be able
to select one of these clusters as a user’s preferred driving
style. The focus of the second has been the conversion of
driving style into control policies; attempts have used various
technical approaches, including input-output autoregressive
models [2], time-varying state-space models [3], hidden
Markov models [4], Gaussian mixture models [5], neural
networks [6], [7], and inverse reinforcement learning [8], [9].

The commonality between all these methods is that they
seek to replicate a driver’s style when the vehicle operates in
autonomous mode. However, this misses the realization that,
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when a vehicle is driving autonomously, the human in the
driving seat is not a driver, but a passenger. Instead of repli-
cating the driving style associated with the driver’s behavior
as driver, it may be better for the design to replicate the
preferred style of the driver as passenger. In [10], researchers
tested the hypothesis whether users of autonomous vehicles
would truly want the vehicle to replicate their own driving,
concluding that users would prefer a more defensive style
than their own. In fact, the work concluded that most people
were not capable of categorizing their own driving style into
even coarse behavioral clusters.

Therefore, there is a need to determine a representation
of driving behavior that is adequate for use in a closed-
loop vehicle controller and can be determined using learning
methods. In this work, we propose that passenger preference
learning, or driver-as-passenger driving style learning, can
be performed by learning the limiting accelerations on a
g-g plot based on user feedback. The utility of g-g plots,
also referred to as traction circles, is established in the
vehicle dynamics literature. According to [11], the g-g plot
is “representative of a comfortable operating region for the
driver” and provides a rational method for estimating driver
style under different road and environmental conditions.
More recently, [12] has demonstrated the effectiveness of
g-g plots in estimating safety margins and user preferences
in assisted driving settings. Employing the g-g plot for
constrained control of vehicles has been investigated in [13]
for cornering a vehicle at tire friction limits, in [14] for
restoring stability after sharp and aggressive maneuvers, and
in [15] for adding robustness to parametric uncertainties such
as tire stiffness variations while controlling mobile robots.

In this work, we learn a g-g plot by obtaining user
feedback and use the plot to inform a control scheme which
enforces the acceleration constraints. To this end, we run a
pilot study consisting of human-in-the-loop experiments us-
ing a motion simulator capable of replicating vehicle motions
during acceleration, deceleration, and turning maneuvers. We
simulate the driving environment using CarSim and Simulink
in order to replicate realistic driving in a safe environment.
Binary labels of comfort are provided by subjects via buttons
on the hardware interface. These labels automatically reshape
the envelope of g-g plot over multiple laps until our learning
algorithm converges on a g-g plot that is deemed comfortable
by the subject.

The use of simulation environments for understanding
human-vehicle interactions is well-established [16]. For ex-
ample, experiments made to study cognitive load while
driving in [17], with a simple hardware-in-the-loop driver



simulator, were shown to map closely to drivers’ cognitive
loads in the real world. Furthermore, three-dimensional vehi-
cle and communication simulators have been demonstrated
to be excellent precursors to on-road testing in [18], [19]
while providing insights into potential improvements and
adjustments for real-world use. A simulated environment is
important in learning passenger preference, as it allows us to
determine the limits of our methodology without endangering
test subjects.

The results of our experiments show that it is possible
to learn the limits of an autonomous vehicle passenger’s
preferred driving style using feedback from the passenger.
We find evidence that a passenger has a personalized driving
style when traveling in an autonomous vehicle and that this
driving style can be identified by modifying the parameters
of the vehicle controller. Since the g-g plot is intrinsic to our
control and preference-learning scheme, we conclude that it
is effective in representing the preferred driving style of an
autonomous vehicle passenger.

II. VEHICLE DYNAMICS AND CONTROL

In this section, we present the control architecture which
we have implemented for determination of passenger prefer-
ence.

A. Longitudinal and lateral control

For longitudinal vehicle control, we consider the model
mv̇x = Fx − Rx, from [20], where vx is the longitudinal
vehicle speed, Fx is the force on the vehicle center of mass
by the controller and Rx is the sum of all reaction forces.
We assume that there is no slip in the transmission so that
the engine speed ωe is equal to the transmission shaft speed
ωt, which is linearly related to the vehicle speed via some
inertia Ie, that is, Ieωe = vx. For this reason, we design
a proportional controller to track a desired vehicle speed
vd,x, that is, τe = −Kp(vx − vd,x), where τe is the torque
acting on the engine. We therefore obtain the closed-loop
dynamics v̇x = −(Kp/Iem)(vx − vd,x) − Rx. According
to these closed-loop dynamics, we observe that setting Kp

large enough will enable the controller to closely track the
desired velocity.

For lateral vehicle control, we consider the single-track
error-tracking model proposed in [20] for a constant longi-
tudinal speed vx, which is given by,

ė = Aee+Bδδ +Bψ̇ψ̇d, (1)

with e ,
[
ey ėy eψ ėψ

]>
. Here, ey is the lateral

displacement of the vehicle position from the reference path,
eψ is the difference between actual and desired vehicle yaw
angles, δ is the front wheel angle, and ψ̇d is the desired
vehicle yaw rate. The system matrices are given by

Ae =


0 1 0 0
0 − 2C0

mvx
2C0

m − 2C1

mvx
0 0 0 1
0 − 2C1

Izvx
2C1

Iz
− 2C2

Izvx

 ,

Bδ =


0

2Cα,f
m
0

2`fCα,f
Iz

 , Bψ̇ =


0

− 2C1

mvx
− vx

0
− 2C2

Izvx

 ,
with coefficients C0 = Cα,f +Cα,r, C1 = `fCα,f − `rCα,r,
C2 = `2fCα,f + `2rCα,r. Other relevant system parameters
include the longitudinal vehicle speed vx, the vehicle mass
m, the moment of inertia about the vertical Iz , the front and
rear tire stiffness Cα,f/r, and the distance from the vehicle
`f , `r for the front and rear axles, respectively. We assume
that the desired yaw rate ψ̇d = 0.

We design a gain-scheduled controller for the system (1)
for regulating the desired longitudinal speed vd,x. Specif-
ically, we design a set of state-feedback gains Kvx for
vx ∈ Vx = {5, 10, . . . , 150}km/h. The road wheel angle is
set to, δ = −Kvd,xe. where Kvd,x is the linearly-interpolated
value between the nearest gains Kvx corresponding to the
desired vehicle velocity vd,x. Specifically, Kvd,x = Kv−d,x

+

vd,x−v−d,x
v+d,x−v

−
d,x

Kv+d,x
, where, v−d,x = max{vx ∈ Vx : vx ≤ vd,x}

and v+d,x = min{vx ∈ Vx : vx > vd,x}.

B. Model of passenger preference using g-g plots

We assume that a passenger’s comfort preferences are
related to the coupling between longitudinal and lateral accel-
erations that he feels while riding in a vehicle. Specifically,
we assume that the limits of comfort adhere to the following
relationship,

∣∣∣ ax
amax

∣∣∣p +
∣∣∣ aycmax

∣∣∣p ≤ 1, if ax ≥ 0,∣∣∣ axbmax

∣∣∣p +
∣∣∣ aycmax

∣∣∣p ≤ 1, if ax < 0,
(2)

where ax and ay are the longitudinal and lateral accelerations
felt by the passenger, amax, bmax, and cmax are the maximum
magnitudes of positive longitudinal acceleration, negative
longitudinal deceleration, and lateral acceleration, respec-
tively, and p ∈ (0, 2] is a parameter relating longitudinal
and lateral accelerations.

C. Performing maneuvers to test preferences

We aim to experimentally identify a passenger’s internal
comfort region, that is, his personalized parameters amax,
bmax, cmax, and p. To do this, we perform a sequence of
alternating maneuvers in a simulated track environment. The
track we have designed for this purpose is plotted in Fig. 1.
In the plot, the track is labeled by type of maneuver being
tested. There are four maneuvers: A, B, C, and P, which test
amax, bmax, cmax, and p, respectively.

In all maneuvers, the experimental procedure simply varies
the desired velocity vd,x along the track, according to a
procedure designed to reach the expected limits of passenger
comfort. In the following, we describe each maneuver.

1) Maneuvers A and B: To begin, we describe the ma-
neuvers that are designed to test a passenger’s acceleration
and deceleration limits. These are performed on the three
straight segments of the track. During Maneuver A, the
vehicle speeds up at the maximum allowable acceleration
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Fig. 1. Plot of track with direction of travel and labeled maneuvers.

amax. During Maneuver B, the vehicle slows down at the
maximum allowable deceleration bmax. This is accomplished
by varying the desired velocity vd,x so that, if the vehicle
tracks the velocity perfectly, the required acceleration or
deceleration will be achieved.

To determine the desired velocity, we assume that there
is an initial velocity vi near the beginning of the straight
segment and a final, exit velocity vf near the end. Given
a passenger’s maximum acceleration amax, we can compute
the velocity profile that adheres to a constant acceleration set
at amax in terms of length along the road segment s − s0.
This velocity profile is given by,

vd,+(s) =
√
v2i + 2amax(s− s0). (3a)

Similarly, given a passenger’s maximum deceleration bmax,
we can compute the velocity profile that adheres to a constant
deceleration set at bmax in terms of length away from the end
of the road segment sf −s. This velocity profile is given by,

vd,−(s) =
√
v2f + 2bmax(sf − s). (3b)

In general, the initial velocity vi is set to the desired
velocity at which the vehicle exits the curve preceding the
straight-line segment; the final velocity vf is set to the
desired velocity at which the vehicle enters the next curve.

Between maneuvers A and B, the velocity is set to
vmax = 33m/s. To ensure consistency between the three
choices of velocity, we take the minimum of the three when
traveling along the straight segment, i.e., the longitudinal
velocity is set to the minimum of the maximum velocity
and the velocities computed by (3), that is, vd,x(s) =
min{vd,+(s), vd,−(s), vmax}.

2) Maneuver C: To test the lateral acceleration, we drive
the vehicle through the curves at a constant velocity. Since
the curved segments of the track are circular arcs, the
acceleration on the vehicle is constant. Using the expression
for centripetal acceleration, the desired speed is set to vd,x =√
r1cmax, where r1 is the radius of curvature of the turn

during both segments.
3) Maneuver P: In the final maneuver, we test a passen-

ger’s preferred relationship between longitudinal and lateral
acceleration. To do this, we set the desired velocity so that
the curve on the g-g plot will follow the periphery of the
boundary (2). To solve for the required velocity, we begin

by assuming that ax = v̇d,x and ay = v2d,x/r2, where r2
is the radius of curvature of the turn. Since the turn is left
handed, we obtain the differential equation,

(v̇d,x/amax)
p

+
(
v2d,x/r2cmax

)p
= 1. (4)

Since the desired velocity vd,x is a function of distance along
the path s, we note that ṡ = vx ≈ vd,x and perform a change
of variables to obtain the differential equation,(

v′d,x
amax

)p
+

(
vd,x
r2cmax

)p
=

1

vpd,x
, v′d,x =

dvd,x
ds

, (5)

which we solve with initial condition vd,x = 0.1
√
r2cmax

over the 250m length of the segment, and for values p =
0.2, 0.4, . . . , 2.

D. Learning preferences from passenger feedback

During the experiment, passengers are asked for their
opinion on the vehicle behavior during every maneuver, and
their responses are limited to yes or no.

The learning procedure is the same for Maneuvers A, B,
and C. Without loss of generality, let yk represent one of
amax, bmax, or cmax. During the corresponding maneuver,
i.e., A, B, or C, respectively, we set,

yk+1 =


min(yk + ∆yk, ykmax) if “yes”,
max(yk −∆yk, ykmin) if “no”,
yk otherwise.

(6)

The variables ykmin and ykmax are the minimum and max-
imum values corresponding to the appropriate maneuver.
The variable ∆yk represents the step-size corresponding to
the appropriate maneuver. It is set to the smaller of the
maximum step-size allowed and the golden ratio γ ≈ 0.618
of the difference between ykmax and ykmin, that is, ∆yk =
min{γ(ykmax−ykmin),∆ymax}. The maximum and minimum
values are determined according to the logic that, if the
passenger provides an opposite response to his previous
response, he has reached a limit. Specifically,

yk+1
min =

{
yk if “yes” at k and “no” at k − 1,

ykmin otherwise,

yk+1
max =

{
yk if “no” at k and “yes” at k − 1,

ykmax otherwise.

The response at k = −1 is assumed to be null.
The learning procedure for pk is as follows. At the

beginning of the experiment, we set p0 = 2 and, during
Maneuver P, we modify pk according to the responses from
the passenger,

pk+1 =

{
max{pk − 0.2, 0.2} if “no” at k,
pk otherwise.

In this way pk is always decreasing until it reaches the
value of 0.2. This choice is guided by the assumption
that a passenger has a fixed comfort region and that the
initial conditions for amax, bmax and cmax are well within



limits. Therefore, at the beginning of the experiment, a
value of p0 = 2 will ensure that the region satisfying (2)
will be within the true comfort region and will only start
pushing against boundaries as the simulation progresses.
Furthermore, our assumption implies that, once boundaries
are reached, pk can only decrease. We use a different method
when exploring for pk compared with the other parameters
because a difference of less than 0.2 is not large enough to
make a material difference in the behavior of Maneuver P.

E. Experimental setup and subjects

The experiment is performed in an environment that
combines hardware elements with a virtual driving sim-
ulator, a schematic of which is provided in Fig. 2. The
vehicle dynamics are simulated using CarSim 2018.0 and
the control architecture is implemented using MATLAB
Simulink R2015b. The road visualization and speedometer
are provided via the CarSim VS Visualizer and projected
onto a computer monitor with 60Hz refresh rate. A signal is
sent from Simulink over UDP to a separate computer, which
runs the software used to actuate a D-BOX GP PRO-200
motion simulator. The simulator has been modified, with its
original gaming wheel replaced with a Thrustmaster T300RS
gaming wheel. The gaming wheel is controlled by Simulink
to track the direction of the front wheel angles. The gaming
wheel is mounted on a stationary base with two buttons,
which are used for passenger feedback.

The D-BOX motion simulator provides three degrees of
motion: roll, pitch, and heave, along with chair vibration.
We control simulator motions by sending the value of the
corresponding signal from CarSim via Simulink and UDP
to the motion control software. For roll, pitch, and heave,
the motion control software passes the motions through a
high-pass filter to attenuate the DC values. Because of this,
the motion controller removes any steady-state roll, pitch,
or heave position. We relate the simulator vibration to the
vehicle’s actual longitudinal speed vx, where the minimum
vibration corresponds to the initial vi and the maximum
vibration corresponds to the maximum vd,x achieved during
a maneuver. Note that these values change at the initiation
of every maneuver.

During the experiment, participants sit in the motion
simulator, i.e., chair, and look forward at the computer
screen, which shows the vehicle driving through a city track
and a predicted vehicle path represented with blue dots. An
example of what a participant sees is given in Fig. 2, in the
“driver perspective” window. During each maneuver, partic-
ipants are asked whether they liked the particular motion.
Specifically, during Maneuver A, they are asked “Did you
like the acceleration?” During Maneuver B: “Did you like the
braking?” During Maneuver C: “Did you like the turning?”
During Maneuver P: “Did you like the acceleration through
the curve?” They respond to these questions by pressing one
of two buttons on the gaming wheel base, with the left button
indicating “yes” and the right button indicating “no.” The
response is received by Simulink, which updates the learned

parameters and the control logic in an online, human label-
driven manner.

Fig. 2. Schematic of experimental setup.

The subjects included 2 male adults and 1 female adult,
from an age range of 25–35. Subjects were first shown the
track in Fig. 1, and each component of the experimental setup
was explained. The algorithm was not explained to avoid
biasing. The only directive given to each subject was to label
whether they would feel comfortable in the current driver
style setting for an extended period of time. It was clarified
that their objective was to determine a comfortable, as
opposed to tolerable, setting. All human subject experiments
were approved by the Institutional Review Board (IRB) at
Mitsubishi Electric Research Laboratories, Cambridge, MA.

F. Controller performance

In this section, we present the performance of our control
scheme as it relates to the experiment. Specifically, we show
that the longitudinal controller can accurately track desired
velocity set-points along the driving path and that this results
in an appropriate corresponding vehicle acceleration. To do
this, we perform one lap around the track with parameters set
constant at amax = 2 m/s2, bmax = 3 m/s2, cmax = 3 m/s2,
and p = 1.

In Fig. 3, we show the achieved velocity and acceleration
trajectories corresponding to the test run. The results show
that the longitudinal controller tracks the desired velocity.
The plots also show that, as required for the experiment,
the longitudinal acceleration achieves close to its desired
value during the first and third time that Maneuver A is
performed, that the deceleration achieves close to its desired
value whenever Maneuver B is performed, and that the lateral
acceleration achieves close to its desired value whenever
Maneuvers C and P are performed.

III. RESULTS AND DISCUSSION

In this section, we present the results of our experimental
study. In Fig. 4, we present the evolution of the parameters
ak, bk, ck, and pk and their corresponding minimum and
maximum values. The parameters are plotted against the
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number of total maneuvers performed. The experiments were
performed until it was deemed that each subject’s labeled
inputs had sufficiently converged. The experiments lasted
580.9 s, 716.9 s, and 698.2 s, for subject #1 through #3,
respectively. At the end of the experiment, each subject
converged to a set of parameters, the representation of which
is plotted in Fig. 5, overlaying a plot of the trace showing
acceleration applied to the vehicle center of gravity.

It is evident from the results that there is a strong de-
pendency between the acceleration parameters (a, b, and c)
and subjects’ perceptions of the corresponding acceleration
haptics. For our small cohort size, the relationship with
the parameter p remains inconclusive. Subjects #1 and #2
indicated only once that they did not like the acceleration
during Maneuver P. In contrast, Subject #3 exhibited the
expected behavior: As the vehicle reached higher speeds due
to the increase in ak and ck, the subject consistently lowered
the value of pk until convergence of the other parameters.
After performing the experiment, we asked Subject #3 about
their intention; they explained that they were looking at the
speedometer and it seemed inappropriate for the vehicle to
be accelerating so fast in a curve. After the experiment,
Subjects #1 and #2 indicated during discussion that they
had mostly ignored the readings from the speedometer. We
conclude from these insights that our experimental setup
was effective in emulating acceleration and deceleration on
straight roads, but was limited in its capability to convey
acceleration through a curve.

From the viewpoint of personalization, it is important to
consider the consistency of subjects’ responses. Specifically,
we observed that subjects did not typically regret their re-
sponses or change their minds after labeling. From the results
corresponding to the learning of a, b, and c parameters,
we can see that, for most of the results, subjects would
consistently reach a maximum and vary their responses

around there, and thereafter converge slowly. The exception
is the response pattern of Subject #2 corresponding to the
lateral acceleration parameter c. The subject responded “no”,
indicating that a maximum had been achieved, but then pro-
ceeded to reachieve this maximum, consistently responding
with a “yes” afterwards. This indicates that the subject was
tolerant of a higher acceleration parameter but was not able
to achieve it due to the controller setup. This result therefore
suggests that it would be useful to create an algorithm with
the ability to tolerate changes in perception.

Overall, the series of experiments that we performed in-
form us on how to better design an experiment for passenger
preference learning in the future and reaffirm the need to
test with larger cohorts. From the discussion above, we
believe that learning preferred acceleration and deceleration
on a straightaway can be done adequately on our setup. The
greatest limitation to achieving the correct feelings for any
motion is that the D-BOX software filters steady-state roll,
pitch, and heave inputs. This means that we were not able to
provide the subject a feeling of sustained acceleration. Since
accelerations and decelerations on straightaways are quick
maneuvers, the subjects were able to feel a sense of motion
that adequately represented the accelerations. However, the
feeling of lateral acceleration is proportional to the square
of lateral velocity, which is sustained for longer durations;
therefore, the feelings corresponding to lateral motion were
less realistic. Taking into account the above discussion, it
is apparent that subjects have a personalized preference
associated with the parameters that were identified by the
experiment. We therefore conclude that the use of g-g plot
is appropriate for use in determining passenger’s preference.

IV. CONCLUSIONS

In this paper, we presented a scheme for identifying pas-
senger preferences for the driving behavior of an autonomous
vehicle. In our scheme, the limits of passenger preference
are represented by parameterized curves on a g-g plot. The
results of our pilot experiments showed that the preferences
of the subjects are personalized, and that we are able to learn
these unique preference parameters using the control and
learning framework used in experiment. We conclude that
g-g plots are useful in determining an autonomous vehicle
passenger’s preferred driving style and can be integrated with
control system design.
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