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Abstract
Accurate state-of-power (SOP) estimation is critical for building battery systems with opti-
mized performance and longer life in electric vehicles and hybrid electric vehicles. This paper
proposes a novel parameter identification method and its implementation on SOP prediction
for lithium-ion batteries. The extremum seeking algorithm is developed for identifying the
parameters of batteries on the basis of an electrical circuit model incorporating hysteresis
effect. A rigorous convergence proof of the estimation algorithm is provided. In addition,
based on the electrical circuit model with the identified parameters, a battery SOP prediction
algorithm is derived, which considers both the voltage and current limitations of the battery.
Simulation results for lithium-ion batteries based on real test data from urban dynamometer
driving schedule (UDDS) are provided to validate the proposed parameter identification and
SOP prediction methods. The proposed method is suitable for real operation of embedded
battery management system due to its low complexity and numerical stability.
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Abstract: Accurate state-of-power (SOP) estimation is critical for building battery systems with optimized per-
formance and longer life in electric vehicles and hybrid electric vehicles. This paper proposes a novel parameter
identification method and its implementation on SOP prediction for lithium-ion batteries. The extremum seeking
algorithm is developed for identifying the parameters of batteries on the basis of an electrical circuit model incor-
porating hysteresis effect. A rigorous convergence proof of the estimation algorithm is provided. In addition, based
on the electrical circuit model with the identified parameters, a battery SOP prediction algorithm is derived, which
considers both the voltage and current limitations of the battery. Simulation results for lithium-ion batteries based
on real test data from urban dynamometer driving schedule (UDDS) are provided to validate the proposed parameter
identification and SOP prediction methods. The proposed method is suitable for real operation of embedded battery
management system due to its low complexity and numerical stability.
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1. INTRODUCTION

Electric vehicle (EV) and hybrid electric vehicle (HEV)
are two promising solutions to relief the energy crisis and
environmental issues raised by the oil-dependent vehicles
[1]. The core component of the EV and HEV is the bat-
tery system. Lithium-ion batteries have been widely used
in EVs and HEVs due to their high energy and power den-
sities and long cycle life [2]. However, effective battery
management system (BMS) is still a remarkable challenge
and necessity to guarantee the reliable and safe battery op-
erations [3]. The critical function of the BMS is to es-
timate the state-of-charge (SOC), state-of-health (SOH),
and state-of-power (SOP) of the battery system in real-
time [4]. Due to the absence of sensors for direct measure-
ments of these quantities, battery models are used to esti-
mate these states based on model-based estimation meth-
ods. To improve the SOC, SOH, and SOP estimation accu-
racy of lithium-ion batteries, the parameters of the battery
model should be identified effectively.

Various algorithms have been proposed for the param-
eter estimation or identification of lithium-ion batteries.
Kalman filter (KF)-based methods and linear least square
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regression-based methods are two main types of real-time
battery parameter identification methods. Various types
of KF have been proposed [5–11], such as linear KF, ex-
tended KF (EKF), dual extended KF, to estimate the pa-
rameters and the states of the battery model simultane-
ously. Although accurate solutions can be obtained by
using KF-based methods, they cause high computational
complexity and may be difficult to implement in real-time
embedded systems. Compared to the KF-based meth-
ods, the least squares methods are more computationally
competitive without losing much accuracy. Various least
square-based methods have been proposed, such as recur-
sive least square [12,13], and moving window least square
[14], to perform online estimation of battery parameters.
A prediction-error minimization algorithm was used to
identify battery model parameters for SOC estimation in
[15]. Sliding-mode observer and neural networks were
used in [16] for SOC estimation of a lithium-polymer bat-
tery in electric vehicle. In [17], a robust H∞ filter was pro-
posed for the first time to estimate the SOC of the lithium-
ion battery system with time-varying parameter for hybrid
electric vehicles. Although these methods presented ac-
cepted performance, they required high computational re-
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sources and sometimes got stuck in local optima due to
a large number of parameters and a very large searching
space [18].

The estimation of the peak power capability of the
battery is essential to determine the maximum available
power for acceleration and regenerating braking of the EV
and HEV, thus avoiding over-charging or over-discharging
the battery. SOP is the parameter to describe the max-
imum charging and discharging capabilities of the bat-
tery [19]. Accurate SOP estimation can guarantee opti-
mum performance and longer life of the battery. A dy-
namic electrochemical polarization model is proposed in
[20], and the battery SOP for the next sampling time is
accurately estimated based on this model. An adaptive
extended KF is proposed to estimate the SOC and SOP
simultaneously in [21], which realizes a long-term SOP
estimation. First-order extrapolation and multistep model
predictive iterative method were used in [22] to improve
voltage-limit-based power output accuracy in larger time
intervals and a genetic algorithm was proposed in [23] to
deal with the long time-scale estimation for power man-
agement application. However, only the voltage limitation
is considered in the above researches when calculating the
peak power capability, the battery current limitation is ig-
nored.

This paper proposes a novel parameter identification
method and its implementation on SOP prediction for
lithium-ion batteries in EVs using extremum seeking
(ES) theory, which is a model-free adaptive optimization
method and has the advantages of both rigorously prov-
able convergence and simple implementation [24–27].
The estimated battery parameters can then be used for on-
line SOC, SOH, and SOP estimation for lithium-ion bat-
teries. In this paper, based on the electrical circuit model
with the identified parameters, a battery SOP prediction
algorithm is derived, which considers both the voltage
and current limitations of the battery. Simulation results
for lithium-ion batteries based on real test data from ur-
ban dynamometer driving schedule (UDDS) are provided
to validate the proposed parameter identification and SOP
prediction methods. The proposed method is suitable for
real operation of embedded battery management system
due to its low complexity and numerical stability.

2. THE BATTERY MODEL

The battery model should be carefully chosen to en-
sure a precise estimation of states and parameters. For
real-time application in embedded systems, a balance be-
tween the accuracy and complexity of the battery model
should be made. Electrical circuit battery models are
the most suitable for embedded applications due to their
low complexity and the ability of characterizing the
current-voltage (I-V) dynamics of battery cells [28]. The
voltage hysteresis effect between the charging and dis-

Fig. 1. The first-order RC model with hysteresis.

charging widely exists in Li-ion batteries, especially for
the LiFePO4-type. It is demonstrated that the first-order
resistor-capacitor (RC) model with one-state hysteresis
seems to be the best choice for LiFePO4 cells [29]. There-
fore, the first-order RC model with a hysteresis, as shown
in Fig. 1, is used in this paper to provide a good balance
between model accuracy and complexity.

As shown in Fig. 1, the open-circuit voltage (OCV) Voc

includes two parts. The first part, Voc(SOC), represents the
equilibrium OCV as a function of the SOC. The second
part Vh is the hysteresis voltage to capture the hysteresis
behavior of the OCV curves. The RC circuit models the
I-V characteristics and the transient response of the bat-
tery cell. The series resistance, Rs, is used to describe the
charge/discharge energy loss in the cell; the charge trans-
fer resistance, Rc, and double layer capacitance, Cd , are
used to characterize the charge transfer and short-term dif-
fusion voltage, Vd , of the cell; VB represents the terminal
voltage of the cell.

The following voltage hysteresis model is used [5]:

∂Vh

∂ t
=−ρ (η iB − vSD) [Vhmax + sign(iB)Vh], (1)

where ρ is the hysteresis parameter representing the con-
vergence rate, η is the Coulomb efficiency (assuming
η=1), iB is the instantaneous current applied to the battery,
v is the self-discharge multiplier for hysteresis expression,
SD is the self-discharge rate, and Vhmax is the maximum
hysteresis voltage. The model (1) describes the depen-
dency of the hysteresis voltage Vh on the current, self-
discharge, and hysteresis boundaries. The parameter ρ is
chosen to minimize the voltage error between the Voc-SOC
curves from simulation and experiments, respectively.

The self-discharge effect is ignored in order to re-
duce the complexity of the battery model, so a simplified
continuous-time state space model can be obtained as fol-
lows:

∂Vh

∂ t
=−ρiBsign(iB)Vh −ρVhmaxiB. (2)

A discrete-time version of (2) assuming that iB and
Vhmax are constant over the sample period can be written
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as follows:

Vh(k+1) =exp(−ρ|iB|Ts)Vh(k)

+(exp(−ρ|iB|Ts)−1)sign(iB)Vhmax, (3)

where Ts is the sampling period and k is the time index.
Therefore, combined with the electrical circuit part, a

discrete-time battery model, including the electrical cir-
cuit model and the hysteresis model, can be written as fol-
lows:

X(k+1) =

1 0 0
0 γ 0
0 0 H

X(k)

+

 − ηTs
Cmax

0
Rc(1− γ) 0

0 (H −1)sign(iB)

[
iB(k)
Vhmax

]
,

y(k) =VB(k)=Voc(SOC(k))−Vd(k)−RsiB(k)+Vh(k),

Voc(SOC) = A0exp(−a1SOC)+A2 +A3SOC

−A4SOC2 +A5SOC3, (4)

where X(k+1)= [ SOC(k+1) Vd(k+1) Vh(k+1) ]T

is the state, y(k)is the measured output, Cmax denotes
the maximum capacity of the battery, γ = exp(−Ts

τ ) with
τ =RcCd , H(iB)= exp(−ρ|iB|Ts), and A j for 0≤ j ≤ 5 are
the coefficients used to parameterize the Voc-SOC curve.
Coefficients A j for 0 ≤ j ≤ 5 can be extracted by pulsed
current tests or constant charge and discharge current
test using a small current to minimally excite transient
response of the battery cell [30].

3. ES-BASED PARAMETER IDENTIFICATION
OF LITHIUM-ION BATTERY

3.1. Basic of ES
The basic scheme for a single gradient-based ES algo-

rithm is shown in Fig. 2. The algorithm injects a sinu-
soidal perturbation asin(ωt − π

2 ) into the system, result-
ing in an output of the cost function Q(θ). This output
Q(θ) is subsequently multiplied by asin(ωt + π

2 ). The
resulting signal after multiplying a gain l, ξ̇ , is an esti-
mate of the gradient of the cost function with respect to θ .
The gradient estimate is then passed through an integrator
1
s and added to the modulation signal asin(ωt − π

2 ). The
corresponding equations for the basic multi-parameter ES
algorithm are:

ξ̇i = ail sin(ωit +π/2)Q(θ), (5)

θi = ξi +ai sin(ωit −π/2), (6)

where ai is a gain, ωi is frequency, i is an integer, and
ωi > ω∗, with ω∗ large enough to ensure the convergence.
If the parameters ai, ωi, and l are properly selected, the
cost function output Q(θ) will converge to a neighborhood
of the optimal cost function value Q(θ ∗).

Fig. 2. Block diagram of the basic gradient-based ex-
tremum seeking algorithm.

In order to implement the ES algorithm in the real-time
embedded system, a discrete version of the ES algorithm
is required. The discrete version of the ES algorithm is
given:

ξi(k+1) = ξi(k)+ail∆T sin(ωik+π/2)Q(θ(k)), (7)

θi(k+1) = ξi(k+1)+ai sin(ωik−π/2), (8)

where k is the time step and ∆T is the sampling time.

3.2. ES for parameter identification

The multi-parameter ES algorithm is used to identify
the parameters of the battery model, i.e., Rs, Rc, Cd , and
Cmax in (4). The block diagram of ES-based parameter
identification method for lithium-ion battery is shown in
Fig. 3. At each time step, a battery terminal voltage VB

can be measured under a specific operating current iB. The
measured VB is compared with the estimated battery termi-
nal voltage V̂B, which is obtained from the battery model
based on the measured current iB using the estimated bat-
tery model parameters. The error of VB and V̂B is used
to generate a cost function, which represents the conver-
gence of the battery parameters. The battery parameters
will then be updated by the ES algorithm and used to gen-
erate a new V̂B in the next time step. The parameter up-
dating process will proceed until the cost function reaches
to a small criterion or the algorithm reaches the maximum
iteration number.

Using the estimated parameters, the battery model (4)

Fig. 3. Extremum seeking-based parameter identification
method for lithium-ion battery.
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can be written as

SÔC(k+1) = SÔC(k)− ηTs

Ĉmax
iB(k),

V̂d(k+1) = γ(k)V̂d(k)+ R̂c(k)(1− γ)iB(k),
V̂h(k+1) = HV̂h(k)+(H −1)sign(iB(k))Vhmax,

V̂B(k) =Voc(SOC(k))−V̂d(k)− R̂s(k)iB(k)+V̂h(k),
(9)

where γ(k) = exp( −Ts
τ(k) ), and τ(k) = R̂c(k)Ĉd(k).

The following cost function is defined for each itera-
tion:

Q(θ(k)) = Kp

∫ t f

t0
[VB(t)−V̂B(t)]2dt, (10)

where [t0, t f ] is the time interval over which the cost func-
tion is estimated, and Kp is a gain, and

θ(k) = [R̂s(k), R̂c(k),Ĉd(k),Ĉmax(k)]T .

The battery model parameters are updated in the fol-
lowing algorithm:

R̂s(k+1) = Rs,nominal +δ R̂s(k),

R̂c(k+1) = Rc,nominal +δ R̂c(k),

Ĉd(k+1) =Cd,nominal +δĈd(k),

Ĉmax(k+1) =Cmax,nominal +δĈmax(k), (11)

where Rs,nominal , Rc,nominal , Cd,nominal , and Cmax,nominal are
the nominal initial values of the battery model parame-
ters; δ R̂s(k), δ R̂c(k), δĈd(k), and δĈmax(k) are the varia-
tions of the identified battery model parameters, which are
calculated by (12). Following (7) and (8), the variations of
the identified battery model parameters are given by

ξ1(k+1) = ξ1(k)+a1l∆T sin(ω1k+π/2)Q(θ(k)),

δ̂ R̂s(k) = ξ1(k+1)+a1 sin(ω1k−π/2),

δ R̂s(k) = δ̂ R̂s(I−1)T,(I−1)T ≤ k∆T ≤ IT,

ξ2(k+1) = ξ2(k)+a2l∆T sin(ω2k+π/2)Q(θ(k)),

δ̂ R̂c(k) = ξ2(k+1)+a2 sin(ω2k−π/2),

δ R̂c(k) = δ̂ R̂c(I−1)T,(I−1)T ≤ k∆T ≤ IT,

ξ3(k+1) = ξ3(k)+a3l∆T sin(ω3k+π/2)Q(θ(k)),

δ̂Ĉd(k) = ξ3(k+1)+a3 sin(ω3k−π/2),

δĈd(k) = δ̂Ĉd(I−1)T,(I−1)T ≤ k∆T ≤ IT,

ξ4(k+1) = ξ4(k)+a4l∆T sin(ω4k+π/2)Q(θ(k)),

δ̂Ĉmax(k) = ξ4(k+1)+a4 sin(ω4k−π/2),

δĈmax(k) = δ̂Ĉmax(I−1)T,(I−1)T ≤ k∆T ≤ IT,
(12)

where a1, a2, a3, and a4 are positive, ωp + ωq ̸= ωr,
p,q,r ∈ {1,2,3,4}, for p ̸= q ̸= r, I = 1,2, · · · are the

learning iterations indexes. When the ES algorithm is
used, the gain l in (12) can also be various relating to dif-
ferent parameters.

Remark 1: One can notice that we have introduced ex-
tra variables δ̂ R̂s, δ̂ R̂c, δ̂Ĉd , δ̂Ĉmax, which are needed to
differentiate between the two time scales; ∆T the sampling
time scale, and T the learning iteration time scale, where
∆T < T . In other words, during each learning iteration IT
we keep track of the parameters estimation computed at a
faster samplign time ∆T , but we only keep as a final esti-
mate for the learning iteration IT , the values of δ̂ R̂s, δ̂ R̂c,
δ̂Ĉd , δ̂Ĉmax at (I −1)T .

Indeed, the algorithm (10), (11), and (12) are imple-
mented as follows:

1) Initialize all variables ξi, i = 1, · · · ,4, and δ̂ R̂s, δ̂ R̂c,
δ̂Ĉd , δ̂Ĉmax to zero.

2) For I = 1, · · · ,N, (N is the number of learning itera-
tions):

(i) Integrate forward the equations of ξi, i = 1, · · · ,4, and
the equations of δ̂ R̂s, δ̂ R̂c, δ̂Ĉd , δ̂Ĉmax, for all k, s.t.,
(I −1)T ≤ k∆T ≤ IT .

(ii) At the end of each learning interval [(I−1)T, IT ], i.e.,
when k∆T = IT , update the values of the parameters
δ R̂s, δ R̂c, δĈd , δĈmax as the last values attained by
δ̂ R̂s, δ̂ R̂c, δ̂Ĉd , δ̂Ĉmax. Keep these values of δ R̂s, δ R̂c,
δĈd , δĈmax constants for the next learning iteration,
and loop back to 2.(1).

3.3. Convergence analysis
To be able to write a formal convergence analysis, we

first need to introduce the following assumptions.

Assumption 1: The ES cost function Q has a local
minimum at the true parameters θ ∗ = [Rs,Rc,Cd ,Cmax]

T .

Assumption 2: The original parameters estimates vec-
tor, i.e., the nominal parameters value, is close enough to
the actual parameters vector.

Assumption 3: The cost function is analytic and its
variation with respect to the uncertain variables is bounded
in the neighborhood of θ ∗.

We summarize the convergence of the ES estimation
algorithm in the following Lemma.

Lemma 1: The ES estimation algorithm (10), (11), and
(12), under assumptions 1, 2, 3, where the dither frequen-
cies ωp, p ∈ {1,2,3,4} are such that ωp > ω∗, with ω∗

large enough, asymptotically converges to the true values,
with the estimation upper-bound

∥θ(∆T k)−θ ∗∥ ≤ ε1

ω0
+

√
i=4

∑
i=1

a2
i ,

where ε1 > 0, and ω0 = max{ω1, · · · ,ω4}.

Proof: First, based on Assumptions 1, 2, and 3, the
ES nonlinear dynamics in (12) can be approximated by
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a linear averaged dynamic (using averaging approxima-
tion over time ( [27], Definition 1)). Furthermore, ∃θ1,ω∗,
such that for all ω0 = max{ω1,ω2,ω3,ω4} > ω∗, the so-
lution of the averaged model θaver(t) is locally close to the
solution of the original ES dynamics and satisfies (e.g.,
refer to [25], [26], [27], [32])

∥θ(t)−d(t)−θaver(t)∥ ≤
ε1

ω0
, ε1 > 0, ∀t ≥ 0

with d(t) = [a1 sin(ω1t + π/2), · · · ,a4 sin(ω4t + π/2)]T .
Next, using the analytic property of the cost function
and the proper choice of the dither frequencies, such that
ωp +ωq ̸= ωr, p,q,r ∈ {1,2,3,4}, for p ̸= q ≠ r, allows
us to prove that (e.g., see [27], [32])

lim
t→∞

θaver(t) = θ ∗.

This together with the previous inequality leads to

∥θ(t)−θ ∗∥−∥d(t)∥ ≤ ∥θ(t)−θ ∗−d(t)∥ ≤ ε1

ω0
,

ε1 > 0, t → ∞,

∥θ(t)−θ ∗∥ ≤ ε1

ω0
+∥d(t)∥, ε1 > 0, t → ∞,

∥θ(t)−θ ∗∥ ≤ ε1

ω0
+

√
i=4

∑
i=1

a2
i sin(ωit +

π
2
)2,

ε1 > 0, t → ∞,

which finally implies, after using the fact that sin(ωit +
π
2 )

2 ≤ 1, and discretizing the time variable t = ∆T I,

∥θ(∆T k)−θ ∗∥ ≤ ε1
ω0

+
√

∑i=4
i=1 a2

i , k → ∞. □

Remark 2: Note that the upper-bound presented in
Lemma 1, shows only existence of a small ε1 > 0, s.t. the
estimated error is bounded by a term proportional to ε1,
plus a term proportional to the dither signals amplitudes
ai, i = 1, · · · ,4.

The important point here is that the term proportional
to ε1 is devided by the maximum of the extremum seeking
dither signal’s frequency ω0 = max{ω1, · · · ,ω4}. These
frequencies have to be chosen large enough to make
the term ε1

ω0
negligeable compared to the remaining term√

∑i=4
i=1 a2

i , which effectively bounds the estimation error
by the choice of the dither signals amplitudes, which can
then be tuned such that the estimation error is small, e.g.,
[33].

4. SOP ESTIMATION

To guarantee the safe and durable operation, the work-
ing current and voltage of the lithium-ion battery should
be restricted in a range so that the battery power will be

limited by the minimum value of the two restrictions given
by

SOPdischarge = min[ SOPV
discharge SOPI

discharge ],

SOPcharge = max[ SOPV
charge SOPI

charge ], (13)

where SOPdischarge and SOPcharge are the maximum dis-
charging and charging capabilities of the battery, respec-
tively, SOPV

discharge and SOPV
charge are the battery SOPs un-

der voltage limitation, SOPI
discharge and SOPI

charge are the
battery SOPs under current limitation.

4.1. SOP based on voltage limitation
In order to predict the maximum power capability under

the voltage limitation, (9) is rewritten into

SÔC(k+1) = SÔC(k)− ηTs

Cmax
iB(k),

V̂d(k+1) = γV̂d(k)+Rc(1− γ)iB(k),
V̂h(k+1) = HV̂h(k)+(H −1)sign(iB(k))Vhmax,

îB(k+1) = [Voc(SÔC(k+1))−V̂d(k+1)

+V̂h(k+1)−VB(k+1)]/Rs, (14)

where the battery model parameters Rs, Rc, Cd , and Cmax

have been identified by the ES algorithm. The estimated
current for the next time step îB(k + 1) can be obtained
with a given VB(k+1).

According to (14), the maximum discharging and
charging current can be obtained by setting VB(k + 1) to
the minimum and maximum limiting value. Then, the bat-
tery SOP can be obtained by multiplying the maximum
discharging and charging current with the limiting volt-
age,

SOPV
discharge(k+1) =VBmin îB(k+1)(VBmin),

SOPV
charge(k+1) =VBmax îB(k+1)(VBmax), (15)

where SOPV
discharge(k + 1) and SOPV

charge(k + 1) are the
maximum discharging and charging capabilities for the
next sampling interval under the voltage limitation, VBmax

and VBmin the maximum and minimum voltage allowed for
the battery operation, respectively. With the updated iB(k)
and VB(k), the algorithm above can periodically predict
the SOP of the battery for the next time step.

4.2. SOP based on current limitation
The maximum charging and discharging currents of the

battery are also limited and should be considered in the
SOP estimation. In order to predict the maximum power
capability under the current limitation, (9) is rewritten into

SÔC(k+1) = SÔC(k)− ηTs

Cmax
iB(k),

V̂d(k+1) = γV̂d(k)+Rc(1− γ)iB(k),
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V̂h(k+1) = HV̂h(k)+(H −1)sign(iB(k))Vhmax,

V̂B(k+1) =Voc(SÔC(k+1))−V̂d(k+1)

−RsiB(k+1)+V̂h(k+1), (16)

where the battery model parameters Rs, Rc, Cd , and Cmax

have been identified by the ES algorithm. The estimated
voltage for the next time step V̂B(k + 1) can be obtained
with a given iB(k+1).

According to (16), by setting iB(k+1) to the minimum
and maximum limiting value, V̂B(k+1) can be calculated.
Then, the battery SOP can be expressed as

SOPI
discharge(k+1) =IBmaxV̂B(k+1)(IBmax),

SOPI
charge(k+1) =IBminV̂B(k+1)(IBmin), (17)

where SOPI
discharge(k + 1) and SOPI

charge(k + 1) are the
maximum discharging and charging capabilities for the
next sampling interval under the current limitation, IBmax

and IBmin are the maximum discharging and charging cur-
rents allowed for the battery operation, respectively. With
the updated iB(k) and VB(k), the algorithm above can pe-
riodically predict the SOP of the battery under the current
limitation for the next time step.

5. SIMULATION RESULTS

Simulations are carried out in Matlab/Simulink to
validate the proposed ES-based parameter identification
method and the SOP prediction algorithm for a Li-ion bat-
tery. Two different types of current profile are applied
to test the battery model: high pulse current cycle and
the current profile based on real test data from standard
UDDS.

5.1. High pulse current cycle
The battery model is first tested under a high pulse cur-

rent cycle (iB=10C, see Fig. 4(a)). This current profile
leads to an output voltage profile shown in Fig. 4(b) from
the battery model. Table 1 lists the values of the model
parameters, which are based on a polymer Li-ion battery
cell [28] with the maximum capacity scaled up to 10 Ah.
The parameters used for the estimation algorithm in sim-
ulation are also listed in Table 1. The initial estimated
states is [SOC(0),Vd(0),Vh(0)]T = [0.35,0,0]T . The ini-
tial values for the battery model parameters Rs, Rc, Cd , and

Table 1. Simulated battery model parameters.

Cmax 10Ah Cd 4000F Rs 0.06Ω Rc 0.02Ω
Vhmax 0.01V ρ 2.47e−4 A0 −0.852 A1 63.867

A2 3.692 A3 0.559 A4 0.51 A5 0.508
a1 0.005 a2 0.01 a3 170 a4 0.9
ω1 10 ω2 80 ω3 10 ω4 10
l 1 Kp 100

(a)

(b)

Fig. 4. High pulse current cycle: (a) input current profile,
(b) cell voltage.

(a) (b)

(c) (d)

Fig. 5. Simulation results of ES-based parameter identifi-
cation for a Li-ion battery under high pulse current
cycle: (a) estimated Rs, (b) estimated Rc, (c) esti-
mated Cd , (d) estimated Cmax.

Cmax in the ES-based algorithm are 0.03, 0.06, 3000, and
5, respectively, the sampling time is 1 sec. Fig. 5 shows
the results of the parameter identification by the proposed
ES-based method and the basic EKF method. The identifi-
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cation results are validated against the exact values of the
battery parameters. The battery model parameters con-
verge to their true values well after a certain number of
iterations in the proposed method. Compared with the ba-
sic EKF method, the proposed method has a faster rate
of convergence. Although Rs, Rc and Cd can converge to
their true values, the process of convergence takes longer
time, e.g., it needs about 3000 more iterations for Cd to
converge. For parameter Cmax, it does not converge to the
true value after 4000 iteration. Fig. 6 shows the cost func-
tion during this process. The cost function decreases to a
small value after the battery parameters converge, which
indicates the estimated terminal voltage V̂B from the bat-

Fig. 6. Cost function under high pulse current cycle.

(a)

(b)

Fig. 7. SOP estimation: (a) for discharge, and (b) for
charge.

Table 2. Performance of estimation algorithm for high
pulse current cycle.

Rs Rc Cd Cmax SOPdischarge SOPcharge

Estimation
errors (%)

0.17 1.5 1.08 0.39 1.5 0.16

Computing
time (s)

0.15 0.15 0.15 0.15 0.89 0.89

tery model converges to the true value VB.
After the estimated battery parameters converge, their

final values are used for the SOP prediction of the bat-
tery. Fig. 7 shows the results of the SOP prediction,
in which positive power means discharging and negative
power means charging. Three curves are provided in
Fig. 7, which are the SOP prediction using the initial and
final values of the battery model parameters, and the the-
oretical SOP respectively. It can be clearly observed that
by using the estimated battery parameters obtained from
the ES-based method, the predicted SOP overlaps with the
theoretical SOP of the battery well. SOP prediction using
the estimated parameters shows a high accuracy. Fig. 7
also shows that even a small divergence of the battery pa-
rameters will cause a large error of the predicted SOP,
which indicates the importance of the battery parameter
identification with high accuracy. Table 2 shows the per-
formances of the parameter identification and SOP esti-
mation algorithms. The battery parameters and SOP are
estimated with high accuracy and short calculation time,
as seen from Table 2.

5.2. Current profile in UDDS
The battery model is then subject to a current profile

based on real test data from the standard UDDS. In an
urban driving environment, a vehicle switches frequently
between acceleration, deceleration and steady state, which
would lead to battery discharging profiles containing suf-
ficient frequencies, thus bringing about improved identi-
fiability and observability of the battery model. This cur-
rent profile is shown in Fig. 8(a), which leads to an output
voltage profile shown in Fig. 8(b) from the battery model.
The initial estimated states is [SOC(0),Vd(0),Vh(0)]T =
[0.85,0,0]T . The initial values for the battery model pa-
rameters Rs, Rc, Cd , and Cmax in the ES-based algorithm
are 0.03, 0.06, 3000, and 5, respectively. Fig. 9 shows
the results of the parameter identification by the proposed
ES-based method and the basic EKF method. The battery
model parameters converge to their true values well af-
ter a certain number of iterations in the proposed method.
Again, the proposed method has a faster rate of conver-
gence compared with the basic EKF method, e.g., it needs
about 3000 more iterations for Cd to converge. For pa-
rameter Cmax, it does not converge to the true value after
3000 iteration. Fig. 10 shows the cost function during this
process. The cost function decreases to a small value af-
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(a)

(b)

Fig. 8. UDDS current profile: (a) input current profile, (b)
cell voltage.

(a) (b)

(c) (d)

Fig. 9. Simulation results of ES-based parameter identi-
fication for a Li-ion battery under UDDS current
profile: (a) estimated Rs, (b) estimated Rc, (c) esti-
mated Cd , (d) estimated Cmax.

ter the battery parameters converge, which again indicates
the estimated terminal voltage V̂B from the battery model
converges to the true value VB.

After the estimated battery parameters converge, their

Fig. 10. Cost function under UDDS current cycle.

(a)

(b)

Fig. 11. SOP estimation: (a) for discharge, and (b) for
charge.

final values are used for the SOP prediction of the bat-
tery. Fig. 11 shows the results of the SOP prediction.
Three curves are provided in Fig. 11, which are the SOP
prediction using the initial and final values of the battery
model parameters, and theoretical SOP, respectively. It
can be clearly observed that by using the estimated bat-
tery parameters obtained from the ES-based method, the
predicted SOP overlaps with the theoretical SOP of the
battery well. The proposed ES-based parameter identi-
fication method and the SOP prediction algorithm work
well for the Li-ion battery under both the high pulse cur-
rent cycle and the UDDS current profiles. Table 3 shows
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Table 3. Performance of estimation algorithm for UDDS.

Rs Rc Cd Cmax SOPdischarge SOPcharge

Estimation
errors (%)

0.33 0.99 0.29 0.02 1.44 0.5

Computing
time (s)

0.15 0.15 0.15 0.15 0.9 0.9

the performances of the parameter identification and SOP
estimation algorithms. Again, the battery parameters and
SOP are estimated with high accuracy and short calcula-
tion time, as seen from Table 3.

6. DISCUSSION

The ES algorithm itself is a model-free adaptive opti-
mization method and has the advantages of both rigor-
ously provable convergence and simple implementation,
which enables it to be used in the real system. Compared
with the EKF method, ES can identify multiple battery
parameters with faster convergence, higher accuracy, and
simpler implementation, as shown in Fig. 5 and Fig. 9. In
order to achieve a successful parameter estimation of the
proposed ES method, the cost function and the parame-
ters should be selected properly. For the cost function, the
error of the system output, such as voltage in (10), can
be used and a larger Kp can lead to a faster convergence.
For the algorithm parameters, the frequency ωi should be
large enough to ensure the convergence of ES, and the se-
lection of ai relates to the true parameter value. For large
parameters, larger values of ai are usually chosen.

The SOP can be easily obtained from the battery model
incorporated with the battery open-circuit voltage, after
the parameter estimation by the ES. The simplicity and
accuracy of the ES increase the accuracy of SOP pre-
diction. Compared with previous SOP estimation algo-
rithms that only consider the voltage limitation, the es-
timation method in this paper considers both the voltage
and current limitations of the battery, which provides a
two-level estimation of the battery peak power capabili-
ties. This contributes to fully exploit the potential of the
battery within the safe operation range.

Recently, a new control algorithm named composite
learning from adaptive dynamic surface control was pro-
posed in [31]. The composite learning was proposed to
update parametric estimates for systems with mismatched
parametric uncertainties. It will be a good choice to extend
the composite learning technique to the battery systems
for online parameter estimation for future work, as the
battery systems especially in electric vehicles are highly
nonlinear with uncertainties.

7. CONCLUSION

In this paper we have proposed a novel parameter iden-
tification method and its application to SOP prediction
for lithium-ion batteries. The ES algorithm has been de-
veloped for identifying the parameters of batteries on the
basis of an electrical circuit model incorporating hystere-
sis effect. A rigorous convergence proof of the ES-based
estimation algorithm is provided. Based on the electri-
cal circuit model with the identified parameters, a battery
SOP prediction algorithm has been developed, which con-
siders both the voltage and current limitations of the bat-
tery. Simulation results for lithium-ion batteries have been
provided to validate the proposed parameter identification
and SOP prediction methods, for both high impulse and
UDDS current profiles. The proposed method is suitable
for real operation of embedded BMS due to its low com-
plexity and numerical stability. Future research will focus
on the development of advanced algorithms for compre-
hensive battery state estimation such as SOC, SOP, and
SOH, and fault diagnosis, prognosis, and optimization of
battery management systems.

REFERENCES

[1] V. Minh and J. Pumwa, “Simulation and control of hybrid
electric vehicles,” International Journal of Control, Au-
tomation and Systems, vol. 10, no. 2, pp. 308-316, April
2012.

[2] S. Han, H. Aki, S. Han, B. Kwon, and J. Park, “Optimal
charging strategy for a residential PEV battery considering
bidirectional trade and frequency regulation,” International
Journal of Control, Automation and Systems, vol. 14, no. 2,
pp. 587-597, April 2016.

[3] J. Cao and B. Cao, “Neural network sliding mode con-
trol based on on-line identification for electric vehicle with
ultracapacitor-battery hybrid power,” International Journal
of Control, Automation and Systems, vol. 7, no. 3, pp. 409-
418, June 2009.

[4] R. Wongsathan and A. Nuangnit, “Optimal hybrid neuro-
fuzzy based controller using MOGA for photovoltaic (PV)
battery charging system,” International Journal of Control,
Automation and Systems, vol. 16, no. 6, pp. 3036-3046,
December 2018.

[5] G. Plett, “Extended Kalman filtering for battery manage-
ment systems of LiPB-based HEV battery packs - Part 3.
State and parameter estimation,” J. Power Sources, vol.
134, no. 2, pp. 262-276, August 2004.

[6] G. Plett, “Sigma-point Kalman filtering for battery man-
agement systems of LiPB-based HEV battery packs: Part
2. Simultaneous state and parameter estimation,” J. Power
Sources, vol. 161, no. 2, pp. 1369-1384, October 2006.

[7] Z. Chen, Y. Fu, and C. Mi, “State of charge estimation
of lithium-ion batteries in electric drive vehicles using ex-
tended Kalman filtering,” IEEE Trans. Vehicular Technol-
ogy, vol. 62, no. 3, pp. 1020-1030, March 2013.



10 Chun Wei, Mouhacine Benosman, and Taesic Kim

[8] J. D. Rubio, “Stable Kalman filter and neural network for
the chaotic systems identification,” Journal of the Franklin
Institute, vol. 354, no. 16, pp. 7444-7462, November 2017.

[9] E. Lughofer, S. Kindermann, M. Pratama, and J. D. Rubio,
“Top-down sparse fuzzy regression modeling from data
with improved coverage,” International Journal of Fuzzy
Systems, vol. 19, no. 5, pp. 1645-1658, October 2017.

[10] J. D. Rubio, E. Lughofer, J. A. Meda-Campana, L. A.
Paramo, J. F. Novoa, and J. Pacheco, “Neural network up-
dating via argument Kalman filter for modeling of Takagi-
Sugeno fuzzy models,” Journal of Intelligent & Fuzzy Sys-
tems, vol. 35, no. 2, pp. 2585-2596, 2018.

[11] J. D. Rubio, E. Lughofer, P. Angelov, and J. Novoa, “A
novel algorithm for the modeling of complex processes,”
Kybernetika, vol. 54, no. 1, pp. 79-95, 2018.

[12] G. Giordano, V. Klass, M. Behm, G. Lindbergh, and J.
Sjoberg, “Model-based lithium-ion battery resistance esti-
mation from electric vehicle operating data,” IEEE Trans.
Vehicular Technology, vol. 67, no. 5, pp. 3720-3728, May
2018.

[13] M. Roscher, O. Bohlen, and D. Sauer, “Reliable state es-
timation of multicell lithium-ion battery system,” IEEE
Trans. Energy Conv., vol. 26, no. 3, pp. 737-743, Septem-
ber 2011.

[14] C. Gould, C. Bingham, D. Stone, and P. Bentley, “New bat-
tery model and state-of-health determination through sub-
space parameter estimation and state-observer techniques,”
IEEE Trans. Vehicular Technology, vol. 58, no. 8, pp. 3905-
3916, October 2009.

[15] A. Fotouhi, D. Auger, K. Propp, and S. Longo, “Electric
vehicle battery parameter identification and SOC observ-
ability analysis: NiMH and Li-S case studies,” IET Power
Electron., vol. 10, no. 11, pp. 1289-1297, September 2017.

[16] X. Chen, W. Shen, M. Dai, Z. Cao, J. Jin, and A. Kapoor,
“Robust adaptive sliding-mode observer using RBF neural
network for lithium-ion battery state of charge estimation
in electric vehicle,” IEEE Trans. Vehicular Technology, vol.
65, no. 4, pp. 1936-1947, April 2016.

[17] Y. Zhang, C. Zhang, and X. Zhang, “State-of-charge esti-
mation of the lithium-ion battery system with time-varying
parameter for hybrid electric vehicles,” IET Control Theory
Appl., vol. 8, no. 3, pp. 160-167, Feburary 2014.

[18] W. Shen and H. Li, “A sensitivity-based group-wise param-
eter identification algorithm for the electric model of li-ion
battery,” IEEE Access, vol. 8, pp. 4377-4387, March 2017.

[19] T. Feng, L. Yang, X. Zhao, H. Zhang, and J. Qiang, “Online
identification of lithium-ion battery parameters based on an
improved equivalent-circuit model and its implementation
on battery state-of-power prediction,” J. Power Sources,
vol. 281, pp. 192-203, May 2015.

[20] F. Sun, R. Xiong, H. He, W. Li, and J. Aussems, “Model-
based dynamic multi-parameter method for peak power es-
timation of lithium-ion batteries,” Applied Energy, vol. 96,
pp. 378-386, August 2012.

[21] R. Xiong, H. He, F. Sun, X. Liu, and Z. Liu, “Model-based
state-of-charge and peak power capability joint estimation
for lithium-ion battery in plug-in hybrid electric vehicles,”
J. Power Sources, vol. 229, pp. 159-169, May 2013.

[22] P. Malysz, J. Ye, R. Gu, H. Yang, and A. Emadi, “Battery
state-of-power peak current calculation and verification us-
ing an asymmetric parameter equivalent circuit model,”
IEEE Trans. Vehicular Technology, vol. 65, no. 6, pp. 4512-
4522, June 2016.

[23] J. Lu, Z. Chen, Y. Yang, and M. Lv, “Online estimation of
state of power for lithium-ion batteries in electric vehicles
using genetic algorithm,” IEEE Access, vol. 6, pp. 20868-
20880, April 2018.

[24] M. Benosman and G. Atinc, “Multi-parametric extremum
seeking-based learning control for electromagnetic actua-
tors,” International Journal of Control, vol. 88, no. 3, pp.
517-530, April 2015.

[25] M. Benosman, Learning-based Adaptive Control: An Ex-
tremum Seeking Approach, Theory and Applications, Else-
vier, July 2016.

[26] M. Krstic, “Performance improvement and limitations in
extremum seeking control,” Systems & Control Letters,
vol. 39, pp. 313-326, April 2000.

[27] M. Rotea, “Analysis of multivariable extremum seeking al-
gorithms,” Proc. American Control Conf., Chicago, USA,
pp. 433-437, June 2000.

[28] T. Kim and W. Qiao, “A hybrid battery model capable of
capturing dynamic circuit characteristics and nonlinear ca-
pacity effects,” IEEE Trans. Energy Conv., vol. 26, no. 4,
pp. 1172-1180, December 2011.

[29] M. Verbrugge and E. Tate, “Adaptive state of charge algo-
rithm for nickel metal hydride batteries including hystere-
sis phenomena,” J. Power Sources, vol. 126, pp. 236-249,
Feburary 2004.

[30] T. Kim, Y. Wang, H. Fang, Z. Sahinoglu, and T. Wada,
“Model-based condition monitoring for lithium-ion batter-
ies,” J. Power Sources, vol. 295, pp. 16-27, November
2015.

[31] Y. Pan and H. Yu, “Composite learning from adaptive dy-
namic surface control,” IEEE Trans. Automatic Control,
vol. 61, no. 9, pp. 2603-2609, September 2016.

[32] M. Benosman, “Multi-parametric extremum seeking-based
auto-tuning for robust input-output linearization control,”
International Journal of Robust and Nonlinear Control,
vol. 26, no. 18, pp. 4035-4055, 2016.

[33] Y. Tan, D .Nesic, and I. Mareels, “On the choice of dither
in extremum seeking systems: a case study,” Automatica,
vol. 44, no. 5, pp. 1446-1450, May 2008.



Online Parameter Identification for State of Power Prediction of Lithium-ion Batteries in Electric Vehicles Using ... 11

Chun Wei received his B.S. degree in
electrical engineering from Beijing Jiao-
tong University, Beijing, China, in 2009,
an M.S. degree in electrical engineering
from North China Electric Power Univer-
sity, Beijing, China, in 2012, and a Ph.D.
degree in electrical engineering from the
University of Nebraska-Lincoln, Lincoln,
NE, USA, in 2016. He was a postdoctoral

researcher in ABB Corporate Research Center, Raleigh, NC,
USA in year 2017. He is currently an Associate Professor
with College of Information Engineering, Zhejiang University of
Technology, Hangzhou, Zhejiang, China. His research interests
include renewable energy generation systems, adaptive control,
motor drives, and system identification.

Mouhacine Benosman is a Senior Re-
search Scientist at Mitsubishi Electric Re-
search Labs (MERL) in Cambridge, USA.
Before joining MERL, he worked at Reims
University, France, Strathclyde Univer-
sity, Scotland, and National University of
Singapore. His research interests include
modeling and control of flexible systems,
nonlinear robust and fault tolerant control,

multi-agent distributed control with applications to robotics and
smart-grid systems, and learning and adaptive control for non-
linear systems. Mouhacine has published a monograph about
learning-based adaptive control, more than 100 peer-reviewed
journal articles and conference papers, and more than 20 patents
in the field of mechatronics systems control. He is a senior mem-
ber of the IEEE, Associate Editor of the Control System Society
Conference Editorial Board, Associate Editor of the Journal of
Optimization Theory and Applications, and Senior Editor of the
International Journal of Adaptive Control and Signal Process-
ing.

Taesic Kim received his M.S. degree in
Electrical Engineering and his Ph.D. de-
gree in Computer Engineering at the Uni-
versity of Nebraska-Lincoln, in 2012 and
2015, respectively. In 2009, He was with
the New and Renewable Energy Research
Group of Korea Electrotechnology Re-
search Institute, Korea. He was also with
Mitsubishi Electric Research Laboratories,

Cambridge, MA, USA in 2013. Currently, He is an assistant pro-
fessor in the Department of Electrical Engineering and Computer
Science at the Texas A&M University-Kingsville. He research
focuses on energy IoT, power electronics, cyber and physical se-
curity, blockchain, and intelligence algorithms for power and en-
ergy systems. He holds 2 U.S. patents and co-authored more than
40 papers in refereed journals and IEEE conference proceedings
in the field of cyber-physical power and energy systems. He is
a Cyber Physical Security Steering Committee for IEEE PELS
and a Guest Associate Editor of the IEEE Journal of Emerging
and Selective Topics in Power Electronics.

Publisher’s Note Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional affil-
iations.


	Title Page
	page 2

	/projects/www/html/my/publications/docs/TR2019-085.pdf
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11


