
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Discriminative Video Representation Learning Using
Support Vector Classifiers

Wang, J.; Cherian, A.

TR2019-107 September 25, 2019

Abstract
Most popular deep models for action recognition in videos generate independent predictions
for short clips, which are then pooled heuristically to assign an action label to the full video
segment. As not all frames may characterize the underlying action—indeed, many are com-
mon across multiple actions—pooling schemes that impose equal importance on all frames
might be unfavorable. In an attempt to tackle this problem, we propose discriminative pool-
ing, based on the notion that among the deep features generated on all short clips, there
is at least one that characterizes the action. To identify these useful features, we resort to
a negative bag consisting of features that are known to be irrelevant, for example, they are
sampled either from datasets that are unrelated to our actions of interest or are CNN features
produced via random noise as input. With the features from the video as a positive bag and
the irrelevant features as the negative bag, we cast an objective to learn a (nonlinear) hyper-
plane that separates the unknown useful features from the rest in a multiple instance learning
formulation within a support vector machine setup. We use the parameters of this separating
hyperplane as a descriptor for the full video segment. Since these parameters are directly
related to the support vectors in a max-margin framework, they can be treated as a weighted
average pooling of the features from the bags, with zero weights given to non-support vectors.
Our pooling scheme is end-to-end trainable within a deep learning framework. We report re-
sults from experiments on eight computer vision benchmark datasets spanning a variety of
video-related tasks and demonstrate state-of-the-art performance across these tasks.

IEEE Transactions on Pattern Analysis and Machine Intelligence

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in
whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all
such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric
Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and all
applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall require
a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Copyright c© Mitsubishi Electric Research Laboratories, Inc., 2019
201 Broadway, Cambridge, Massachusetts 02139

TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1

Discriminative Video Representation Learning
Using Support Vector Classifiers

Jue Wang Anoop Cherian

Abstract—Most popular deep models for action recognition in videos generate independent predictions for short clips, which are then
pooled heuristically to assign an action label to the full video segment. As not all frames may characterize the underlying
action—indeed, many are common across multiple actions—pooling schemes that impose equal importance on all frames might be
unfavorable. In an attempt to tackle this problem, we propose discriminative pooling, based on the notion that among the deep features
generated on all short clips, there is at least one that characterizes the action. To identify these useful features, we resort to a negative
bag consisting of features that are known to be irrelevant, for example, they are sampled either from datasets that are unrelated to our
actions of interest or are CNN features produced via random noise as input. With the features from the video as a positive bag and the
irrelevant features as the negative bag, we cast an objective to learn a (nonlinear) hyperplane that separates the unknown useful
features from the rest in a multiple instance learning formulation within a support vector machine setup. We use the parameters of this
separating hyperplane as a descriptor for the full video segment. Since these parameters are directly related to the support vectors in a
max-margin framework, they can be treated as a weighted average pooling of the features from the bags, with zero weights given to
non-support vectors. Our pooling scheme is end-to-end trainable within a deep learning framework. We report results from experiments
on eight computer vision benchmark datasets spanning a variety of video-related tasks and demonstrate state-of-the-art performance
across these tasks.

Index Terms—video representation, video data mining, discriminative pooling, action recognition, deep learning.

F

1 INTRODUCTION

W E are witnessing an astronomical increase of video data
around us. This data deluge has brought out the problem of

effective video representation – specifically, their semantic content
– to the forefront of computer vision research. The resurgence
of convolutional neural networks (CNN) has enabled significant
progress to be made on several problems in computer vision [1],
[2] and is now pushing forward the state-of-the-art in action
recognition and video understanding as well [3], [4], [5], [6]. Even
so, current solutions for video representation are still far from
being practically useful, arguably due to the volumetric nature of
this data modality and the complex nature of real-world human
actions.

Using effective architectures, CNNs are often found to extract
features from images that perform well on recognition tasks.
Leveraging this know-how, deep learning solutions for video
action recognition have so far been straightforward extensions
of image-based models [6], [7], [8]. However, applying such
models directly on video data is not an easy task as the video
can be arbitrarily long, to address which a CNN may need to be
scaled up by yet another dimension of complexity, which could
increase the number of parameters sharply. This demands more
advanced computational infrastructures and greater quantities of
clean training data [3], [9]. To overcome this problem, the trend
has been on converting the video data to short temporal segments
consisting of one to a few frames, on which the existing image-
based CNN models are trained. For example, in the popular two-

• Jue Wang is with the Research School of Engineering, The Australian
National University, ACT 2601, Australia. E-mail: jue.wang@anu.edu.au

• Anoop Cherian is with Mistubishi Electric Research Labs (MERL),
Cambridge, MA, E-mail: cherian@merl.com

Fig. 1: A illustration of our discriminative pooling scheme. Our main
idea is to learn a representation for the positive bag (left) of CNN
features from the video of interest. To extract useful features from this
video, we use a negative bag (right) of features from videos that are
known to contain irrelevant/noise features. The representation learning
problem is cast as a binary (non)-linear classification problem in an
SVM setting; the hyperplane found via the optimization (which is a
linear combination of support vectors) is used as the representation of
the positive bag, which we call the SVM pooled descriptor.

stream model [7], [10], [11], [12], [13], the CNNs are trained to
independently predict actions from short video clips (consisting
of single frames or stacks of about ten optical flow frames) or a
snippet of about 64 frames as in the recent I3D architecture [3];
these predictions are then pooled to generate a prediction for
the full sequence – typically using average/max pooling. While
average pooling gives equal weights to all the predictions, max
pooling may be sensitive to outliers. There have also been recent
approaches that learn representations over features produced by,
say a two-stream model, such as the temporal relation networks of

TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2

Zhou et al. [6], the rank pooling and its variants Bilen et al., [14],
Fernando et al., [15], and Cherian et al., [16], [17] that capture the
action dynamics, higher-order statistics of CNN features Cherian
et al., [18], [19], CNN features along motion trajectories Wang
et al., [12] and temporal segments Wang et al., [20], to name a
few. However, none of these methods avoid learning meaningless
information from the noise/background within the video, explicitly
modeling which and demonstrating its benefits, are the main
contributions of this paper.

To this end, we observe that not all predictions on the short
video snippets are equally informative, yet some of them must
be [21]. This allows us to cast the problem in a multiple instance
learning (MIL) framework, where we assume that some of the
features in s given sequence are indeed useful, while the rest are
not. We assume all the CNN features from a sequence (containing
both the good and the bad features) to represent a positive bag,
while CNN features from unrelated video frames or synthetically
generated random noise frames as a negative bag. We would ide-
ally want the features in the negative bag to be correlated well to
the uninformative features in the positive bag. We then formulate a
binary classification problem of separating as many good features
as possible in the positive bag using a discriminative classifier
(we use a support vector machine (SVM) for this purpose). The
decision boundary of this classifier thus learned is then used as
a descriptor for the entire video sequence, which we call the
SVM Pooled (SVMP) descriptor. To accommodate the fact that
we are dealing with temporally-ordered data in the positive bag,
we also explore learning our representations with partial ordering
relations. An illustration of our SVMP scheme is shown in the
Figure 1.

Our SVMP scheme/descriptor shares several properties of
standard pooled descriptors, however also showcases several im-
portant advantages. For example, similar to other pooling schemes,
SVM pooling results in a compact and fixed length representation
of videos of arbitrary length. However differently, our pooling
gives different weights to different features, and thus may be seen
as a type of weighted average pooling, by filtering out features that
are perhaps irrelevant for action recognition. Further, given that
our setup uses a max-margin encoding of the features, the pooled
descriptor is relatively stable with respect to data perturbations
and outliers. Our scheme is agnostic to the feature extractor part
of the system, for example, it could be applied to the intermediate
features from any CNN model or even hand-crafted features.
Moreover, the temporal dynamics of actions are explicitly encoded
in the formulation. The scheme is fast to implement using publicly
available SVM solvers, and also could be trained in an end-to-end
manner within a CNN setup.

To evaluate our SVMP scheme, we provide extensive experi-
ments on various datasets spanning a diverse set of tasks, namely
action recognition and forecasting on HMDB-51 [22], UCF-
101 [23], Kinetics-600 [24] and Charades [25]; skeleton-based
action recognition on MSR action-3D [26], and NTU-RGBD [27];
image-set verification on the PubFig dataset [28], and video-
texture recognition on the YUP++ dataset [29]. We outperform
standard pooling methods on these datasets by a significant margin
(between 3–14%) and demonstrate superior performance against
state-of-the-art results by 1–5%.

Before moving on, we summarize below the main contribu-
tions of this paper:

• We introduce the concept of multiple instance learning
(MIL) into a binary SVM classification problem for learn-

ing video descriptors.
• We propose SVM pooling that captures and summarizes

the discriminative features in a video sequence while
explicitly encoding the action dynamics.

• We explore variants of our optimization problem and
present progressively cheaper inference schemes, includ-
ing a joint pooling and classification objective, as well as
an end-to-end learnable CNN architecture.

• We demonstrate the usefulness of our SVMP descriptor by
applying it on eight popular vision benchmarks spanning
diverse input data modalities and CNN architectures.

2 RELATED WORK
The problem of video representation learning has received sig-
nificant interest over the past decades. Thus, we restrict our
literature review to some of the more recent methods, and defer the
interested reader to excellent surveys on the topics such as [30],
[31], [32].

2.1 Video Representation Using Shallow Features
Traditional methods for video action recognition typically use
hand-crafted local features, such as dense trajectories, HOG, HOF,
etc. [33], which model videos by combining dense sampling
with feature tracking. However, the camera motion, as one of
the video natures, usually result in non-static video background
and hurt the quality of features. To tackle this problem, Wang
et al. [34] improved the performance of dense trajectories by
removing background trajectories and warping optical flow. Based
on the improved dense trajectories, high-level representations are
designed via pooling appearance and flow features along these
trajectories, and have been found to be useful to capture human
actions. For example, Sadanand et al. [35] propose Action Bank,
which converts the individual action detector into semantic and
viewpoint space. Similarly, Bag of words model [36], Fisher
vector [37], and VLAD [38] representations are mid-level rep-
resentations built on such hand-crafted features with the aim of
summarizing local descriptors into a single vector representation.
In Peng et al. [39], a detailed survey of these ideas is presented. In
comparison to these classic representation learning schemes, our
proposed setup is grounded on discriminatively separating useful
data from the rest.

2.2 Video Representation Using Deep Features
With the resurgence of deep learning methods for object recog-
nition [40], there have been several attempts to adapt these
models to action recognition. Recent practice is to feed the video
data, including RGB frames, optical flow subsequences, and 3D
skeleton data into a deep (recurrent) network to train it in a
supervised manner. Successful methods following this approach
are the two-stream models and their extensions [4], [7], [29], [41],
[42]. As apparent from its name, it has two streams, spatial stream
is to capture the appearance information from RGB frames and
temporal stream is to learn the motion dynamics from stacked
optical flow. And then, they apply early or late fusion strategy to
predict the final label. Although the architecture of these networks
are different, the core idea is to split the video into short clips
and embed them into a semantic feature space, and then recognize
the actions either by aggregating the individual features per clip
using some statistic (such as max or average) or directly training
a CNN based end-to-end classifier [4]. While the latter schemes

TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 3

are appealing, they usually need to store the feature maps from
all the frames in memory which may be prohibitive for longer
sequences. Moreover, this kind of training strategy may fail to
capture the long-term dynamics in the video sequence. To tackle
this problem, some recurrent models [43], [44], [45], [46], [47],
[48] are proposed, which use long-short term memory (LSTM)
or gate recurrent unit (GRU) to embed the temporal relationship
among frames by using logistic gates and hidden states. However,
the recurrent neural networks are usually hard to train [49] due to
the exploding and vanishing gradient problem. Temporal Segment
Network (TSN) [20] and Temporal Relation Network (TRN) [6]
provide alternative solutions that are easier to train.

Another promising solution is to use 3D convolutional fil-
ters [3], [50], [51], [52], [53]. Compared to 2D filters, 3D filters
can capture both spatial and temporal video structure. However,
feeding the entire video into the CNNs may be computationally
prohibitive. Further, 3D kernels bring more parameters into the
architecture; as a result, may demand large and clean data for
effective training [3]. While, an effective CNN architecture that
can extract useful action-related features is essential to make
progress in video understanding, we focus on the other aspect
of the problem – that is, given a CNN architecture how well
can we summarize the features it produces for improving action
recognition. To this end, our efforts in this paper can be seen as
complimentary to these recent approaches.

2.3 Video Representation Using Pooling Schemes

Typically, pooling schemes consolidate input data into compact
representations based on some data statistic that summarizes the
useful content. For example, average and max pooling captures
zero-th and first order statistics. There are also works that use
higher-order pooling, such as Cherian and Gould [54] using
second-order, Cherian et al. [19] using third-order, and Girdhar
et al., [55] proposing a video variant of the VLAD encoding
which is approximately a mixture model. A recent trend in
pooling schemes, which we also follow in this paper, is to use
the parameters of a data modeling function, as the representation.
For example, rank pooling [15] proposes to use the parameters
of a support vector regressor as a video representation. In Bilen
et al., [14], rank pooling is extended towards an early frame-level
fusion, dubbed dynamic images; Wang et al. [56], extends this idea
to use optical flow, which they call dynamic flow representation.
Cherian et al. [17] generalized rank pooling to include multiple
hyperplanes as a subspace, enabling a richer characterization of
the spatio-temporal details of the video. This idea was further
extended to non-linear feature representations via kernelized rank
pooling in [16]. However, while most of these methods optimize
a rank-SVM based regression formulation, our motivation and
formulation are different. We use the parameters of a binary SVM
to be the video level descriptor, which is trained to classify the
frame level features from a pre-selected (but arbitrary) bag of
negative features. Similar works are Exemplar-SVMs [57], [58],
[59], that learn feature filters per data sample and then use these
filters for feature extraction. However, in this paper, we use the
decision boundary of the SVM to be the video level descriptor,
that separate as many discriminative features as possible in each
sequence while implicitly encoding the temporal order of these
features.

2.4 Multiple Instance Learning
An important component of our algorithm is the MIL scheme,
which is a popular data selection technique [60], [61], [62], [63],
[64]. In the context of video representation, schemes similar in
motivation have been suggested before. For example, Satkin and
Hebert [65] explore the effect of temporal cropping of videos
to regions of actions; however, it assumes these regions are
continuous. Nowozin et al. [66] represent videos as sequences
of discretized spatiotemporal sets and reduces the recognition task
into a max-gain sequence finding problem on these sets using an
LPBoost classifier. Similar to ours, Li et al. [67] propose an MIL
setup for complex activity recognition using a dynamic pooling
operator – a binary vector that selects input frames to be part
of an action, which is learned by reducing the MIL problem
to a set of linear programs. Chen and Nevatia [68] propose a
latent variable based model to explicitly localize discriminative
video segments where events take place. Vahdat et al. present
a compositional model in [69] for video event detection, which
is presented using a multiple kernel learning based latent SVM.
While all these schemes share similar motivations as ours, we cast
our MIL problem in the setting of normalized set kernels [70]
and reduce the formulation to standard SVM setup which can be
solved rapidly. In the ∝-SVMs of Yu et al., [71], [72], the positive
bags are assumed to have a fixed fraction of positives, which is a
criterion we also assume in our framework. However, the negative
bag selection, optimization setup and our goals are different;
specifically, our goal is to learn a video representation for any
subsequent task including recognition, anticipation, and detection,
while the framework in [71] is designed for event detection. And
we generate the negative bag by using CNN features generated via
inputing random noise images to the network.

The current paper is an extension of our published conference
paper [73] and differs in the following ways. Apart from the more
elaborate literature survey we present, we also provide extensions
of our pooling scheme, specifically by incorporating temporal-
ordering constraints. We provide detailed derivations of our end-
to-end pooling variant. We further present elaborate experiments
on five more datasets in addition to the three datasets that we used
in [73], including a large scale action recognition experiment using
the recently proposed Kinetics-600 dataset.

3 PROPOSED METHOD
In this section, we first describe the problem of learning SVMP
descriptors and introduce three different ways to solve it. Before
proceeding, we provide a snapshot of our main idea and problem
setup graphically in Figure 2. Starting from frames (or flow
images) in positive and negative bags, these frames are first passed
through some CNN model for feature generation. These features
are then passed to our SVMP module that learns (non-linear)
hyperplanes separating the features from the positive bag against
the ones from the negative bag, the latter is assumed fixed for all
videos. These hyperplane representations are then used to train an
action classifier at the video level. In the following, we formalize
these ideas concretely.

3.1 Problem Setup
Let us assume we are given a dataset of N video sequences
X+ =

{
X+

1 , X
+
2 , ..., X

+
N

}
, where each X+

i is a set of frame
level features, i.e., X+

i =
{
xi+1 ,xi+2 , ...,xi+n

}
, each xi+k ∈ Rp.

We assume that each X+
i is associated with an action class label

TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 4

Fig. 2: Illustration of our SVM Pooling scheme. (i) Extraction of frames from videos, (ii) Converting frames f into feature x, (iii) Learning
decision boundary w from feature x, and (iv) Using w as video descriptor.

y+i ∈ {1, 2, ..., d}. Further, the + sign denotes that the features
and the sequences represent a positive bag. We also assume that
we have access to a set of sequences X− =

{
X−1 , X

−
2 , ...X

−
M

}
belonging to actions different from those in X+, where each
X−j =

{
xj−1 ,xj−2 , ...,xj−n

}
are the features associated with

a negative bag, each xj−k ∈ Rp. For simplicity, we assume all
sequences have same number n of features. Further note that our
scheme is agnostic to the type of features, i.e., the feature may be
from a CNN or are hand-crafted.

Our goals are two-fold, namely (i) to learn a classifier decision
boundary for every sequence in X+ that separates a fraction η
of them from the features in X− and (ii) to learn video level
classifiers on the classes in the positive bags that are represented
by the learned decision boundaries in (i). In the following, we will
provide a multiple instance learning formulation for achieving (i),
and a joint objective combining (i) and learning (ii). However,
before presenting our scheme, we believe it may be useful to gain
some insights into the main motivations for our scheme.

As alluded to above, given the positive and negative bags, our
goal is to learn a linear (or non-linear) classification boundary
that could separate the two bags with a classification accuracy
of η% – this classification boundary is used as the descriptor
for the positive bag. Referring to the conceptual illustration in
Figure 3(a), when no negative bag is present, there are several
ways to find a decision hyperplane in a max-margin setup that
could potentially satisfy the η constraint. However, there is no
guarantee that these hyperplanes are useful for action recognition.
Instead, by introducing a negative bag, which is almost certainly
to contain irrelevant features, it may be easier for the decision
boundary to identify useless features from the rest; the latter
containing useful action related features, as shown in Figure 3(b).
This is precisely our intuitions for proposing this scheme.

3.2 Learning Decision Boundaries
As described above, our goal in this section is to generate a
descriptor for each sequence X+ ∈ X+; this descriptor we define
to be the learned parameters of a hyperplane that separates the
features x+ ∈ X+ from all features in X−. We do not want to
warrant that all x+ can be separated from X− (since several of
them may belong to a background class), however we assume that
at least a fixed fraction η of them are classifiable. Mathematically,
suppose the tuple (wi, bi) represents the parameters of a max-
margin hyperplane separating some of the features in a positive

!

(a)

! "

! #

$

(b)

Fig. 3: An illustration of our overall idea. (a) the input data points, and
the plausible hyperplanes satisfying some η constraint, (b) when noise
X− is introduced (green dots), it helps identify noisy features/data
dimensions, towards producing a hyperplane w that classifies useful
data from noise, while satisfying the η constraint.

bag X+
i from all features in X−, then we cast the following

objective, which is a variant of the sparse MIL (SMIL) [74],
normalized set kernel (NSK) [70], and ∝-SVM [72] formulations:

argmin
wi∈Rp,bi∈R,ζ≥0

P1(wi, bi) :=
1

2
‖wi‖2 + C1

(M+1)n∑
k=1

ζk (1)

subject to θ(x; η)
(
wTi x+ bi

)
≥ 1− ζk (2)

θ(x; η) = −1,∀x ∈
{
X+
i

⋃
X−

}
\X̂+

i (3)

θ(x̂; η) = 1,∀x̂ ∈ X̂+
i (4)∣∣∣X̂+

i

∣∣∣ ≥ η ∣∣X+
i

∣∣ . (5)

In the above formulation, we assume that there is a subset X̂+
i ⊂

X+
i that is classifiable, while the rest of the positive bag need not

be, as captured by the ratio in (5). The variables ζ capture the non-
negative slacks weighted by a regularization parameter C1, and
the function θ provides the label of the respective features. Unlike
SMIL or NSK objectives, that assumes the individual features x
are summable, our problem is non-convex due to the unknown set
X̂+. However, this is not a serious deterrent to the usefulness of
our formulation and can be tackled as described in the sequel and
supported by our experimental results.

As our formulation is built on an SVM objective, we call
this specific discriminative pooling scheme as SVM pooling and
formally define the descriptor for a sequence as:
Definition 1 (SVM Pooling Desc.). Given a sequence X of

features x ∈ Rp and a negative datasetX−, we define the SVM

TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 5

Pooling (SVMP) descriptor as SVMP(X) = [w, b]T ∈
Rp+1, where the tuple (w, b) is obtained as the solution of
problem P1 defined in (1).

3.3 Optimization Solutions
The problem P1 could be posed as a mixed-integer quadratic
program (MIQP), which is unfortunately known to be in NP [75].
The problem P1 is also non-convex due to the proportionality
constraint η, and given that the labels θ(x; η) are unknown.
Towards a practically useful approximate solution circumventing
these difficulties, we present three optimization strategies below.

3.3.1 Exhaustive Enumeration
A naı̈ve way to solve problem P1 could be to enumerate all the
possible θ(x; η) that meet a given η constraint, which reduces
solving the problem P1 to the classical SVM problem for each
instantiation of the plausible θ assignments. In such a setting, for
a given sequence, we can rewrite (1) as:

argmin
wi∈Rp,bi∈R,ζ≥0

1

2
‖wi‖2 + C1

(M+1)n∑
k=1

ζk

+max(0, 1− ζk − θ(x; η)(wTi x+ bi)), (6)

where the constraints are included via the hinge loss. Once these
subproblems are solved, we could compare the optimal solutions
for the various subsets of the positive bag, and pick the best
solution with smallest objective value. As is apparent, this naı̈ve
strategy becomes problematic for longer sequences or when η is
not suitably chosen.

3.3.2 Alternating algorithm
This is a variant of the scheme proposed in [72]. Instead of
enumerating all possible θ(x; η) as above, the main idea here
is to fix θ(x; η) or [w, b] alternately and optimize the other. The
detailed algorithm is shown in the Alg. 1.

Input: X+, X−, η
Initialize θ according to η;
repeat

Fix θ to solve [w, b]← SVM(X+, X−, θ);
Fix [w, b] to solve θ :
Reinitialize θi ← −1,∀i ∈ (i, n);
for i = 1 → n do
Set θi ← 1;
record the reduction of Objective

end
Sort and select the top R reductions, R = ηn;
Get θ according to the sorting;

until Reduction is smaller than a threshold (10−4);
return [w, b]

Algorithm 1: Alternating solution to the MIL problem P1

In the Algorithm 1, fixing θ to solve [w, b] is a standard
SVMP problem as in the enumeration algorithm above. When
fixing [w, b] to solve θ, we apply a similar strategy as in [72];
i.e., to initialize all labels in θ as −1, and then to turn each θi to
+1 and record the reduction in the objective. Next, we sort these
reductions to get the top R best reductions, where R = ηn. A
higher reduction implies it may lead to a smaller objective. Next,
these top R θi will be set to +1 in θ. While, there is no theoretical

guarantee for this scheme to converge to a fixed point, empirically
we observe a useful convergence, which we limit via a suitable
threshold.

3.3.3 Parameter-tuning algorithm
As is clear, both the above schemes may be computationally
expensive in general. We note that the regularization parameter
C1 in (1) controls the positiveness of the slack variables ζ , thereby
influencing the training error rate. A smaller value of C1 allows
more data points to be misclassified. If we make the assumption
that useful features from the sequences are easily classifiable
compared to background features, then a smaller value of C1

could help find the decision hyperplane easily (further assuming
the negative bag is suitably chosen). However, the correct value
of C1 depends on each sequence. Thus, in Algorithm (2), we
propose a heuristic scheme to find the SVMP descriptor for a
given sequence X+ by iteratively tuning C1 such that at least
a fraction η of the features in the positive bag are classified as
positive.

Input: X+, X−, η
C1 ← ε, λ > 1;
repeat

C1 ← λC1;
[w, b]← argminw,b SVM(X+, X−, C1);
X̂+ ←

{
x ∈ X+ | wTx+ b ≥ 0

}
;

until |X̂
+|

|X+| ≥ η;
return [w, b]

Algorithm 2: Parameter-tuning solution for MIL problem
P1

A natural question here is how optimal is this heuristic? Note
that, each step of Algorithm (2) solves a standard SVM objective.
Suppose we have an oracle that could give us a fixed value C for
C1 that works for all action sequences for a fixed η. As is clear,
there could be multiple combinations of data points in X̂+ that
could satisfy this η (as we explored in the Enumeration algorithm
above). If X̂+

p is one such X̂+. Then, P1 using X̂+
p is just the

SVM formulation and is thus convex. Different from previous
algorithms, in Alg. 2, we adjust the SVM classification rate to
η, which is easier to implement. Assuming we find a C1 that
satisfies the η-constraint using P1, then due to the convexity of
SVM, it can be shown that the optimizing objective of P1 will be
the same in both cases (exhaustive enumeration and our proposed
regularization adjustment), albeit the solution X̂+

p might differ
(there could be multiple solutions).

3.4 Nonlinear Extensions
In problem P1, we assume a linear decision boundary generating
SVMP descriptors. However, looking back at our solutions in
Algorithms (1) and (2), it is clear that we are dealing with standard
SVM formulations to solve our relaxed objectives. In the light
of this, instead of using linear hyperplanes for classification, we
may use nonlinear decision boundaries by using the kernel trick
to embed the data in a Hilbert space for better representation.
Assuming X = X+ ∪ X−, by the Representer theorem [76], it
is well-known that for a kernel K : X × X → R+, the decision
function f for the SVM problem P1 will be of the form:

f(.) =
∑

x∈X+∪X−

αxK(.,x), (7)

TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 6

where αx are the parameters of the non-linear decision boundaries.
However, from an implementation perspective, such a direct ker-
nelization may be problematic, as we will need to store the training
set to construct the kernel. We avoid this issue by restricting
our formulation to use only homogeneous kernels [77], as such
kernels have explicit linear feature map embeddings on which a
linear SVM can be trained directly. This leads to exactly the same
formulations as in (1), except that now our features x are obtained
via a homogeneous kernel map. In the sequel, we call such a
descriptor a nonlinear SVM pooling (NSVMP) descriptor.

3.5 Temporally-Ordered Extensions
In the formulations we proposed above, there are no explicit
constraints to enforce the temporal order of features in the SVMP
descriptor. This is because, in the above formulations, we assume
the features themselves capture the temporal order already. For
example, the temporal stream in a two-stream model is already
trained on a densely-sampled stack of consecutive optical flow
frames. However, motivated by several recent works [14], [15],
[17], [56], we extend our Equation (1) by including ordering
constraints as:

wTxi+j + δ ≤ wTxi+k , ∀j < k;xi+j ,xi+k ∈ X̂
+
i (8)

where we reuse the notation defined above and define δ > 0
as a margin enforcing the order. In the sequel, we use this
temporally-ordered variant of SVMP for our video representation.
Note that with the ordering constraints enforced, it is difficult to
use the enumerative or alternating schemes for finding the SVMP
descriptors, instead we use Alg. 2 by replacing the SVM solver by
a custom solver [78].

4 END-TO-END CNN LEARNING
In this section, we address the problem of training a CNN end-
to-end with SVM pooling as an intermediate layer – the main
challenge is to derive the gradients of SVMP for efficient back-
propagation. This challenge is amplified by the fact that we use
the parameters of the decision hyperplane to generate our pooling
descriptor, this hyperplane is obtained via a non-differentiable
argmin function (refer to (1)). However, fortunately, there is well-
developed theory addressing such cases using the implicit function
theorem [79], and several recent works towards this end in the
CNN setting [80]. We follow these approaches and derive the
gradients of SVMP below.

4.1 Discriminative Pooling Layer
In Figure 4, we describe two ways to insert the discriminative
pooling layer into the CNN pipeline, namely (i) inserting SVMP at
some intermediate layer and (ii) inserting SVMP at the end of the
network just before the final classifier layer. While the latter pools
smaller dimensional features, computing the gradients will be
faster (as will be clear shortly). However, the last layer might only
have discriminative action features alone, and might miss other
spatio-temporal features that could be useful for discriminative
pooling. This is inline with our observations in our experiments in
Section 5 that suggest that applying discriminative pooling after
pool5 or fc6 layers is significantly more useful than at the end of
the fc8 layer. This choice of inserting the pooling layer between
some intermediate layers of the CNN leads to the first choice.
Figure 4 also provides the gradients that need to be computed
for back-propagation in either case. The only new component of

this gradient is that for the argmin problem of pooling, which we
derive below.

4.2 Gradients Derivations for SVMP
Assume a CNN f taking a sequence S as input. Let fL denote
the L-th CNN layer and let XL denote the feature maps generated
by this layer for all frames in S. We assume these features go
into an SVMP pooling layer and produces as output a descriptor
w (using a precomputed set of negative feature maps), which is
then passed to subsequent CNN layers for action classification.
Mathematically, let g(z) = argminw SVMP(XL−1) define the
SVM pooling layer, which we re-define using hinge-loss in the
objective f(z, w) as:

SVMP(XL−1) =
1

2
‖w‖2+λ

2

∑
z∈XL−1

max
(
0, θ(z; η)wT z − 1

)2
.

As is by now clear, with regard to a CNN learning setup,
we are dealing with a bilevel optimization problem here – that
is, optimizing for the CNN parameters via stochastic gradient
descent in the outer optimization, which requires the gradient of
an argmin inner optimization with respect to its optimum, i.e., we
need to compute the gradient of g(z) with respect to the data z.
By applying Lemma 3.3 of [80], this gradient of the argmin at an
optimum SVMP solution w∗ can be shown to be the following:

∇zg(z)|w=w∗ = −∇ww SVMP(XL−1)
−1∇zw SVMP(XL−1),

where the first term captures the inverse of the Hessian evaluated
at w∗ and the second term is the second-order derivative wrt z
and w. Substituting for the components, we have the gradient at
w = w∗ as:

−

I+λ ∑
∀j:θjwT zj>1

(θjzj)(θjzj)
T

−1λ ∑
∀j:θjwT zj>1

D (θ2jw
T zj−θj)+θ2jwzTj

(9)

where for brevity, we use θj = θ(zj ; η), and D is a diagonal
matrix, whose i-th entry as Dii = θ2iw

T zi − θi.

5 EXPERIMENTS
In this section, we explore the utility of discriminative pooling
on several vision tasks, namely (i) action recognition using video
and skeletal features, (ii) localizing actions in videos, (iii) image
set verification, and (iv) recognizing dynamic texture videos. We
introduce the respective datasets and experimental protocols in the
next.

5.1 Datasets
HMDB-51 [22] and UCF-101 [23]: are two popular benchmarks
for video action recognition. Both datasets consist of trimmed
videos downloaded from the Internet. HMDB-51 has 51 action
classes and 6766 videos, while UCF-101 has 101 classes and
13320 videos. Both datasets are evaluated using 3-fold cross-
validation and mean classification accuracy is reported. For these
datasets, we analyze different combinations of features on multiple
CNN frameworks.
Charades [25]: is an untrimmed and multi-action dataset, contain-
ing 11,848 videos split into 7985 for training, 1863 for validation,
and 2,000 for testing. It has 157 action categories, with several
fine-grained categories. In the classification task, we follow the
evaluation protocol of [25], using the output probability of the
classifier to be the score of the sequence. In the detection task,

TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 7

Fig. 4: Two possible ways to insert SVM pooling layer within a standard CNN architecture. In the first option (top), we insert the SVMP layer
between fully connected layers, while in the latter we include it before the final classifier layer. The choice of L − 1 layer for the former is
arbitrary. We also show the corresponding partial gradients with respect to weights of the layer penultimate to the SVM pooling layer. Except
for the gradients ∂SVMP (X)

∂X
, other gradients are the standard ones. Here Z` represents the weights of the `-th layer of the network.

we follow the ‘post-processing’ protocol described in [81], which
uses the averaged prediction score of a small temporal window
around each temporal pivot. Using the provided two-stream fc7
feature1, we evaluate the performance on both tasks using mean
average precision (mAP) on the validation set.
Kinetics-600 [24]: is one of the largest dataset for action recog-
nition. It consists of 500K trimmed video clips over 600 action
classes with at least 600 video clips in each class. Each video clip
is at least 10 seconds long with a single action class label. We
apply our SVMP scheme on the CNN features (2048-D) extracted
from the I3D network [3].
MSR Action3D [26] and NTU-RGBD [27]: are two popular
action datasets providing 3D skeleton data. Specifically, MSR
Action3D has 567 short sequences with 10 subjects and 20 actions,
while NTU-RGBD has 56,000 videos and 60 actions performed
by 40 people from 80 different view points. NTU-RGBD is by far
the largest public dataset for depth-based action recognition. To
analyze the performance of SVMP on non-linear features, we use
a lie-algebra encoding of the skeletal data as proposed in [82] for
the MSR dataset. As for NTU-RGBD, we use a temporal CNN as
in [42], but uses SVMP instead of their global average pooling.
Public Figures Face Database (PubFig) [28]: contains 60,000
real-life images of 200 people. All the images are collected
directly from the Internet without any post-processing, which
make the images in each fold have large variations in lighting,
backgrounds, and camera views. Unlike video-based datasets,
PubFig images are non-sequential. To generate features, we fine-
tune a ResFace-101 network [83] on this dataset and follow the
evaluation protocol of [41].
YUP++ dataset [29]: is recent dataset for dynamic scene un-
derstanding. It has 20 scene classes, such as Beach, Fireworks,
Waterfall, Railway, etc. There are 60 videos in each class. Half of
the videos are recorded by a static camera and the other half by a
moving camera. Accordingly, it is divided into two sub-datasets,
YUP++ moving camera and YUP++ static camera. We use the
latest Inception-ResNet-v2 model [84] to generate features (from
last dense layer) from RGB frames and evaluate the performance
according to the setting in [29], which use a 10/90 train-test ratio.

1. http://vuchallenge.org/charades.html

0 50 100

A
c
c
u

ra
c
y
 (

%
)

0

20

40

60

80

ActivityNet
UCF101
THUMOS 2015
White Noise

(a)

Number of instance in the Pos/Neg Bag
5 10 20 30 40 50

A
c
c
u

ra
c
y
 (

%
)

59

60

61

62

63

64

Positive Bag
Negative Bag

(b)

Log10(C)
-4 -3 -2 -1 0 1 2 3 4

A
c
c
u

ra
c
y
 (

%
)

40

50

60

70

ActivityNet
UCF101
Thumos 2015
White Noise

(c)

Number of frames in sequence

0 500 1000 1500 2000

T
im

e
 (

s
e

c
o

n
d

)

0

10

20

30

40
Decision Boundary

Rank Pooling

Fisher Vector

Dynamic Image

(d)

Fig. 5: Analysis of the parameters used in our scheme. All experiments
use VGG features from fc6 dense layer. See text for details.

5.2 Parameter Analysis
In this section, we analyze the influence of each of the parameters
in our scheme.
Selecting Negative Bags: An important step in our algorithm is
the selection of the positive and negative bags in the MIL problem.
We randomly sample the required number of frames (say, 50) from
each sequence/fold in the training/testing set to define the positive
bags. In terms of the negative bags, we need to select samples
that are unrelated to the ones in the positive bags. We explored
four different negatives in this regard to understand the impact
of this selection. We compare our experiments on the HMDB-
51 (and UCF101) datasets. Our considered the following choices
for the negative bgs: clips from (ithe ActivityNet dataset [85]
unrelated to HMDB-51, (ii) the UCF-101 dataset unrelated to
HMDB-51, (iii) the Thumos Challenge background sequences2,
and (iv) synthesized random white noise image sequences. For (i)
and (ii), we use 50 frames each from randomly selected videos,
one from every unrelated class, and for (iv) we used 50 synthesized
white noise images, and randomly generated stack of optical flow

2. http://www.thumos.info/home.html

TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 8

images. Specifically, for the latter, we pass white noise RGB
images to the same CNN models and extract the feature from
the last fully-connected layer. As for hand-crafted or geometry
features used in our other experiments (such as action recognition
on human pose sequences), we directly use the white noise as the
negative bag. As shown in Figure 5(a), the white noise negative
is seen to showcase better performance for both lower and higher
value of η parameter.

To understand this trend, in Figure 6, we show TSNE plots
visualizing the deep CNN features for the negative bag variants.
Given that the CNNs are trained on real-world image data and
we extract features from the layer before the last linear layer, it
is expected that these features be linearly separable (as seen in
Figure 6(a) and 6(b)). However, we believe using random noise
inputs may be activating combinations of filters in the CNN that
are never co-activated during training, resulting in features that are
highly non-linear (as Figure 6(c) shows). Thus, when requiring
SVMP to learn linear/non-linear decision boundaries to classify
video features against these “noise” features perhaps forces the
optimizer to select those dimensions in the inputs (positive bag)
that are more correlated with actions in the videos, thereby
empowering the descriptor to be more useful for classification.

In Figure 7, we show the TSNE visualizations of SVMP
descriptors comparing to average pooling and max pooling on data
from 10-classes of HDMB-51 dataset. The visualization shows
that SVMP leads to better separated clusters, substantiating that
SVMP is learning discriminative representations.

(a) Thumos (b) UCF101 (c) White Noise

Fig. 6: T-SNE plots of positive (blue) and negative bags (red) when
using negatives from: (a) Thumos, (b) UCF101, and (c) white noise.

Choosing Hyperparameters: The three important parameters
in our scheme are (i) the η deciding the quality of an SVMP
descriptor, (ii) C1 = C used in Algorithm 2 when finding SVMP
per sequence, and (iii) sizes of the positive and negative bags. To
study (i) and (ii), we plot in Figures 5(c) and 5(a) for HMDB-
51 dataset, classification accuracy when C is increased from
10−4 to 104 in steps and when η is increased from 0-100% and
respectively. We repeat this experiment for all the different choices
of negative bags. As is clear, increasing these parameters reduces
the training error, but may lead to overfitting. However, Figure 5(b)
shows that increasing C increases the accuracy of the SVMP
descriptor, implying that the CNN features are already equipped
with discriminative properties for action recognition. However,

Fig. 7: T-SNE visualizations of SVMP and other pooling methods on
sequences from the HMDB51 dataset (10 classes used). From left to
right, Average Pooling, Max Pooling, and SVMP.

TABLE 1: Comparison between Algorithms 1 and 2 in HMDB-51
split-1.

Method Accuracy Avg. Time (sec)/Video
Alternating Algorithm (Alg. 1) 69.8% 2.4
Parameter-tuning Algorithm (Alg. 2) 69.5% 0.2

beyond C = 10, a gradual decrease in performance is witnessed,
suggesting overfitting to bad features in the positive bag. Thus, we
useC = 10 (and η = 0.9) in the experiments to follow. To decide
the bag sizes for MIL, we plot in Figure 5(b), performance against
increasing size of the positive bag, while keeping the negative bag
size at 50 and vice versa; i.e., for the red line in Figure 5(b), we fix
the number of instances in the positive bag at 50; we see that the
accuracy raises with the cardinality of the negative bag. A similar
trend, albeit less prominent is seen when we repeat the experiment
with the negative bag size, suggesting that about 30 frames per
bag is sufficient to get a useful descriptor.
Running Time: In Figure 5(d), we compare the time it took on
average to generate SVMP descriptors for an increasing number
of frames in a sequence on the UCF101 dataset. For comparison,
we plot the running times for some of the recent pooling schemes
such as rank pooling [14], [15] and the Fisher vectors [34]. The
plot shows that while our scheme is slightly more expensive than
standard Fisher vectors (using the VLFeat3), it is significantly
cheaper to generate SVMP descriptors than some of the recent
popular pooling methods. To be comparable, we use publicly
available code of SVM in SVMP as well as in rank pooling.

5.3 Experiments on HMDB-51 and UCF-101
Following recent trends, we use a two-stream CNN model in two
popular architectures, the VGG-16 and the ResNet-152 [10], [11].
For the UCF101 dataset, we directly use publicly available models
from [10]. For the HMDB dataset, we fine-tune a two-stream
VGG/ResNet model trained for the UCF101 dataset.
SVMP Optimization Schemes: We proposed three different opti-
mization strategies for solving our formulation (Section 3.3). The
enumerative solution is trivial and non-practical. Thus, we will
only compare Algorithms 1 and 2 in terms of the performance and
efficiency. In Table 1, we show the result between the two on fc6
features from a VGG-16 model. It is clear that the alternating so-
lution is slightly better than parameter-tuning solution; however, is
also more computationally expensive. Considering the efficiency,
especially for the large-scale datasets, we use parameter-tuning
solution in the following experiments.
SVMP on Different CNN Features: We generate SVMP descrip-
tors from different intermediate layers of the CNN models and
compare their performance. Specifically, features from each layer
are used as the positive bags and SVMP descriptors computed
using Alg. 1 against the chosen set of negative bags. In Table 2,
we report results on split-1 of the HMDB dataset and find that
the combination of fc6 and pool5 gives the best performance for
the VGG-16 model, while pool5 features alone show good perfor-
mance using ResNet. We thus use these feature combinations for
experiments to follow.
Linear vs Non-Linear SVMP: We analyze the complementary
nature of SVMP and its non-linear extension NSVMP (using a ho-
mogeneous kernel) on HMDB-51 and UCF-101 split1. The results
are provided in Table 3, and clearly show that the combination
leads to significant improvements consistently on both datasets.

3. http://www.vlfeat.org/

TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 9

TABLE 2: Comparison of SVMP descriptors using various CNN
Features on HMDB split-1.

Feature/ Accuracy Accuracy when
model independently combined with:
pool5 (vgg-16) 57.9% 63.8% (fc6)
fc6 (vgg-16) 63.3% -
fc7 (vgg-16) 56.1% 57.1% (fc6)
fc8 (vgg-16) 52.4% 58.6% (fc6)
softmax (vgg-16) 41.0% 46.2% (fc6)
pool5 (ResNet-152) 69.5% -
fc1000 (ResNet-152) 61.1% 68.8% (pool5)

TABLE 3: Comparison between SVMP and NSVMP on split-1.

HMDB-51 UCF-101
VGG ResNet VGG ResNet

linear-SVMP 63.8% 69.5% 91.6% 92.2%
nonlinear-SVMP 64.4% 69.8% 92.0% 93.1%
Combination 66.1% 71.0% 92.2% 94.0%

End-to-End Learning and Ordered-SVMP: In Table 44, we
compare to the end-to-end learning setting as described in Sec-
tion 4. For end-to-end learning, we insert our discriminative pool-
ing layer after the ’fc6’ layer in VGG-16 model and the ’pool5’
layer in ResNet model. We also present results when using the
temporal ordering constraint (TC) into the SVMP formulation to
build the ordered-SVMP. From the results, it appears that although
the soft-attention scheme performs better than average pooling, it
is inferior to SVMP itself; which is unsurprising given it does not
use a max-margin optimization. Further, our end-to-end SVMP
layer is able to achieve similar (but slightly inferior) performance
to SVMP, which perhaps is due to the need to approximate the
Hessian. As the table shows, we found that the temporal ranking
is indeed useful for improving the performance of naı̈ve SVMP.
Thus, in the following experiments, we use SVMP with temporal
ranking for all video-based tasks.

TABLE 4: Comparison to standard pooling methods on split-1. TC is
short for Temporal Constraint, E2E is short for end-to-end learning.

HMDB-51 UCF-101
VGG ResNet VGG ResNet

Spatial Stream-AP [10], [86] 47.1% 46.7% 82.6% 83.4%
Spatial Stream-SVMP 58.3% 57.4% 85.7% 87.6%
Spatial Stream-SVMP(E2E) 56.4% 55.1% 83.2% 85.7%
Spatial Stream-SVMP+TC 59.4% 57.9% 86.6% 88.9%
Temporal Stream-AP [10], [86] 55.2% 60.0% 86.3% 87.2%
Temporal Stream-SVMP 61.8% 65.7% 88.2% 89.8%
Temporal Stream-SVMP(E2E) 58.3% 63.2% 87.1% 87.8%
Temporal Stream-SVMP+TC 62.6% 67.1% 88.8% 90.9%
Two-Stream-AP [10], [86] 58.2% 63.8% 90.6% 91.8%
Two-Stream-SVMP 66.1% 71.0% 92.2% 94.2%
Two-Stream-SVMP(E2E) 63.5% 68.4% 90.6% 92.3%
Two-Stream-SVMP+TC 67.2% 71.3% 92.5% 94.8%

SVMP Image: In Figure 8, we visualize SVMP descriptor when
applied directly on raw video frames. We compare the resulting
image against those from other schemes such as the dynamic
images of [14]. It is clear that SVMP captures the essence of action
dynamics in more detail. To understand the action information
present in these images, we trained an action classifier directly on
these images, as is done on Dynamic images in [14]. We use the
BVLC CaffeNet [87] as the CNN – same the one used in [14].
The results are shown in the Table 5 on split-1 of JHMDB (a
subset of HMDB-51, containing 21 classes) and UCF-101. As is
clear, SVMP images are seen to outperform [14] by a significant

4. All experiments in Table 4 use the same input features.

Fig. 8: Visualizations of various pooled descriptors.

TABLE 5: Recognition rates on split-1 of JHMDB and UCF-101.

Datasets JHMDB UCF-101
Mean image 31.3% 52.6%
Max image 28.6% 48.0%
Dynamic image [14] 35.8% 57.2%
SVMP image 45.8% 65.4%

margin, suggesting that SVMP captures more discriminative and
useful action-related features. Howeer, we note that in contrast
to dynamic images, our SVMP images do not intuitively look
like motion images; this is perhaps because our scheme captures
different information related to the actions, and we do not use
smoothing (via running average) when generating them. The use
of random noise features as the negative bag may be adding
additional artifacts.

5.4 Action Recognition at Large Scale
Kinetics-600 is one the largest state-of-the-art dataset for action
recognition on trimmed videos. For this experiment, we use
the I3D network [3] (using the Inception-V3 architecture), as
the baseline for feature generator. This model is pre-trained on
ImageNet dataset [40] and stacks 64 continuous frames as inputs.
Specifically, we extract the CNN features from the second last
layer (Mix5c) and apply average pooling to reshape the feature
from 4 x 7 x 7 x 1024 into 1024-D vector for each 64-chunk of
RGB frames. For each video clip, we use a sliding window to
generate a sequence of such features with a window size of 64
and a temporal stride of 8 frames. Then, we apply our proposed
SVMP to generate video descriptors for action recognition. In
Table 6, we make comparisons with the baseline result on the
validation set of Kinetics-600, and indicates that SVMP can bring
clear improvements even on the large-scale setting.

5.5 Action Recognition/Detection in untrimmed videos
We ues the Charades untrimmed dataset for this task. We use the
publicly available two-stream VGG features from the fc7 layer
for this dataset. We trained our models on the provided training
set (7985 videos), and report results (mAP) on the provided vali-
dation set (1863 videos) for the tasks of action classification and

TABLE 6: Comparisons on Kinetics-600 dataset using I3D feature.

Method Accuracy
AP [88] 71.9%
MP 67.8%
SVMP 73.5%

TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 10

TABLE 7: Comparisons on Charades dataset.

Tasks AP MP SVMP
Classification (mAP) 14.2% 15.3 26.3%
Detection (mAP) 10.9% 9.2 15.1%

detection. In the classification task, we concatenate the two-stream
features and apply a sliding window pooling scheme to create
multiple descriptors. Following the evaluation protocol in [25], we
use the output probability of the classifier to be the score of the
sequence. In the detection task, we consider the evaluation method
with post-processing proposed in [81], which uses the averaged
prediction score of a temporal window around each temporal
pivots. Instead of average pooling, we apply the SVMP. From
Table 7, it is clear that SVMP improves performance against other
pooling schemes by a significant margin; the reason for this is per-
haps the following. During training, we use trimmed video clips,
however, when testing, we extract features from every frame/clip
in the untrimmed test video. As the network has seen only
action-related frames during training, features from background
frames may result in arbitrary predictions; and average pooling
or max pooling on those features would hurt performance. When
optimizing the binary classification problem between positive and
negative bags for SVMP, the decision boundary would capture the
most discriminative data support, leading to better summary of the
useful features and leading to improved performance.

5.6 SVMP Evaluation on Other Tasks
In this section, we provide comprehensive evaluations justify-
ing the usefulness of SVMP on non-video datasets and non-
action tasks. We consider experiments on images sets recognition,
skeleton-sequence based action recognition, and dynamic texture
understanding.

MSR Action3D: In this experiment, we explore the usefulness
of SVMP on non-linear geometric features. Specifically, we chose
the scheme of Vemulapilli et al. [82] as the baseline that generates
Lie algebra based skeleton encodings for action recognition. While
they resort to a dynamic time warping kernel for the subsequent
encoded skeleton pooling, we propose to use SVMP instead. We
use the random noise with the dataset mean and deviation as the
negative bag, which achieve better performance.

NTU-RGBD: On this dataset, we apply our SVMP scheme on
the skeleton-based CNN features. Specifically, we use [42] as the
baseline, which applies a temporal CNN with residual connections
on the vectorized 3D skeleton data. We swap the global average
pooling layer in [42] by SVM pooling layer. For the evaluation, we
adopt the official cross-view and cross-subject protocols. What’s
interesting here is we try to explore whether the dimension of
the feature point would affect the SVMP performance. During
the SVMP, we use feature points with dimension from 150 to
4096. It seems only the number of data points would affect the
performance of SVMP (from Charades dataset experiment), and it
is not sensitive for the dimensionality.

PubFig: In this task, we evaluate the use of SVMP for image
set representation. We follow the evaluation setting in [41] and
create the descriptor for the training and testing by applying
SVMP over ResFace-101 [83] features from every image in the
PubFig dataset. Unlike the video-based tasks, all input features in
this setting are useful and represent the same person; however their
styles vary significantly, which implies the CNN features may be
very different even if they are from the same person. This further
demands that SVM pooling would need to find discriminative

TABLE 8: Accuracy comparison on different subsets of HMDB-51(H)
and UCF-101(U) split-1 using I3D+ features.

Min # of frames 1 80 140 180 260
of classes (H) 51 49 27 21 12
of classes (U) 101 101 95 82 52
I3D (H) 79.6% 81.8% 84.1% 78.0% 77.3%
SVMP (H) 80.0% 82.9% 84.8% 85.1% 86.8%
I3D (U) 98.0% 98.0% 98.0% 95.9% 93.8%
SVMP (U) 98.4% 98.9% 99.3% 98.5% 97.3%

TABLE 9: Comparison to the state of the art in each dataset, following
the official evaluation protocol for each dataset.

HMDB-51 & UCF-101 (accuracy over 3 splits)
Method HMDB-51 UCF-101
Temporal segment networks [20] 69.4% 94.2%
AdaScan [89] 54.9% 89.4%
AdaScan + IDT + C3D [89] 66.9% 93.2%
ST ResNet [86] 66.4% 93.4%
ST ResNet + IDT [86] 70.3% 94.6%
ST Multiplier Network [4] 68.9% 94.2%
ST Multiplier Network + IDT [4] 72.2% 94.9%
Hierarchical rank pooling [90] 65.0% 90.7%
Two-stream I3D [3] 66.4% 93.4%
Two-stream I3D+ (Kinetics 300k) [3] 80.7% 98.0%
Ours (SVMP) 71.3% 94.6%
Ours (SVMP+IDT) 72.6% 95.0%
Ours (I3D+) 81.8% 98.5%

Kinetics-600
Method Accuracy
I3D RGB [88] 71.3%
Second-order Pooling [18] 54.7%
Ours (SVMP) 73.5%

Charades (mAP)
Method Classification Detection
Two-stream [91] 14.3% 10.9%
ActionVlad + IDT [92] 21.0% -
Asynchronous Temporal Fields [81] 22.4% 12.8%
Ours (SVMP) 26.3% 15.1%
Ours (SVMP+IDT) 27.4% 16.3%

MSR-Action3D
Method Accuracy
Lie Group [82] 92.5%
ST-LSTM + Trust Gate [93] 94.8%
Ours (SVMP) 95.5%

NTU-RGBD
Method Cross-Subject Cross-View
Res-TCN [42] 74.3% 83.1%
ST-LSTM + Trust Gate [93] 69.2% 77.7%
Ours (SVMP) 79.4% 87.6%

PubFig
Method Accuracy
Deep Reconstruction Models [41] 89.9%
ESBC [94] 98.6%
Ours (SVMP) 99.3%

YUP++
Method Stationary Moving
Temporal Residual Networks [29] 92.4% 81.5%
Ours (SVMP) 92.9% 84.0%

dimensions in the features that are correlated and invariant to the
person identity.

YUP++: To investigate our SVMP scheme on deeper archi-
tectures, we use features from the latest Inception-ResNet-v2
model [84], which has achieved the state-of-the-art performance
on the 2015 ILSVRC challenge. Specifically, we extract the RGB
frames from videos and divide them into training and testing split
according to the setting in [29] (using a 10/90 train test ratio).
Like the standard image-based CNNs, the clip level label is used
to train the network on every frame.

TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 11

5.7 Comparisons to the State of the Art
In Table 9, we compare our best results against the state-of-the-art
on each dataset using the standard evaluation protocols. For a fair
comparison, we also report on SVMP combined with hand-crafted
features (IDT-FV) [95] for HMDB-51. Our scheme outperforms
other methods on all datasets by 1–4%. For example, on HMDB-
51, our results are about 2-3% better than the next best method
without IDT-FV. On Charades, we outperform previous methods
by about 3% while faring well on the detection task against [81].
We also demonstrate significant performance (about 3-4%) im-
provement on NTU-RGBD and marginally better performance on
MSR datasets on skeleton-based action recognition. Our results
are superior (by 1-2%) on the PubFig and YUP++ datasets.

We further analyze the benefits of combining I3D+ with
SVMP (instead of their proposed average pooling) on both
HMDB-51 and UCF-101 datasets using the settings in [3]. How-
ever, we find that the improvement over average pooling in I3D+
is not significant; which we believe is because learning the SVMP
descriptor needs to solve a learning problem implicitly, requiring
sufficient number of training samples, i.e., number of frames in the
sequence. The I3D network uses 64-frame chunks as one sample,
thereby reducing the number of samples for SVMP, leading to
sub-optimal learning. We analyze this hypothesis in Table 8; each
column in this table represents performances on a data subset,
filtered as per the minimum number of frames in their sequences.
As is clear from the table, while SVMP performs on par with
I3D+ when the sequences are shorter, it demonstrates significant
benefits on subsets having longer sequences.

6 CONCLUSION

In this paper, we presented a simple, efficient, and powerful pool-
ing scheme – SVM pooling – for video representation learning.
We cast the pooling problem in a multiple instance learning
framework, and seek to learn useful decision boundaries on video
features against background/noise features. We provide an effi-
cient scheme that jointly learns these decision boundaries and the
action classifiers on them. Extensive experiments were showcased
on eight challenging benchmark datasets, demonstrating state-
of-the-art performance. Given the challenging nature of these
datasets, we believe the benefits afforded by our scheme is a
significant step towards the advancement of recognition systems
designed to represent sets of images or videos.

REFERENCES

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in CVPR, 2016, pp. 770–778.

[2] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN,” in ICCV.
IEEE, 2017.

[3] J. Carreira and A. Zisserman, “Quo vadis, action recognition? a new
model and the kinetics dataset,” in CVPR, July 2017.

[4] C. Feichtenhofer, A. Pinz, and R. Wildes, “Spatiotemporal multiplier
networks for video action recognition,” in CVPR, 2017.

[5] J.-F. Hu, W.-S. Zheng, J. Pan, J. Lai, and J. Zhang, “Deep bilinear
learning for rgb-d action recognition,” in ECCV, September 2018.

[6] B. Zhou, A. Andonian, A. Oliva, and A. Torralba, “Temporal relational
reasoning in videos,” ECCV, 2018.

[7] K. Simonyan and A. Zisserman, “Two-stream convolutional networks for
action recognition in videos,” in NIPS, 2014.

[8] S. Ji, W. Xu, M. Yang, and K. Yu, “3D convolutional neural networks for
human action recognition,” PAMI, vol. 35, no. 1, pp. 221–231, 2013.

[9] M. Monfort, B. Zhou, S. A. Bargal, A. Andonian, T. Yan, K. Ramakrish-
nan, L. Brown, Q. Fan, D. Gutfruend, C. Vondrick et al., “Moments in
time dataset: one million videos for event understanding,” 2018.

[10] C. Feichtenhofer, A. Pinz, and A. Zisserman, “Convolutional two-stream
network fusion for video action recognition,” in CVPR, 2016.

[11] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[12] L. Wang, Y. Qiao, and X. Tang, “Action recognition with trajectory-
pooled deep-convolutional descriptors,” in CVPR, 2015.

[13] Y. Wang, J. Song, L. Wang, L. Van Gool, and O. Hilliges, “Two-stream
sr-cnns for action recognition in videos,” in BMVC, 2016.

[14] H. Bilen, B. Fernando, E. Gavves, A. Vedaldi, and S. Gould, “Dynamic
image networks for action recognition,” in CVPR, 2016.

[15] B. Fernando, E. Gavves, J. M. Oramas, A. Ghodrati, and T. Tuytelaars,
“Modeling video evolution for action recognition,” in CVPR, 2015.

[16] A. Cherian, S. Sra, S. Gould, and R. Hartley, “Non-linear temporal
subspace representations for activity recognition,” in CVPR, 2018.

[17] A. Cherian, B. Fernando, M. Harandi, and S. Gould, “Generalized rank
pooling for activity recognition,” in CVPR, 2017.

[18] A. Cherian and S. Gould, “Second-order temporal pooling for action
recognition,” arXiv preprint arXiv:1704.06925, 2017.

[19] A. Cherian, P. Koniusz, and S. Gould, “Higher-order pooling of cnn
features via kernel linearization for action recognition,” in WACV, 2017.

[20] L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and L. Van Gool,
“Temporal segment networks: Towards good practices for deep action
recognition,” in ECCV, 2016.

[21] K. Schindler and L. Van Gool, “Action snippets: How many frames does
human action recognition require?” in CVPR, 2008.

[22] H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre, “Hmdb: a
large video database for human motion recognition,” in ICCV, 2011.

[23] K. Soomro, A. R. Zamir, and M. Shah, “UCF101: A dataset of 101
human actions classes from videos in the wild,” 2012.

[24] W. Kay, J. Carreira, K. Simonyan, B. Zhang, C. Hillier, S. Vijaya-
narasimhan, F. Viola, T. Green, T. Back, P. Natsev et al., “The kinetics
human action video dataset,” arXiv preprint arXiv:1705.06950, 2017.

[25] G. A. Sigurdsson, G. Varol, X. Wang, A. Farhadi, I. Laptev, and
A. Gupta, “Hollywood in homes: Crowdsourcing data collection for
activity understanding,” in ECCV, 2016.

[26] W. Li, Z. Zhang, and Z. Liu, “Action recognition based on a bag of 3d
points,” in CVPRW, 2010.

[27] A. Shahroudy, J. Liu, T.-T. Ng, and G. Wang, “Ntu rgb+ d: A large scale
dataset for 3d human activity analysis,” in CVPR, 2016.

[28] N. Kumar, A. C. Berg, P. N. Belhumeur, and S. K. Nayar, “Attribute and
simile classifiers for face verification,” in ICCV, 2009.

[29] C. Feichtenhofer, A. Pinz, and R. Wildes, “Temporal residual networks
for dynamic scene recognition,” in CVPR, 2017.

[30] S. Herath, M. Harandi, and F. Porikli, “Going deeper into action recog-
nition: A survey,” Image and vision computing, vol. 60, pp. 4–21, 2017.

[31] R. Poppe, “A survey on vision-based human action recognition,” Image
and vision computing, vol. 28, no. 6, pp. 976–990, 2010.

[32] J. K. Aggarwal and M. S. Ryoo, “Human activity analysis: A review,”
ACM Computing Surveys (CSUR), vol. 43, no. 3, p. 16, 2011.

[33] H. Wang, A. Kläser, C. Schmid, and C.-L. Liu, “Action recognition by
dense trajectories,” in CVPR, 2011.

[34] H. Wang and C. Schmid, “Action recognition with improved trajectories,”
in ICCV, 2013.

[35] S. Sadanand and J. J. Corso, “Action bank: A high-level representation
of activity in video,” in CVPR, 2012.

[36] J. Sivic and A. Zisserman, “Video Google: A text retrieval approach to
object matching in videos,” in ICCV, 2003, p. 1470.

[37] F. Perronnin, J. Sánchez, and T. Mensink, “Improving the fisher kernel
for large-scale image classification,” in ECCV, 2010.

[38] H. Jegou, F. Perronnin, M. Douze, J. Sánchez, P. Perez, and C. Schmid,
“Aggregating local image descriptors into compact codes,” TPAMI,
vol. 34, no. 9, pp. 1704–1716, 2012.

[39] X. Peng, L. Wang, X. Wang, and Y. Qiao, “Bag of visual words and
fusion methods for action recognition: Comprehensive study and good
practice,” Computer Vision and Image Understanding, vol. 150, pp. 109–
125, 2016.

[40] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in NIPS, 2012.

[41] M. Hayat, M. Bennamoun, and S. An, “Deep reconstruction models for
image set classification,” PAMI, vol. 37, no. 4, pp. 713–727, 2015.

[42] T. S. Kim and A. Reiter, “Interpretable 3D human action analysis with
temporal convolutional networks,” 2017.

[43] M. Baccouche, F. Mamalet, C. Wolf, C. Garcia, and A. Baskurt, “Sequen-
tial deep learning for human action recognition,” in Human Behavior
Understanding, 2011, pp. 29–39.

TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 12

[44] J. Donahue, L. Anne Hendricks, S. Guadarrama, M. Rohrbach, S. Venu-
gopalan, K. Saenko, and T. Darrell, “Long-term recurrent convolutional
networks for visual recognition and description,” in CVPR, 2015.

[45] Y. Du, W. Wang, and L. Wang, “Hierarchical recurrent neural network
for skeleton based action recognition,” in CVPR, 2015.

[46] Q. Li, Z. Qiu, T. Yao, T. Mei, Y. Rui, and J. Luo, “Action recognition
by learning deep multi-granular spatio-temporal video representation,” in
ICMR, 2016.

[47] N. Srivastava, E. Mansimov, and R. Salakhutdinov, “Unsupervised learn-
ing of video representations using lstms.” in ICML, 2015, pp. 843–852.

[48] J. Yue-Hei Ng, M. Hausknecht, S. Vijayanarasimhan, O. Vinyals,
R. Monga, and G. Toderici, “Beyond short snippets: Deep networks for
video classification,” in CVPR, 2015.

[49] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training
recurrent neural networks,” in ICML, 2013.

[50] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “Learning
spatiotemporal features with 3D convolutional networks,” in ICCV, 2015.

[51] X. Wang, R. Girshick, A. Gupta, and K. He, “Non-local neural networks,”
in CVPR, 2018.

[52] Y. Zhou, X. Sun, Z.-J. Zha, and W. Zeng, “Mict: Mixed 3d/2d convolu-
tional tube for human action recognition,” in CVPR, 2018.

[53] L. Wang, W. Li, W. Li, and L. Van Gool, “Appearance-and-relation
networks for video classification,” 2017.

[54] A. Cherian and S. Gould, “Second-order temporal pooling for action
recognition,” IJCV, 2018.

[55] R. Girdhar, D. Ramanan, A. Gupta, J. Sivic, and B. Russell, “Action-
VLAD: Learning spatio-temporal aggregation for action classification,”
in CVPR, 2017.

[56] J. Wang, A. Cherian, and F. Porikli, “Dynamic pooling for complex event
recognition,” in WACV, 2017.

[57] T. Malisiewicz, A. Gupta, and A. A. Efros, “Ensemble of exemplar-svms
for object detection and beyond,” in ICCV, 2011.

[58] G. Willems, J. H. Becker, T. Tuytelaars, and L. J. Van Gool, “Exemplar-
based action recognition in video.” in BMVC, 2009.

[59] J. Zepeda and P. Perez, “Exemplar svms as visual feature encoders,” in
CVPR, 2015.

[60] R. G. Cinbis, J. Verbeek, and C. Schmid, “Weakly supervised object
localization with multi-fold multiple instance learning,” PAMI, vol. 39,
no. 1, pp. 189–203, 2017.

[61] W. Li and N. Vasconcelos, “Multiple instance learning for soft bags via
top instances,” in CVPR, 2015.

[62] J. Wu, Y. Yu, C. Huang, and K. Yu, “Deep multiple instance learning for
image classification and auto-annotation,” in CVPR, 2015.

[63] Y. Yi and M. Lin, “Human action recognition with graph-based multiple-
instance learning,” Pattern Recognition, vol. 53, pp. 148–162, 2016.

[64] D. Zhang, D. Meng, C. Li, L. Jiang, Q. Zhao, and J. Han, “A self-
paced multiple-instance learning framework for co-saliency detection,”
in ICCV, 2015.

[65] S. Satkin and M. Hebert, “Modeling the temporal extent of actions,” in
ECCV, 2010.

[66] S. Nowozin, G. Bakir, and K. Tsuda, “Discriminative subsequence
mining for action classification,” in ICCV, 2007.

[67] W. Li, Q. Yu, A. Divakaran, and N. Vasconcelos, “Dynamic pooling for
complex event recognition,” in ICCV, 2013.

[68] C. Sun and R. Nevatia, “Discover: Discovering important segments for
classification of video events and recounting,” in CVPR, 2014.

[69] A. Vahdat, K. Cannons, G. Mori, S. Oh, and I. Kim, “Compositional
models for video event detection: A multiple kernel learning latent
variable approach,” in ICCV, 2013.

[70] T. Gärtner, P. A. Flach, A. Kowalczyk, and A. J. Smola, “Multi-instance
kernels.” in ICML, 2002.

[71] K.-T. Lai, F. X. Yu, M.-S. Chen, and S.-F. Chang, “Video event detection
by inferring temporal instance labels,” in CVPR, 2014.

[72] F. X. Yu, D. Liu, S. Kumar, T. Jebara, and S.-F. Chang, “propto svm for
learning with label proportions,” arXiv preprint arXiv:1306.0886, 2013.

[73] J. Wang, A. Cherian, F. Porikli, and S. Gould, “Video representation
learning using discriminative pooling,” in CVPR, 2018.

[74] R. C. Bunescu and R. J. Mooney, “Multiple instance learning for sparse
positive bags,” in ICML, 2007.

[75] R. Lazimy, “Mixed-integer quadratic programming,” Mathematical Pro-
gramming, vol. 22, no. 1, pp. 332–349, 1982.

[76] A. J. Smola and B. Schölkopf, Learning with kernels. Citeseer, 1998.
[77] A. Vedaldi and A. Zisserman, “Efficient additive kernels via explicit

feature maps,” PAMI, vol. 34, no. 3, pp. 480–492, 2012.
[78] N. Boumal, B. Mishra, P.-A. Absil, and R. Sepulchre, “Manopt, a Matlab

toolbox for optimization on manifolds,” Journal of Machine Learning
Research, vol. 15, pp. 1455–1459, 2014.

[79] A. L. Dontchev and R. T. Rockafellar, “Implicit functions and solution
mappings,” Springer Monogr. Math., 2009.

[80] S. Gould, B. Fernando, A. Cherian, P. Anderson, R. S. Cruz, and E. Guo,
“On differentiating parameterized argmin and argmax problems with
application to bi-level optimization,” 2016.

[81] G. A. Sigurdsson, S. Divvala, A. Farhadi, and A. Gupta, “Asynchronous
temporal fields for action recognition,” in CVPR, 2017.

[82] R. Vemulapalli, F. Arrate, and R. Chellappa, “Human action recognition
by representing 3d skeletons as points in a lie group,” in CVPR, 2014.

[83] I. Masi, A. Tran, T. Hassner, J. T. Leksut, and G. Medioni, “Do We Really
Need to Collect Millions of Faces for Effective Face Recognition?” in
ECCV, 2016.

[84] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4,
inception-resnet and the impact of residual connections on learning.” in
AAAI, 2017.

[85] F. Caba Heilbron, V. Escorcia, B. Ghanem, and J. Carlos Niebles, “Activ-
itynet: A large-scale video benchmark for human activity understanding,”
in CVPR, 2015.

[86] C. Feichtenhofer, A. Pinz, and R. Wildes, “Spatiotemporal residual
networks for video action recognition,” in NIPS, 2016.

[87] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding.” ACM, 2014.

[88] J. Carreira, E. Noland, A. Banki-Horvath, C. Hillier, and A. Zisserman,
“A short note about kinetics-600,” 2018.

[89] A. Kar, N. Rai, K. Sikka, and G. Sharma, “Adascan: Adaptive scan pool-
ing in deep convolutional neural networks for human action recognition
in videos,” in CVPR, 2017.

[90] B. Fernando, P. Anderson, M. Hutter, and S. Gould, “Discriminative
hierarchical rank pooling for activity recognition,” in CVPR, 2016.

[91] K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep inside convolutional
networks: Visualising image classification models and saliency maps,”
2013.

[92] R. Girdhar, D. Ramanan, A. Gupta, J. Sivic, and B. Russell, “Actionvlad:
Learning spatio-temporal aggregation for action classification,” in CVPR,
2017.

[93] J. Liu, A. Shahroudy, D. Xu, A. C. Kot, and G. Wang, “Skeleton-based
action recognition using spatio-temporal lstm network with trust gates,”
2017.

[94] M. Hayat, S. H. Khan, and M. Bennamoun, “Empowering simple binary
classifiers for image set based face recognition,” IJCV, pp. 1–20, 2017.

[95] H. Wang, A. Kläser, C. Schmid, and C.-L. Liu, “Dense trajectories and
motion boundary descriptors for action recognition,” IJCV, vol. 103,
no. 1, pp. 60–79, 2013.

Jue Wang is a PhD student with the Research
School of Engineering at the Australian National
University since 2016. He is also associated with
CSIRO’s Data61 in Australia. From 2010-2014,
he received his double bachelor degree (hon-
ors) in Electronic Engineering from Australian
National University and Beijing Institute of Tech-
nology. His research interest are in the area of
computer vision and machine learning.

Anoop Cherian is a Research Scientist with
Mitsubishi Electric Research Labs (MERL) Cam-
bridge, MA and an Adjunct Researcher affili-
ated to the Australian Centre for Robotic Vision
(ACRV) at the Australian National University.
Previously, he was a Postdoctoral Researcher
in the LEAR team at INRIA at Grenoble. He
received his B.Tech (honors) degree in computer
science and Engineering from the National In-
stitute of Technology, Calicut, India in 2002, his
M.S. and Ph.D. degrees in computer science

from the University of Minnesota, Minneapolis in 2010 and 2013 re-
spectively. His research interests lie in the areas of computer vision and
machine learning.

	Title Page
	page 2

	/projects/www/html/my/publications/docs/TR2019-107.pdf
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12

