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Abstract
We propose a turbo equalization scheme based on deep neural networks (DNN) to compensate
for fiber nonlinearity. The turbo DNN equalizer can accelerate decoding convergence and
achieve a significant gain of about 2 dB in nonlinear regimes.
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Abstract

We propose a turbo equalization scheme based on deep neural networks (DNN) to compensate for fiber nonlinearity. The turbo
DNN equalizer can accelerate decoding convergence and achieve a significant gain of about 2 dB in nonlinear regimes.

1 Introduction

In fiber-optic communications, we encounter various lin-
ear/nonlinear impairments, such as laser linewidth, ampli-
fied spontaneous emission, chromatic dispersion, polarization
mode dispersion, self-phase modulation, cross-phase modu-
lation, four-wave mixing, and cross-polarization modulation.
To realize high-speed, reliable, and long-reach optical com-
munications, a number of nonlinear equalization methods to
compensate for such distortion were investigated, e.g., turbo
equalizer (TEQ) [1-3], Volterra series [4], and digital back-
propagation (DBP) [5-8]. As an alternative to those equaliza-
tion schemes, machine learning techniques have recently been
envisioned to play a viable role in mitigating fiber nonlinear-
ity [9], e.g., Gaussian mixture models [10], particle method [7],
independent component analysis [11], hidden Markov mod-
els [12], support vector machines (SVM) [13] and shallow/deep
neural networks (DNN) [14-25]. In particular, deep learning
techniques have shown its high potential in nonlinear perfor-
mance improvement, e.g., with end-to-end design [22-25].

Nonetheless, most work did not appropriately account for
practical interaction with forward error correction (FEC) codes.
For example, multi-class soft-max cross-entropy loss is often
used to train DNN, which assumes nonbinary FEC codes in
principle. For more practical bit-interleaved coded modula-
tion (BICM) systems, it was found in [19] that binary sig-
moid cross-entropy loss can improve accuracy and scalability
to high-order quadrature-amplitude modulation (QAM) [19].
In this paper, we propose another DNN application to per-
form TEQ for nonlinear mitigation in the context of BICM
with iterative demodulation (ID). Although DNN has already
been popular in nonlinear compensation, our paper is the first
attempt to adopt DNN for TEQ in the context of BICM-ID
which takes soft-decision feedback from the FEC decoder to
refine the DNN output for improved equalization accuracy. We
make an analysis of the extrinsic information transfer (EXIT)
of turbo DNN, and demonstrate that the proposed DNN paired
with irregular LDPC codes used in DVB-S2 standards offers a
significant performance gain of about 2 dB by accelerating the
decoder convergence in nonlinear transmissions.
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Fig. 2: Residual nonlinear distortion of DP-16QAM constella-
tion after LE for 16-span NZDSF DM links.

2 Deep Learning for Nonlinear Compensation

The optical communications system under consideration is
depicted in Fig. 1. Multi-channel DP-QAM signals with wave-
length multiplexing are sent over fiber plants towards coherent
receivers. We consider NV spans of dispersion managed (DM)
links with 80 km non-zero dispersion-shifted fiber (NZDSF) at
a residual dispersion per span (RDPS) of 5%. The span loss is
compensated by Erbium-doped fiber amplifiers (EDFA). The
receiver employs standard phase recovery and linear equaliza-
tion (LE) to compensate for linear impairments such as chro-
matic dispersion. Due to fiber nonlinearity, residual distortion
after LE will limit the achievable information rates.

Fig. 2 shows an example of residual distortion of DP-
16QAM constellation after 31-tap least-squares LE for 16-span
transmissions. We can see that the constellation is more seri-
ously distorted with the increased launch power due to Kerr
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Fig. 3: DNN-TEQ architecture and min-max-loss training.

fiber nonlinearity. To compensate for the residual nonlinear dis-
tortion, we introduce deep learning-based TEQ, which exploits
soft-decision feedback from FEC decoder as shown in Fig. 1.
Deep learning has been studied as a breakthrough technique
in media processing research, where many-layer many-node
neural architectures are trained with a large amount of data.
Note that big data are readily available in high-speed optical
communications, which can provide terabits of data in a sec-
ond. The DNN is massively parallelizable in hardware, which
is suited for future optical communications. In modern DNN,
various techniques have been introduced, e.g., pre-training,
mini-batch, rectified linear unit (ReL.U), dropout, skip connec-
tion, inception, adaptive-momentum (Adam) stochastic gradi-
ent, adversarial, convolutional, and long short-term memory
(LSTM) architectures, In this paper, we employ state-of-the-art
DNN suited for BICM-ID to cope with fiber nonlinearity.

3 Turbo DNN Equalization: DNN-TEQ

Fig. 3 shows the architecture of our turbo DNN equalizer,
which feeds distorted DP-QAM signals over consecutive W =
3-tap symbols to generate soft-decision log-likelihood ratio
(LLR) values for FEC decoding. The major extension from
conventional DNN lies in the input layer which takes a pri-
ori (APR) side information along with DP-QAM symbols. The
APR side information comes from FEC decoder representing
intermediate soft-decision LLRs in run time. For efficient DNN
training, the APR values having mutual information of Z;,, are
synthetically generated via a Gaussian distribution following
N((=1)°02/2,0?) where b is an original bitand o = J~*(Z;,,)
with J~!(-) being ten Brink’s J-inverse function [26], instead
of considering a particular FEC decoder feedback.

The last layer has two branches, i.e., extrinsic (EXT) output
and a posteriori probability (APP) output, which uses a skip
connection from the input layer to sum up EXT and APR at
a target symbol. This residual network tries to train extrinsic
message passing for TEQ realization. It was found that learn-
ing DNN model to minimize APP cross-entropy loss does not
always minimize EXT cross-entropy loss accordingly, and vice
versa. In order to keep both APP and EXT outputs reliable, we
use a max-pooling layer following sigmoid cross-entropy loss.
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Fig. 4: EXIT chart of DNN-TEQ for DP-16QAM in 16-span
DM links.
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Fig. 5: Combined EXIT chart [26] of DNN-TEQ & LDPC
decoder for DVB-S2 code rate 9/10 (DP-16QAM in 16-span
DM links at —2 dBm).

The DNN uses four hidden layers, each of which consists of
batch normalization, ReLU activation, and a fully-connected
linear layer with skip connections and 50% dropout for 1000
neuron nodes. The DNN is trained with Adam for a mini-batch
size of 1000 symbols to minimize the worst sigmoid cross-
entropy losses between APP and EXT outputs, using training
datasets of approximately 5 x 10° symbols. An early stop-
ping with a patience of 13 is carried out up to a maximum of
500 epochs. Note that sigmoid cross-entropy minimization is
equivalent to maximizing the lower bound of the generalized
mutual information (GMI), which is an important metric for
soft-decision FEC performance.

4 Performance Results

We assume 3-channel DP-QAM transmission for 34 GBd
baud rate and 37.4 GHz channel spacing, over NZDSF DM
links with 5% RDPS, having a dispersion parameter of D =
3.9 ps/nm/km, a nonlinear factor of v = 1.6 /W/km, and an



attenuation of 0.2 dB/km. Span loss is compensated by ideal
EDFA with all amplified spontaneous emission noise added
just before the receiver assuming the noise figure of 5 dB. We
used digital root-raised cosine filters with 10% rolloff at both
transmitter and receiver.

Besides DNN equalizers, we compare various classical
machine learning methods, such as linear discriminant analy-
sis (LDA), naive Bayes (NB), quadratic discriminant analysis
(QDA), and SVM. For FEC codes, we consider variable-rate
irregular LDPC codes of block length 64,800 bits, used in
DVB-S2 standards. The LDPC codes have a different degree
distribution for individual code rates. For instance at a code
rate of 9/10, the variable degree polynomial (node perspective)
is given as A(z) = 0.1z% + 0.8z + 0.1z*, whereas the check
degree is 30. Although the degree distribution can be optimized
jointly with DNN-TEQ as done analogously in [26], we leave
it as the future work.

Fig. 4 shows the EXIT chart of DNN-TEQ given LLRs hav-
ing a certain mutual information from the FEC decoder. It is
clearly observed that the DNN outputs can be greatly improved
by feeding in the FEC soft-decision. An almost linear slope
towards Z,,, = 1 in EXIT curve is achieved, implying that
cross-entropy loss is mitigated linearly with FEC feedback reli-
ability. This steep slope in the EXIT curve of DNN-TEQ can
eventually make a significant improvement in LDPC decoding
performance, as shown in Fig. 5, where we present the decod-
ing trajectory between the variable-node decoder (VND) and
the check-node decoder (CND) in the LDPC decoder. Here,
we use a combined EXIT chart [26] of DNN-TEQ and LDPC
decoder, for DP-16QAM 16-span DM links at —2 dBm launch
power and DVB-S2 LDPC codes with a code rate of 9/10. As
shown, the conventional DNN equalizer without FEC feedback
requires a large number of decoder iterations to reach an error-
free mutual information of Z,, = 1. Whereas for DNN-TEQ,
we can open up an EXIT tunnel between VND and CND, that
leads to a considerable acceleration of the decoder convergence
to reach error-free condition within only a few iterations.

Figs. 6, 7, and 8 show the Q factor versus launch power
of DP-4QAM, DP-16QAM, and DP-64QAM, respectively, for
50, 16, and 8 spans. It is observed that DNN or LSTM can offer
superior performance to classical learning methods. Note that
LSTM had no gain over DNN because channel memory is lim-
ited in DM links and LE already shortens the memory. With the
proposed turbo DNN architecture, we can further improve the
performance by up-to 2.7 dB at the peak Q.

5 Conclusions

We extended DNN machine learning techniques to TEQ for
improved nonlinear compensation in coherent fiber commu-
nications. Through EXIT chart analysis, we verified that the
proposed DNN-TEQ offers decoder acceleration by feeding
intermediate soft-decision LLR from the LDPC decoder. It was
found that our DNN-TEQ improves Q factor through the turbo
iteration by a gain of about 2 dB in nonlinear regimes. To the
best of authors’ knowledge, this is the first paper investigating
TEQ based on DNN for fiber nonlinearity mitigation.
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Fig. 7: Single-iteration DNN-TEQ for DP-16QAM 16-span
NZDSF (DVB-S2 LDPC code of rate 8/9).
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