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Abstract

We study a lattice-based constellation shaping for high-order modulation exploiting non-binary forward error correction. It is
demonstrated that the proposed lattice shaping combined with turbo trellis-coded modulation (TTCM) achieves about 0.5 dB
gain over the conventional TTCM scheme.

1 Introduction

In order to meet the demand for high-speed fiber-optic com-
munications, high-order modulations combined with capacity-
approaching forward error correction (FEC) are essential. Bit-
interleaved coded modulation (BICM) is the simplest approach
for coded modulation, but has a performance loss in terms
of achievable information rates. By using non-binary FEC
codes instead of binary counterparts, this fundamental penalty
of BICM can be avoided. In fact, it has been experimentally
demonstrated in [1] that the non-binary coded system based on
turbo trellis-coded modulation (TTCM) [2] outperforms BICM
by 0.4 dB for a 1000 km transmission at 100 Gbit/s.

Although TTCM can approach the constellation-constrained
capacity of standard quadrature-amplitude modulation (QAM)
signaling, still there is a gap from the Shannon limit due to
the uniform distribution of signal constellations. To compen-
sate for this gap, constellation shaping has been actively studied
in the community [3–11]. Although their shaping gains typi-
cally increase as the block length increases, implementation of
shaping operations, i.e., distribution matching, for long block
lengths will be computationally cumbersome. Therefore, shap-
ing methods that achieve high gain at short block lengths with
low computational operations are desirable in practice.

One of such low-dimensional shaping techniques based on
lattice codes has been proposed for wireless communication
systems [12]. Since short dimensional lattices enable efficient
quantization, i.e., closest point search algorithms [13], low-
complexity shaping can be realized. Furthermore, since lattices
are known to achieve the densest sphere packing for some short
dimensions [14], short lattice shaping would achieve good
trade-off between shaping gain and computational complexity.

In this paper, we propose the E8 lattice-based shaping
approach for high data-rate fiber-optic communication sys-
tems employing capacity-approaching TTCM as FEC. We
use lattice decoding, i.e., quantization to generate Gaussian-
distributed integers from uniform data, which we refer to as

“Voronoi integers”. Systematic non-binary TTCM is employed
to achieve high power efficiency, while keeping their dis-
tribution Gaussian-like. It is demonstrated that the proposed
coded modulation scheme significantly outperforms conven-
tional TTCM-based system by approximately 0.5 dB and per-
forms very closely to the Gallager’s achievable performance
bound at finite block lengths.

2 Encoding and Indexing of Lattice Codes

We first describe how “Encoding” and “Indexing” of lat-
tice codes are performed. “Encoding” of lattices is to map
information integers u = (u1, u2, . . . , un) to lattice points c =
(c1, c2, . . . , cn). “Indexing” means the reverse mapping, which
finds the corresponding u for a given c. The mapping should
be bijective to recover information from a given lattice point.

A quotient group Zn/Λ is n-dimensional integer vectors in
the lattice Λ. The coset leader of Zn/Λ is given by Zn ∩ F ,
where F is any fundamental region of lattice Λ. Specifically,
the coset leader with the zero-centered fundamental Voronoi
region V , i.e., Zn ∩ V , is of practical interest to satisfy the
power constraint. Finding the lattice Zn ∩ V is performed by
quantization of lattice Λ. We denote the shortest distance quan-
tization of x ∈ Rn by QΛ(x) = minλ∈Λ(x− λ). We assume
that the lattice used for shaping is the scaled version of
well-known lattice Λ′, i.e., Λ = KΛ′, where K ∈ Z is a scal-
ing factor. The quantization of the scaled lattice is given by
QΛ(x) = QΛ′(x/K) ·K.

Let G denote the n× n generator matrix for Λ. In this work,
we assume that G is lower triangular, where gij = 0 for j > i
and the diagonal elements are positive integers. Also for each
column j, gij/gjj is an integer for all elements i in that col-
umn. We note that these conditions are satisfied by well-known
lattices such as Dn and E8. Conway and Sloane [13] described
hardware-efficient encoding and indexing algorithms for such
lattices. The generalization to other lattices are referred to [16].
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Fig. 1 Example of lattice shaping using a lattice Λ = 4D2.
Lattice points before shaping (left) and after shaping (right).

Letting ui ∈ {0, 1, . . . , gii − 1} denote the information vec-
tor, we define a new vector as

d = (u1/g11, u2/g22, . . . , un/gnn), (1)

where all element satisfies 0 ≤ ui/gii < 1. The cardinality of
information vector ui and the scaling factor gii is chosen such
that the condition of bijective mapping between u and c is
satisfied [16]. The Voronoi integer is then obtained by lat-
tice quantization as c = Gd−QΛ(Gd). The cardinality of
the codebook is |detG| = ∏n

i=1
gii, since G is triangular.

The resulting spectral efficiency is R = |detG|/n bits per
dimension.

An example of lattice encoding with a Λ = 4D2 lattice is
shown in Fig. 1. The generator matrix of 4D2 lattices is given
by

G =

[
4 0
4 8

]
. (2)

The left figure in Fig. 1 shows the lattice points Gd for infor-
mation vector u1 = {0, 1, 2, 3} and u2 = {0, 1, 2, 3, 4, 5, 6, 7}.
Subsequently for each point of Gd, a closest 4D2 lattice point
is subtracted in order to generate Voronoi integers as in the
right figure. We employ the computationally efficient closest
point search algorithms proposed in [13] for low-dimensional
lattices. Note that we use the D2 lattice as an example for
simplicity of explanation, while it has no shaping gain. Fig. 2
shows the achievable shaping gain by some well-known lat-
tices. One can see that the lattice shaping achieves excel-
lent gain close to sphere packing bounds. For 24-dimensional
Leech lattice, shaping gain greater than 1.0 dB is achiev-
able. Although the increase of dimensionality can improve the
shaping gain towards the asymptotic limit of 1.53 dB, the com-
putational complexity of lattice encoding and indexing may
increase. Therefore, the present paper focuses relatively short
lattice based on E8 which has a maximum gain of 0.654 dB.

Consider indexing of lattice points c into information u. We
first rewrite the given lattice point as c = Gb + Gd, where
b = {b1, b2, . . . , bn} and d = {d1, d2, . . . , dn} are integer and
fractional vectors, respectively. More specifically, Gb corre-
sponds to QΛ(Gd), and our aim is to find vector d from c,
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Fig. 2. Sphere-packing bound and lattice shaping gain.
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Fig. 3. The proposed system model.
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Fig. 4. Constituent TCM encoder.

which is the scaled information. Taking advantage of the lower
triangular structure of G, the first low element is expressed
as c1 = g11(b1 + d1), which has a unique solution. For i =
{2, 3, . . . , n}, re-encoding is recursively performed as ci =
gii(bi + di) +

∑i−1

j=1
gij(bj + dj), where bi and di are found

uniquely at each step. Finally, information ui is retrieved from
di as ui = giidi for i = {1, 2, . . . , n}.

3 Lattice-shaped Non-binary TTCM System

The proposed system model is shown in Fig. 3, where lattice
encoding and indexing are concatenated with the conventional
TTCM-based system. Each element of c is converted into a
binary sequence by natural labeling and fed into the subsequent
TTCM encoder. Punctured TTCM [2] is employed in order to
keep the spectral efficiency of the component TCM encoder
constant, where outputs of upper and bottom TCM encoders
are punctured alternately after deinterleaving. We note that
since the cardinality of each element of c is not necessarily
power-of-two, the input to TTCM encoder may not be uni-
formly distributed. Each constituent TCM encoder generates
just one parity bit, which is mapped onto the least significant bit
(LSB) with natural labeling to keep the distribution of the input
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Fig. 5 Probability mass function (PMF) of E8-lattice shaped
constellations withK = 4, 8, 16 (2, 3, 4 bits/dim, respectively).
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Fig. 6 Achievable shaping gain for E8 lattice with respect to
the spectral efficiency.

to TCM encoder as shown in Fig. 4. At the receiver side, lat-
tice indexing estimates information vector û for a given TTCM
decoder output ĉ as described in the previous section.

4 Simulation Results

Fig. 5 shows the probability mass function (PMF) of the shaped
constellations by the proposed E8 lattice with K = 4, 8, 16,
where a signal power is normalized to 1. We can confirm that
the signal distribution of Voronoi integers becomes Gaussian-
like. Fig. 6 shows the achievable shaping gain of the E8 lattice
Voronoi integers, according to the normalized second moment
of a lattice [15]. The shaping gain depends on the lattice scaling
factorK, i.e., the spectral efficiency. It is observed that the gain
achieved byE8 lattice shaping increases as a spectral efficiency
increases and reaches the theoretical maximum value for E8

lattices, which is 0.65 dB [14] at around 6 bits per dimension.
We then evaluate block error rate (BLER) performance of

the proposed system employingE8 lattice shaping withK = 8,
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Fig. 7 BLER performance of the proposed lattice shaping
and conventional TTCM [2] with block length of 1024 real
symbols.

corresponding to the spectral efficiency of 3 bits per dimension.
The BLER performances of the proposed system and conven-
tional Robertson’s TTCM employing 256-QAM (equivalently,
16-PAM per dimension) are shown in Fig. 7. The code length
is set to 1024 real symbols. The generator polynomial of the
constituent TCM encoders of the proposed system is optimized
by exhaustive computer search. For both schemes, we use a
randomly chosen interleaver, and logarithmic maximum a pos-
teriori (Log-MAP) decoding with an iteration count of 10 is
employed, where the decoding trellis has 8 states.

As a benchmark of the BLER performance with finite code
block lengths, Gallager’s random coding bounds (RCB) [17]
are also plotted. From Fig. 7, it is demonstrated that the pro-
posed system approaches the finite-length RCB within 0.4 dB
at a BLER of 10−2. Considering the fact that conventional
TTCM without shaping has more than 0.9 dB gap from the
bound, the proposed shaping method based on E8 lattice has
a significant benefit by approximately 0.5 dB gain, which is
almost as predicted from Fig. 6.

5 Conclusions

We have proposed a new shaping approach based on short-
dimensional lattice shaping combined with non-binary TTCM
scheme for high-spectral efficiency fiber-optic communica-
tions. It has been demonstrated that the E8-based shaping
approach offers 0.65 dB shaping gain as a spectral efficiency
increases. We have also demonstrated that the proposed TTCM
scheme combined with E8 shaping outperforms conventional
TTCM without shaping by about 0.5 dB in terms of the gap
from the finite block length bound.

As a final remark, our proposed system has a room for
performance improvement by interleaver optimization. Fur-
thermore, the application of higher dimensional lattices such
as 24-dimensional Leech lattice would be the subject of further
investigation.
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