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Abstract

A novel probabilistic shaping architecture is proposed which approximates the optimal sphere-bound while utilizing a Huffman
tree and binary mapping/demapping based on look-up-tables. A 100 symbol long DM sequence achieves within 0.2 dB of the
infinite length asymptote, and is implemented with a LUT of 100 kbit.

1 Introduction

Since the first demonstrations of the probabilistic amplitude
shaping (PAS) framework [1] in fiber-optic simulations [2, 3]
and experiments [4–7], PAS has been applied to and studied in
numerous different settings. A crucial building block of PAS is
the distribution matcher (DM) that transforms uniformly dis-
tributed input bits into blocks of shaped amplitudes. All fixed-
length DMs suffer from rate loss that directly reduces the net
data rate of communication systems with probabilistic shap-
ing, and this rate loss generally decreases with block length. In
the original PAS paper [1], constant composition distribution
matching (CCDM) realized via arithmetic coding [8] is consid-
ered as DM. While CCDM is simple to analyse—every output
symbol sequence is a unique and equiprobable permutation of
the same composition—it suffers from relatively high rate loss
for short block lengths. A compounding problem is the fact
that the arithmetic coding based implementation of CCDM is
inherently serial in the input length. The long block lengths
required for low rate loss, and correspondingly high serial-
ism have proven prohibitive for implementation in hardware
thus-far.

To reduce the required block lengths, advanced DM sys-
tems with variable compositions have been proposed. Multiset-
partition distribution matching (MPDM) [9] can be viewed as
layered CCDM operations. Other methods that carry out the
DM task are enumerative sphere shaping (ESS) [10–12] and
shell mapping (SM) [13], or variable-length DM with fram-
ing [14]. Improved architectures enabling higher throughput
than nonbinary CCDM have also been proposed. In bit-level
DM [15–17], the target distribution is factorized such that con-
stituent binary DMs can be run in parallel, which supports only
product compositions. The parallel-amplitude architecture of
[18] by comparison imposes no constraints on the composition,
but may induce a small additional rate loss. For any binary DM
scheme, subset ranking (SR) has been proposed in [18] as a
low-complexity method for CCDM mapping and demapping.

input:
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Fig. 1 Illustration of a Huffman tree for HCSS. A four-
bit prefix determines the composition to be used (here C3),
and the payload is mapped with CCDM methods denoted as
CCDM(C3).

In this work, we propose three novel concepts related to dis-
tribution matching. Our previous work on MPDM [9, 19] is
extended to a new architecture—Huffman coded sphere shap-
ing (HCSS)—that approximates the optimal sphere bound, and
thus has lower rate loss. Secondly, a novel CCDM method for
nonbinary alphabets is proposed that has a lower number of
serial operations than arithmetic coding, which is, to the best
of our knowledge, the first constructive CCDM alternative to
arithmetic coding for nonbinary alphabets. Finally, we demon-
strate that the SR method enables multiplication-free mapping
and demapping, based on a lookup table (LUT) whose size is
less than 10 kbit.

2 Huffman Coded Sphere Shaping (HCSS)

In order to approximate the optimal sphere bound codebook
[20], we sort all possible compositions by their energy and
select the low-energy compositions first. We further constrain
the number of permutations of each composition to be a power
of two, which is the main conceptual difference to known tech-
niques such as ESS and SM. This power-of-two constraint
comes at the expense of a small rate loss as not the entire
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Fig. 2 Parallel-amplitude architecture: Transformation from a
nonbinary DM (top) to parallel binary DMs (bottom) for 4
amplitudes. We propose the use of LUTs for the binary DM.

signal space inside an n-sphere can be used. This forces a
dyadic distribution on the compositions, which allows the use
of Huffman coding to determine a prefix which addresses each
composition without additional rate loss, and the use of exist-
ing CCDM algorithms for mapping the payload to a sequence.
Figure 1 illustrates the principle of HCSS where the prefix
(bold blue) of the k-bit input selects the composition (red), and
the binary remainder is mapped with CCDM methods such as
those studied in Sec. 3.

3 Constant-composition Mapping Methods

3.1 Subset Ranking Based on Lookup Tables

Subset ranking (SR) has been proposed in [18] as a low-
serialism CCDM algorithm for binary alphabets. To trans-
form a nonbinary to a binary mapping operation, a parallel-
amplitude architecture was also proposed in [18], which allows
operation of m− 1 DMs in parallel. A block diagram of this
transformation is shown in Fig. 2 for m = 4 shaped amplitudes,
which corresponds to 64-ary quadrature amplitude modulation
(QAM).

For these variable-length binary DMs, the principle of SR
is to represent a (shaped) sequence by the indices of one
binary symbol, resulting in a constant-order subset. The num-
ber of preceding subsets in an ordering (e.g., lexicographical)
is known as rank. By ranking a subset, a one-to-one corre-
spondence between a shaped sequence and the binary rank
is established, which carries out DM demapping. The inverse
operation of ranking is DM mapping, or unranking: for a given
rank (the binary input), the subsets defining each binary DM
sequence are determined, and the shaped sequence is therefore
mapped.

In [18], highly parallel algorithms for ranking and unranking
are presented whose computational complexity lies mostly in
calculating binomial coefficients. For short lengths, all required
binomial coefficients may be precomputed, and stored in a
LUT. For a given n, the number of binomial coefficients to be
computed is

⌊
n
2

⌋
− 1 due to their symmetry around n/2 and

since
(
n

1

)
= n. Hence, the number of required LUT entries for

all DMs with length up to n is
∑n

i=4

(⌊
i
2

⌋
− 1
)
, where all triv-

ial cases which result in a binomial coefficient equal to 1 or
n are omitted. The size of each LUT entry is

⌈
log2

(
n

w

)⌉
bits,

with the maximum size occurring for w = bn/2c. This gives
an overall LUT size of

n∑
i=4

b i
2c∑

w=2

⌈
log2

(
i

w

)⌉
bits. (1)

As an example, a LUT for all DMs up to length n = 50 has
14.3 kbit size, with the maximum LUT entry requiring 47 bit.
A more detailed study of LUT sizes is given in Sec. 4.3.

3.2 Multiset Ranking

Multiset ranking (MR) is a generalization of SR to nonbinary
alphabets, which removes the parallel-amplitude constraint,
and thus achieves the same rate loss as conventional arithmetic-
coding CCDM. The number of preceding sequences, which
is referred to as relative rank, is computed for all amplitudes
assuming that this amplitude were to be used at the current
position. Note that this assumes a fixed sorting of the shaped
sequences, such as lexicographical. Next, the cumulative rel-
ative ranks are compared to the target rank (i.e., the binary
DM input), and the last amplitude whose relative rank does not
exceed the target rank is chosen. Afterwards, the relative ranks
are updated based on the chosen amplitude, and the above steps
are carried out until the shaped sequence of length n is con-
structed. In contrast to arithmetic coding, which is serial in k
for mapping and n for demapping, MR is serial in n for map-
ping and demapping, and thus requires fewer serial operations
while not incurring additional rate loss.

4 Numerical Results

4.1 Rate Loss Performance

In Fig. 3, rate loss is shown as a function of block length n for
various shaping methods. Rate loss is defined as the difference
between the asymptotic rate (i.e., the entropy) and the actual
rate of the DM scheme. CCDM and MPDM achieve the distri-
bution [0.4, 0.3, 0.2, 0.1]. The ideal sphere bound achieves the
lowest possible rate loss given a cardinality and length [20].
For each n, HCSS and the ideal n-sphere (which has similar
performance to ESS and SM) are set to operate at the rate of
MPDM. We observe that the rate loss of the proposed HCSS
is significantly lower than CCDM and lies in between the rate
loss of an ideal, fully populated sphere and MPDM. From the
inset figure, we note that the rate loss penalty compared with
the ideal sphere bound is consistently low for multiset ranking
HCSS (MR-HCSS), while subset ranking HCSS (SR-HCSS)
exhibits a significant additional penalty only when the block
length is very small.

4.2 AWGN Performance with Forward Error Correction

To evaluate the performance of the presented shaping schemes,
Monte-Carlo simulations of 64QAM symbols over the addi-
tive white Gaussian noise (AWGN) channel were performed. In
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Fig. 3 Rate loss versus block length for various DMs, includ-
ing the proposed MR-HCSS and SR-HCSS. Inset is the relative
rate loss penalty in bits per 1D symbol for MR-HCSS and
SR-HCSS compared to the ideal sphere bound.

Fig. 4, the frame error rate (FER) of low-density parity-check
(LDPC) codes from the DVB-S2 standard (length 64800 bits) is
shown versus signal-to-noise ratio (SNR) in dB. The through-
put is set to 4.5 bits per 2D-symbol (bit/2D-sym), which is
achieved with a rate-3/4 code for uniform and rate-4/5 for
shaped signalling. For n = 100, MR-HCSS and with SR-
HCSS give a shaping gain of approximately 0.77 dB and
0.73 dB, respectively. CCDM with n = 100 (not shown in
Fig. 4) achieves the performance of uniform 64QAM. MPDM
at n = 100 performs slightly worse than the HCSS schemes
due to the limited use of the signal space, but the penalty
compared to MR-HCSS is less than 0.1 dB. For n = 20, how-
ever, the performance of the schemes differs significantly, with
MPDM being worse than uniform. MR-HCSS and SR-HCSS
are 0.35 dB and 0.15 dB more power-efficient than uniform
64QAM. The reason for the greater variation in performance is
that the rate loss decreases by 1/n for each additional input bit
that can be addressed.
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Fig. 4 Post-LDPC FER for 64QAM at an information rate of
4.5 bit/2D-sym. All shaping gains are evaluated at 10−3 FER.

4.3 LUT Size

For the same setup as studied above, Fig. 5 shows the SNR gain
over uniform 64QAM, both at a FER of 10−3, as a function
of LUT size for SR-HCSS. With less than 1 kbit size, a small
shaping gain of 0.15 dB is achieved and rate adaptivity can be
realized. When increasing the LUT to approximately 7 kbit,
more than 0.5 dB gain are obtained, achieving around 0.4 dB
gain less than the infinite length DM. We observe that the gain
increase slows down for longer block lengths, with a LUT with
more than 100 kbit required for 0.73 dB shaping gain, which
is within 0.2 dB of the infinite length DM gain. Increasing the
LUT size to around 1 Mbit improves the shaping gain to only
0.82 dB. We note that these values are many orders of mag-
nitude smaller than if CCDM were carried out directly with a
LUT. A CCDM with, for example, n = 20 and k = 32 would
require a LUT size of 232 · 20 · log2 4 ≈ 171.8 Gbit size.
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Fig. 5 SNR gain in dB with SR-HCSS over uniform 64QAM
versus LUT size in kbit at a target rate of 4.5 bit/2D-sym.

5 Conclusions

We have demonstrated new techniques and implementations
for high-throughput distribution matching. The performance of
the proposed HCSS is close to the optimum, and its structure
allows to use CCDM algorithms. The performance improve-
ment over uniform 64QAM is numerically found to be more
than 0.7 dB for a block length of n = 100, requiring a LUT
of around 100 kbit when implemented with subset ranking, a
penalty of only 0.2 dB compared with an infinite length DM.
For ultra-short lengths of n = 20 where rate adaptivity is the
main objective, shaping gains of up to 0.35 dB are feasible.
For CCDM, two new algorithms are proposed. Multiset rank-
ing is an alternative to arithmetic coding that requires fewer
serial operations. We further show a LUT-based implemen-
tation of subset ranking that may be regarded as a trade-off
between performance and LUT size, with significant shaping
gains demonstrated for LUT sizes of less than 10 kbit.
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