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Abstract—This paper presents a comprehensive review on
applying various deep learning algorithms to bearing fault diag-
nostics. Over the last ten years, the emergence and revolution of
deep learning (DL) methods have sparked great interests in both
industry and academia. Some of the most noticeable advantages
of DL based models over conventional physics based models or
heuristic based methods are the automatic fault feature extraction
and the improved classifier performance. In addition, a thorough
and intuitive comparison study is presented summarizing the
specific DL algorithm structure and its corresponding classifier
accuracy for a number of papers utilizing the same Case Western
Reserve University (CWRU) bearing data set. Finally, to facilitate
the transition on applying various DL algorithms to bearing
fault diagnostics, detailed recommendations and suggestions are
provided for specific application conditions such as the setup
environment, the data size, and the number of sensors and
sensor types. Future research directions to further enhance the
performance of DL algorithms on healthy monitoring are also
presented.
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I. INTRODUCTION

Electric machines are widely employed in a variety of
industry application processes and electrified transportation
systems. However, for certain applications these machines may
operate under unfavorable conditions, such as high ambient
temperature, high moisture and overload, which can eventually
result in motor malfunctions that lead to high maintenance
costs, severe financial losses, and safety concerns [1], [2]. The
malfunction of electric machines can be generally attributed to
various faults of different categories, which include the drive
inverter failure, the stator winding insulation breakdown, the
bearing fault, and the air gap eccentricity. Several surveys
on the likelihood of induction machine failures conducted by
the IEEE Industry Application Society (IEEE-IAS) [3] and
the Japan Electrical Manufacturers’ Association (JEMA) [4]
reveal that bearing fault is the most common fault type that
accounts for 30% to 40% of the total faults.

Since bearing is the most vulnerable component in a motor
and drive system, bearing fault detection has been a research
frontier for engineers and scientists for the past decade. Specif-
ically, this problem is approached by interpreting a variety of
available signals, including vibration [7], acoustic noise [8],
stator current [9], thermal-imaging [10], and multiple sensor
fusion [11]. The existence of a bearing fault as well as its
specific fault type can be readily determined by performing

frequency spectral analysis on monitored signals and analyzing
their component at the characteristic fault frequency, which
can be calculated by a well-defined mechanical model [5] that
depends on the motor speed, bearing geometry and the specific
location of a defect.

However, the accuracy of the mainstream bearing fault
diagnostics method based on vibration or acoustic signals can
be affected by background noise due to external mechanical
excitation motion, while its sensitivity is also subject to change
based on sensor mounting positions and spatial constraints
in a highly-compact design. Therefore, a popular alternative
approach for bearing fault detection is accomplished by ana-
lyzing the stator current [9], which is measured in most motor
drives and thus would not bring extra device or installation
costs.

Despite its advantages such as economic savings and simple
implementation, stator current signature analysis can encounter
many practical issues. For example, the magnitude of stator
current at bearing fault signature frequencies can vary at
different loads, different speeds, and different power ratings
of the motor itself, thus bringing challenges to identify the
threshold stator current values to trigger a fault alarm at an
arbitrary operating condition. Therefore, a thorough testing
is usually required while the motor is still at the healthy
condition, and the healthy data would be collected while
the targeted motor is running at different loads and speeds.
This process, summarized as “Learning Stage” in [12], is
unfortunately very tedious and expensive to perform, and
needs to be repeated for motors with different power ratings.

Most of the challenges described above can be attributed
to the fact that all of the conventional methods rely solely
upon values at fault characteristic frequencies to determine the
presence of a bearing fault. However, there may exist some
unique patterns or relationships hidden in the data that can
potentially reveal a bearing fault; and these special features
can be almost impossible for humans to identify at the first
place. Therefore, many researchers began applying various
machine learning algorithms, i.e., artificial neural networks
(ANN), principal component analysis (PCA), support vector
machines (SVM), etc., to better parse the data, learn from
them, and then apply what they’ve learned to make intelligent
decisions regarding the presence of bearing faults [13]–[16].
Most of the literature applying these ML algorithms report
satisfactory results with accuracy over 90%.
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Fig. 1. Structure of a rolling-element bearing with four types of abnormal
scenarios: (a) misalignment (out-of-line), (b) shaft deflection, (c) crooked or
tilted outer race and (d) crooked or tilted inner race [5].

To achieve even better performance and higher classification
accuracy under versatile operating conditions or noisy condi-
tions, deep learning based methods are becoming increasingly
popular to meet this need. Although this literature survey does
not include all DL papers on bearing fault diagnostics due to
length limit, it is observed that the number of papers grew
steadily in the last three years, clearly indicating booming in-
terests in employing DL methods for bearing fault diagnostics.
In this context, this paper seeks to present a thorough overview
on recent research work devoted to applying deep learning
techniques to bearing fault diagnostics.

The rest of this paper is structured as follows. In Section
II, we give a brief overview to the bearing structure, and the
CWRU dataset to be used for a comparative study. In Section
III, we discuss the advantages of DL approaches compared
with conventional machine learning methods, and introduce a
variety of DL approaches that have been applied for bearing
fault diagnostics. Then in Section IV, a systematic comparison
is provided on the classification accuracy of DL algorithms.
Based on those observations, in Section V we provide our
recommendations for applying DL algorithms to bearing fault
diagnostics, and future directions in this field.

II. BEARING STRUCTURE AND FAULT DATASET

The structure of a rolling-element bearing is illustrated in
Fig. 1, which contains the outer race typically mounted on the
motor cap, the inner race to hold the motor shaft, the ball or
the rolling element, and the cage for restraining the relative
distance of the rolling elements. Four common scenarios of
misalignment are demonstrated in Fig. 1 (a) to (d).

Data is the foundation for all machine learning and artificial
intelligence methods. To develop effective DL algorithms
for bearing fault detection, a good collection of datasets is
necessary. Since the bearing degradation process may take
many years, most people conduct experiment and collect data
either using bearings with artificially injected faults, or with
accelerated life testing. A few organizations have made the
effort and provided bearing fault datasets for people to work
on the DL research, i.e., the CWRU dataset, which can serve
as standards for the comparison of different algorithms.

III. DEEP LEARNING BASED APPROACHES

As a subset of machine learning, deep learning possesses
powerful capability to learn and represent real-world applica-
tions with great flexibility as nested hierarchy from convoluted
concepts to simpler concepts, and abstract representations
computed in terms of perceptual ones. The trend of transi-
tioning from conventional ML methods to deep learning can
be attributed to the following reasons.

1) Hardware evolution: Training deep neural networks is
extremely computationally intensive, but running on a
high performance GPU can significantly accelerate this
training process.

2) Algorithm evolution: More techniques and frameworks
are invented and getting matured in terms of controlling
the training process of deeper models to achieve faster
speed, better convergence, and better generalization.

3) Data explosion: With the availability of more sensors
installed that collect an increasing amount of data, and the
application of crowdsourced labeling mechanism such as
Amazon mTurk [17], we have seen a surging appearance
of large scale dataset in many domains, such as ImageNet
in image recognition, MPI Sintel Flow in image optical
flow, VoxCeleb in speaker identification, et al.

All of the factors above contribute to the new era of deep
learning for a variety of data-related applications. Specifically,
advantages of applying deep learning algorithms compared to
conventional approaches include:

1) Best-in-class performance: The complexity of the com-
puted function grows exponentially with depth [18]. Deep
learning has best-in-class performance that significantly
outperforms other solutions on problems across multiple
domains, including speech, language, vision, and gaming.

2) Automatic feature extraction: No need for feature engi-
neering. Conventional machine learning algorithms usu-
ally call for sophisticated manual feature engineering
which unavoidably involves expert domain knowledge
and numerous human effort. With a deep network, there’s
no need for this.

3) Transferability: The strong expressive power and high
performance of a deep neural network trained in one
domain can be easily generalized or transferred to other
contexts or settings.

Due to these advantages, We are witnessing an exponential
increase in DL applications. One such example is fault diag-
nostics and health prognostics, and bearing fault identification
is a very representative case.

A. Convolutional Neural Network (CNN)

Inspired by animal visual cortex [19], convolution operation
is first introduced to detect image patterns in a hierarchical
way from simple to complex features. The low layer detects
fundamental low level visual features such as edge and corner,
and layers afterward detect higher level features.

The first paper employing CNN to identify bearing fault was
published in 2016 [20]. For the next three years many papers
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Fig. 2. Architecture of the CNN-based fault diagnosis model.

and complicated object models in latter layers. The classification
layer can use the learned bank of filters (or the extracted features)
to achieve the classification.

III. CNN-BASED FAULT DIAGNOSIS WITH

MULTIPLE SENSORS

This paper proposes an intelligent fault diagnosis approach
for rotating machinery based on CNN with the raw data from
multiple sensors. With the appealing capability of automatic
feature extraction of the approach, no hand-crafted features are
needed to classify different conditions. Multiple sensor fusion at
data level is achieved by combining the raw data from multiple
sensors into a 2-D matrix at the input layer. Fig. 1 shows the
flowchart of the proposed fault diagnosis method. Condition
monitoring data of the running machinery is collected from
multiple sensors such as vibration signals from accelerometers.
After denoising and preprocessing, these sets of 1-D time series
are stacked row by row to form a 2-D input matrix. The temporal
information and the spatial information from the sensors are
constructed in the input matrix in this manner. All the collected
samples are then divided into training, validation, and testing
dataset. The training dataset is used to train the initialized CNN
model by minimizing the error between the predicted condition
and the actual one. The validation dataset is used to select a
model before possible overfitting. The generalization capability
of the trained model is then evaluated by the testing dataset. No
manual feature extraction or selection is needed in this approach
as the representative features are automatically extracted during
the training process.

Fig. 2 shows the detailed structure of the CNN-based fault
diagnosis model. Machine condition monitoring data Xn

i , (i =
1, 2, . . . ,m) from m vibration sensors is collected and fused
at the data level as input X ∈ Rm×n of the CNN model. The
input is convolved by K1 filters of size p1 × q1 × 1. The ReLU
operation is applied on the convolved outcome to form the K1

feature maps with dimension (m − p1 + 1) × (n − q1 + 1). A
max-pooling layer is followed to subsample the feature maps by
using (4). Followed by another such stage, the convolution pro-
cess aims to capture the representative features from the input
data. A fully connected layer and a softmax layer are added next
to output the machine condition. Minibatch stochastic gradient
descent is used in this paper to update the parameters of the
model in the training process using (6) through (8). After train-
ing, the CNN model extracts representative features directly
from the raw vibration signals from multiple sensors. Fault di-
agnosis can then be performed on new monitoring data.

Fig. 3. Experimental setup of the CWRU dataset.

Overfitting is a common issue in training, which leads to
a poor performance on the test data especially with limited
training data. This paper uses dropout to prevent overfitting.
Dropout is a technique that avoids extracting same features
repeatedly to reduce the chance of overfitting [36]. During each
iteration of training, neurons are randomly dropped out, which
means temporarily removed from the network, along with all
their incoming and outgoing connections with probability p,
so that a reduced network is left for training [37]. It can be
implemented by setting the selected elements of the feature
maps to zero. In the testing phase, the dropout is turned OFF

and the probability p will be multiplied by each feature map
element. Dropout is considered to exponentially combine many
different neural network architectures in an efficient way to find
the fittest model.

IV. EXPERIMENTAL EVALUATION

To evaluate the effectiveness of the proposed approach for ro-
tating machinery fault diagnosis, two typical rotating machinery,
bearings and gearboxes, are investigated in this paper. Vibration
signals of different machine conditions are collected through
multiple accelerometers.

A. Case One: Bearing Fault Diagnosis

1) Experimental Setup and Data Description: In this
case study, the public available roller bearing condition dataset
collected from a motor drive system by Case Western Reserve
University (CWRU) is analyzed [38]. The objective is to
diagnose the different faults of bearing also with different levels
of severity. The main components of the experimental setup

Fig. 2. Architecture of the CNN-based fault diagnosis model [25].

[21]–[23], [25], [26] emerged on this topic that contributed to
its performance advancement in various aspects. The basic ar-
chitecture of a CNN-based bearing fault classifier is illustrated
in Fig. 2. The 1-D temporal raw data obtained from different
accelerometers are firstly stacked to a 2-D matrix form, similar
to the representation of images, which is then passed through a
convolution layer for feature extraction, followed by a pooling
layer for down-sampling. The combination of this convolution-
pooling can be repeated many times to further deepen the
network. Finally, the output from hidden layers will be passed
along to one or several fully-connected (FC) layers, the result
of which serves as the input to a top classifier such as Softmax
or Sigmoid functions.

In [20], the vibration data were acquired using two ac-
celerometers, one installed on top of the housing, the other on
the back. CNN is able to autonomously learn useful features
for bearing fault detection from the raw data pre-processed
by the scaled Fourier transform. The classification results
demonstrate that feature-learning based approaches such as
CNN can also identify some early-stage faulty conditions
without explicit characteristic frequencies, such as lubrication
degradation, which cannot be identified by traditional methods.

An adaptive CNN (ADCNN) is applied to the CWRU
dataset to dynamically change the learning rate, for a bet-
ter trade-off between training speed and accuracy in [21].
The entire fault diagnosis model employs a fault pattern
determination component using 1 ADCNN and a fault size
evaluation component using 3 ADCNNs, 3-layer CNNs with
max pooling. Classification results on the test set demonstrate
ADCNN provides a better accuracy compared to conventional
shallow CNN and SVM methods, especially for identifying
rolling element (ball) defect. In addition, this proposed AD-
CNN is also able to predict the fault size (defect width) with
satisfactory accuracy.

Similar to earlier work [20], [21], [22] implements a 4-
layer CNN structure with 2 convolutional and 2 pooling
layers on bearing fault detection, and the accuracy outperforms
conventional SVM and shallow Softmax regression classifier.
In particular, when the vibration signal is mixed with ambient
noise, the improvement can be as large as 25%, showcasing the
excellent built-in denoising capabilities of the CNN algorithm.
A sensor fusion approach is applied in [23], in which both
temporal and spatial information of the CWRU data from two
accelerometers at both drive end and fan end are stacked by

transforming 1-D time-series data into 2-D input matrix and
sent to CNN as input. The average accuracy with two sensors
is 99.41%, comparing favorably against one sensor of 98.35%.

Some other variations of CNN are also employed to tackle
the bearing fault diagnosis challenge [25], [26] on the CWRU
dataset to obtain more desirable characteristics compared to
the conventional CNN. For example, a CNN based on LeNet-5
[24] is applied in [25] containing 2 alternating convolutional-
pooling layers and 2 fully-connected (FC) layers. This im-
proved CNN architecture is believed to provide better feature
extraction capability, as the accuracy on the test set is an aston-
ishing 99.79%, which is better than other DL methods such as
the adaptive CNN (98.1%) and deep belief network (87.45%),
while dominating conventional ML methods such as SVM
(87.45%) and ANN (67.70%). In addition, a deep fully CNN
(DFCNN) incorporating 4 convolution-pooling layer pairs is
employed in [26], with raw data transformed into spectrograms
for easier processing. An accuracy of 99.22% is achieved,
outperforming the 94.28% of linear SVM with particle swarm
optimization (PSO), and 91.43% of conventional SVM.

B. Auto-encoders

Auto-encoder is proposed in 1980s as a method of unsuper-
vised pre-training method for ANN [6], [51]. After evolving
for decades, it has become widely adopted as an unsupervised
feature learning method and a greedy layer-wise neural net-
work pre-training method. The training process of a one hidden
layer auto-encoder is illustrated in Fig. 3. An auto-encoder
is trained from an ANN, which is composed of two parts:
encoder and decoder. The output of the encoder is fed into
the decoder as input. The ANN takes the mean square error
between the original input and output as loss function, which
aims at imitating the input as the final output. The decoder
part is dropped and only the encoder part is kept. Therefore
the output of the encoder is the feature representation that can
be employed in various classifiers.

There are many studies employing auto-encoder in bearing
fault diagnosis [27]–[30]. One of the earliest can be found in
[27], where a 5-layer auto-encoder is utilized to mine fault
characteristics from the frequency spectrum and effectively
classify the health condition of machines. The classification
accuracy reaches 99.6%, which is significantly higher than the
70% of back-propagation based neural networks (BPNN). In
[28], an auto-encoder based extreme learning machine (ELM)
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relationships in machinery fault diagnosis issues [14–16]. Consequently, it is necessary to design deep architectures for
rotating machinery fault diagnosis.

Deep learning is a new unsupervised feature learning method with multiple hidden layers of representation [17]. The
greatest advantage of deep learning is that the features of each hidden layer are not designed manually, which is, they
are learned from the input data automatically [18]. Despite it is not surprising that deep learning has produced extremely
satisfactory results for various tasks, it is still in its infancy for machinery fault diagnosis. Tamilselvan et al. applied deep
learning for aircraft engine fault diagnosis [19]. Tran et al. used deep learning for reciprocating compressor valves fault diag-
nosis [20]. Shao et al. proposed optimization deep learning model for rolling bearing fault diagnosis [21]. However, there still
exists manual signal processing or feature selection in these methods, in other words, they treated the deep learning models
as traditional classifiers, which ignored the powerful ability of deep learning in automatically capture the useful information
from the raw vibration signals.

Deep autoencoder is a popular deep learning model, which has been successfully used in various applications [22]. Due to
its simplicity and efficiency, the mean square error (MSE) has been widely applied to design the deep autoencoder loss func-
tion [23]. Standard deep autoencoder under MSE usually performs very well when the signals are not disturbed by complex
noises. However, in most practical situations, the measured vibration signals are always affected by the variable operating
conditions and heavy background noises, which make the performance of the standard deep autoencoder deteriorate rapidly
[24,25]. Therefore, the research and development of the new deep autoencoder loss function has become an urgent task.

In this paper, a novel deep autoencoder feature learning method is proposed for rotating machinery fault diagnosis. The
proposed method is applied for the fault diagnosis of gearbox and electrical locomotive roller bearings. The results show that
the proposed method is more effective and robust than other methods. The main contributions of our work can be summa-
rized as follows.

(1) In order to get rid of the dependence on signal processing techniques and diagnosis experience, we propose a deep
autoencoder feature learning method to automatically and effectively learn the useful fault features from the mea-
sured vibration signals.

(2) In order to eliminate the background noise affection and enhance the feature learning ability, maximum correntropy is
used to design the new deep autoencoder loss function.

(3) In order to enable the deep autoencoder to adapt to the signal characteristics, artificial fish swarm algorithm (AFSA) is
adopted to optimize its key parameters.

The organization of the paper is as follows. In Section 2, the basic theory of autoencoder is briefly introduced. The pro-
posed method is described in Section 3. In Section 4, the experimental diagnosis results for gearbox are analyzed and dis-
cussed. The engineering application of the proposed method is presented in Section 5. Finally, general conclusions are
given in Section 6.

2. The basic theory of autoencoder

An autoencoder is a three-layer network including an encoder and a decoder, shown in Fig. 1. The encoder maps the input
data from a high-dimensional space into codes in a low-dimensional space, and the decoder reconstructs the input data from
the corresponding codes [26].
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Fig. 1. The structure of an autoencoder.
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Fig. 3. Process of training a one hidden layer auto-encoder [31].

is employed seeking to integrate the automatic feature extrac-
tion capability of auto-encoders and the high training speed of
ELMs. The average accuracy of 99.83% compares favorably
against other conventional ML methods, including wavelet
package decomposition based SVM (WPD-SVM) (94.17%),
EMD-SVM (82.83%), WPD-ELM (86.75%) and EMD-ELM
(81.55%). More importantly, the required training time drops
by around 60% to 70% using the same training and test data
thanks to ELM.

Compared to CNN, the denoising capabilities of original
auto-encoders is not prominent. Thus in [29], a stacked de-
noising autoencoder (SDA) is implemented, which is suitable
for deep architecture-based robust feature extraction on signals
containing ambient noise in volatile working conditions. To
balance between performance and training speed, three hidden
layers with 100, 50, and 25 units respectively are employed.
The original CWRU bearing data are perturbed by a 15 dB
random noise to mimic the noisy condition, and multiple
operating condition datasets are used as test sets to examine its
fault identification capability under speed and load changes.
This method achieves a worst case accuracy of 91.79%,
which is 3% to 10% higher compared to conventional SAE
without denoising capability, SVM, and random forest (RF)
algorithms. Similar to [29], another form of SDA is utilized
in [30] with three hidden layers. Signals of the CWRU dataset
are combined with different levels of random noises in the time
domain and converted to frequency domain signals. The pro-
posed method has better diagnosis accuracy than deep belief
networks (DBN), particularly with the added noise, where an
improvement of 7% in diagnosis accuracy is achieved.

C. Deep Belief Network (DBN)

In deep learning, a Deep Belief Network (DBN) is com-
posed of unsupervised networks such as Restricted Boltzmann
Machines (RBMs) or autoencoders, where each preceding
hidden layer becomes the visible layer for the next, as demon-
strated by boxes of different colors in Fig. 4. Often recognized
as an undirected, generative energy-based model, an RBM
consists of a “visible” input layer and a hidden layer with
connections in between. The composition of RBNs leads to a
fast and unsupervised training procedure and starts from the

lowest visible layer. The DBNs can be trained greedily, one
layer at a time, and the contrastive divergence is applied to
the next RBM in turn [32].

Its first application on bearing fault diagnosis was published
in 2017 [33], in which a multi-sensor vibration data fusion
technique is implemented to fuse the time domain and fre-
quency domain features extracted via multiple 2-layer SAEs.
A 3-layer RBM based DBN is then used for classification. Val-
idation is performed on vibration data under different speeds,
and a 97.82% accuracy demonstrated that the proposed method
can effectively identify bearing faults even after the change of
operating condition. In [34], a stochastic convolutional DBN
(SCDBN) is implemented by means of stochastic kernels and
averaging processing, and unsupervised CNN is built to extract
47 features. Later a 2-layer DBN is implemented with (28, 14)
nodes and 5 kernels in each layer. Finally, a Softmax layer is
used with an average accuracy of over 95%.

Many DBN papers also employ the CWRU bearing dataset
as the input data [35]–[37] thanks to its popularity. For
example, an adaptive DBN and dual-tree complex wavelet
packet (DTCWPT) is proposed in [35]. The DTCWPT first
preprocesses vibration signals, where an original feature set
with 9×8 feature parameters is generated. The decomposition
level is 3, and the db5 function, which defines multiple scaling
coefficients of the Daubechies wavelet, is taken as the basis
function. Then a 5-layer adaptive DBN is used for bearing
fault classification. The average accuracy is 94.38%, which is
much better compared to convention ANN (63.13%), GRNN
(69.38%), and SVM (66.88%) using the same training and
test data. In [37], data from two accelerometers mounted on
the load end and fan end are processed by multiple DBNs
for feature extraction; then the faulty conditions based on
each extracted feature are determined with Softmax; and the
final health condition is fused by DS evidence theory. An
accuracy of 98.8% is accomplished while including the load
change from 1 hp to 2 and 3 hp. In contrast, the accuracy
of SAE suffers the most from this load change, while the
accuracy employing CNN is also lower than DBN. Similar to
this D-S theory based output fusion [36], a 4-layer DBN with
different hyper-parameters coupled with ensemble learning is
implemented in [37]. An improved ensemble method is used
to acquire the weight matrix for each DBN, and the final
diagnosis result is formulated by each DBN based on their
weights. The average accuracy of 96.95% is better compared
to those employing a single DBN of different weights (around
80%) and a simple voting ensemble DBN (91.21%).

D. Recurrent Neural Network (RNN)

Different from feed-forward neural network (FNN), RNN
processes input data in a recurrent manner. The architecture
is shown in Fig. 5. With a flow path going from its hidden
layer to itself, when unrolled in the sequence, it can be viewed
as a feed-forward neural network across the input sequence.
As a sequence model, it can capture and model the sequential
relationship in sequential data or time series data.
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Fig. 4. Architecture of DBN.

all the feature sets were divided into two groups, one for
training and the other for testing. Secondly, SAE was applied
for feature fusion. Finally, the fused features were input into
the DBN for fault classification.

The feature fusion and classification of our proposed method
includes the following six procedures.

1) Data Segmentation: The vibration data were obtained
from multiple accelerometers mounted on different loca-
tions under different running conditions, and then were
segmented for grouping into two categories, one for
training and the other for testing.

2) Feature Extraction: All the time-domain and frequency-
domain features were extracted from each data set.

3) Normalization: All the feature vectors were normalized
and rescaled into range [0, 1], according to

x(i) = x(i) − x(i)
min

x(i)
max − x(i)

min

(8)

4) Initialization: Initializing the AE parameters W and b
randomly, and setting up maximum epochs, learning rate
and sparsity parameter.

5) Feature Fusion: Two-layer SAEs were trained through
minimizing the reconstruction error and the output of
the last hidden layer was regarded as the fault feature
representations.

6) DBN Classification: The fused features were utilized
to train the DBN based classification model, and then
the testing data sets were used to validate the proposed
SAE-DBN method.

C. Deep Belief Network

DBN composed of multiple layers of RBMs can be effi-
ciently trained in an unsupervised, layer-by-layer manner.
Lower layers of DBN can extract low-level features in a
greedy way and the upper layers are used to represent more
abstract characteristics of the input data. In this paper, DBN
is composed by stacking three layers of RBMs, as shown
in Fig. 4. Each RBM is a two-layer energy-based model with

Fig. 5. Restricted Boltzmann machine.

visible units and hidden units. Connections only exist between
the visible units of the input layer and the hidden units of the
hidden layer.

The DBN learning process includes two stages: in the first
stage, pretraining the RBM layer step by step in a greedy
way, and in the second stage, fine-tuning the whole network
to adjust the parameters for achieving an ideal performance.
The training data were firstly input into the visible vector for
training the first RBM in an unsupervised manner. And then
the feature representations produced by the level below were
regarded as the input to train the next RBM. This training
process was repeated until the last RBM was learnt.

RBM is a special case of Boltzmann machines and Markov
random fields as shown in Fig. 5. There are a number of
neurons in every RBM layer, which are independent of each
other. A neuron with only inactivated and activated states can
be represented in binary value 0 and 1, respectively. Supposing
a RBM consists of visible vector v and hidden vector h,
the joint probability distribution of (v, h) is given by the energy
function

E(v, h, θ ) = −
m∑

j=1

b j v j −
n∑

i=1

ci hi −
n∑

i=1

m∑

j=1

v j wi, j hi (9)

where w,b,c are the model parameters, v j and h j are the binary
states of visible unit j and hidden unit i , b j and ci are their
biases, respectively, and wi, j is the weight between visible
unit j and hidden unit i .

The joint distribution over the visible and hidden units is
defined as follows:

p(v, h; θ) = 1

Z(θ)
exp(−E(v, h; θ)) (10)

where the partition function Z(θ) = ∑
v,h exp(−E(v, h)).

Because there are no visible-visible or hidden-hidden con-
nections, the conditional probabilities over hidden and visible
units are given by

p(hi = 1|v; θ) = 1/

⎡
⎣1 + exp

⎡
⎣−ci −

m∑

j=1

v j wi, j

⎤
⎦

⎤
⎦

(11)

p(v j = 1|h; θ) = 1/

[
1 + exp

[
−b j −

n∑

i=1

hi wi, j

]]

(12)

To train the DBN model, a fast algorithm so-called con-
trastive divergence, was proposed by Hinton et al. [22]. First,
the conditional probability of hidden units can be obtained by
using (11), then Gibbs sampling is employed to determine the

Fig. 4. Architecture of a DBN [33].

However, trained with back propagation through time
(BPTT), RNN has the notorious gradient vanishing issue
stemmed from its nature. Although proposed in 1980s, RNNs
have limited applications for this reason, until the birth of
long short-term memory (LSTM) in 1997. Specifically, LSTM
is augmented by adding recurrent gates called “forget” gates.
Designed for overcoming the gradient vanishing issue, LSTM
has shown astonishing capability in modeling the long-term
dependency in data, and therefore is taking a dominant role in
time series and text analysis. It has received great success
in speech recognition, natural language processing, video
analysis, etc.

One of the earliest application of RNN on bearing fault
diagnostics can be found in 2015 [38], where fault features
were first extracted using discrete wavelet transforms and later
selected based on orthogonal fuzzy neighbourhood discrimi-
native analysis (OFNDA). These features were then fed into
an RNN for fault classification, enabling the fault classifier
to incorporate a dynamic component. The experiment showed
that the proposed scheme based on RNN is capable of detect-
ing and classifying bearing faults accurately, even under non-
stationary operating conditions. In addition, a methodology
using combined 1-D CNN and LSTM to classify bearing fault
types is presented in [39], where the entire architecture is
composed of a 1-D CNN layer, a max pooling layer, a LSTM
layer, and a Softmax layer as the top classifier. The system
input is the raw sampling signal without any pre-processing,
and the best testing accuracy reaches as high as 99.6%.

E. Others

There are also numerous other DL methods employed for
bearing fault diagnostics, some are based on new algorithms,
some are mixtures of many DL methods listed above. For
example, in [40], a new large memory storage retrieval (LAM-
STAR) neural network is proposed. In [41], both DBN and
SAE are applied simultaneously to identify the presence of a
bearing fault. Other examples include a mixture of CNN and
DBN [42], deep residual network (DRN) [43], [44], deep stack
network (DSN) [45], RNN based autoencoder [46], sparse
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where fh and fo are the activation functions of the hidden 
layer and the output layer, respectively, Wih are the weight 
matrix connecting input layer with a hidden layer, Whh is the 
weight matrix of the hidden layer to its own loop connection, 
Who is the connection weight matrix between the hidden layer 
and the output layer, and bh and bo are bias vectors of the 
hidden layer and output layer, respectively.

However, a conventional RNN as shown in figure  1 has 
inherent flaws. According to figure 1(b), we can see that the 
architecture of the RNN across time steps is equivalent to an 
FNN with multiple hidden layers, and the number of time 
steps can be regarded as its total number of layers. When the 
RNN is trained using back propagation through time (BPTT), 
the error back propagates not only from the output layer to the 
hidden layer but also through time t to time 1 simultaneously 
[38]. However, it can be seen that if t is too large, the learning 
process will be especially challenging due to the gradient van-
ishing or the exploding problem [36].

Therefore, an improved RNN model, named the long-short 
term memory recurrent neural network (LSTMRNN), was 
proposed to overcome the flaws of the conventional RNN [39]. 
From figure 2, we can see that the LSTMRNN can be acquired 
by replacing the hidden neurons of a conventional RNN with 
long-short term memory (LSTM) units. The most obvious 
characteristic of an LSTM unit is that it mainly consists of 
a memory cell and three layer gates, i.e. an input gate, forget 
gate, and output gate. In addition, the dashed lines connecting 
the memory cell with three layer gates are called peephole 
connections [40]. Such architecture of the LSTM cell greatly 
relaxes the problem of gradient vanishing or exploding. 
Therefore, this paper adopts the LSTMRNN model to get sat-
isfactory results. The mathematical calculation procedure of 
an LSTM unit can be described as

gt = g (Wih · xt + Whh · ht−1 + bh) , (3)

it = σ
(
Wiig · xt + Whig · ht−1 + pig � ct−1 + big

)
, (4)

ft = σ
(
Wifg · xt + Whfg · ht−1 + pfg � ct−1 + bfg

)
, (5)

ot = σ
(
Wiog · xt + Whog · ht−1 + pog � ct + bog

)
, (6)

ct = it � gt + ft � ct−1, (7)

ht = ot � h (ct) , (8)

where σ, g, and h are the gate activation function, the input, 
and the output activation functions of the LSTM units, respec-
tively; Wih, Wiig, Wifg, and Wiog are the weight matrices 
between the input layer and the LSTM layer at time t; Whh, 
Whig, Whfg, and Whog are the self-connection weight matrices 
of the LSTM units between time t and t  −  1; bh, big, bfg, and 
bog are the bias vectors of the input nodes, the input gate, the 
forget gate, and the output gate, respectively; pig, pfg, and pog

 
are the weight matrices between the peephole connections and 
the three gate units, respectively.

3. The proposed method

This paper proposes a novel intelligent method based on 
an improved DRNN for fault diagnosis of rolling bearings. 
The proposed method mainly consists of four parts: firstly, 
the bearing data set design is based on frequency spectrum 
sequences; secondly, the DRNN construction; thirdly, an 
improved DRNN with an adaptive learning rate strategy; 
fourthly, the main diagnosis process of the proposed method.

Figure 1. (a) Structure of the RNN, (b) structure of the RNN across a time step.

Figure 2. Structure of the LSTM.
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Fig. 5. (a) Architecture of the RNN, and (b) RNN across a time step [38].

filtering [50], and a new deep learning architecture capsule
network [48] proposed by Hinton et al. [47].

IV. COMPARISON OF DL ALGORITHM PERFORMANCE
USING THE CWRU DATASET

A systematic comparison of the accuracy of different DL
algorithms employing the CWRU dataset is presented in
TABLE. I. The testing accuracy of all of the DL algorithms are
above 95%, which validates the effectiveness of applying deep
learning to bearing fault diagnostics. However, we would like
to stress that the specific values of testing accuracy are only
demonstrated for an intuitive understanding for the following
reasons:

1) Generalization: Some DL methods with accuracy over
99% are generally applied on a very specific dataset at a
fixed operating condition. However, this accuracy would
suffer, and may drop to below 90% under the influence
of noise and variation of motor speed/load, which is
common in practical applications.

2) Evaluation metrics: Regarding the selection of training
samples from the CWRU dataset, many papers did not
guarantee a balanced sampling, which means the ratio
of data samples selected from the healthy condition and
the faulty condition is not close to 1:1. In this scenario,
accuracy should not be used as the only metric to evaluate
an algorithm, and other metrics including the precision
and recall should be introduced to further evaluation.

3) Randomness: Although these DL methods use the same
dataset to perform classifications, the percentages of
training data and test data are different. Even if this
data distribution is identical, the training and test data
might be randomly selected from the CWRU bearing
dataset. Therefore this comparison is not performed on
the common ground, since the classification accuracy is
subject to change even with the same algorithm due to
randomness in the training and test dataset selection.

V. RECOMMENDATIONS AND FUTURE DIRECTIONS

A. Recommendations and Suggestions

The successful implementation of ML and DL algorithms
on bearing fault diagnostics can be attributed to the strong
correlations among features that follow the law of physics.
For researchers considering applying ML/DL methods to solve
bearing problems, the author suggests the following:
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TABLE I
COMPARISON OF CLASSIFICATION ACCURACY ON CASE WESTERN RESERVE UNIVERSITY BEARING DATASET WITH DIFFERENT DL ALGORITHMS.

Reference Feature extraction
algorithms

No. hidden
layers Classifier Characteristics Training sample

percentage Testing accuracy

[21] Adaptive CNN (ADCNN) 3 Softmax Predict fault size 50% 97.90%
[22] CNN 4 Softmax Noise-resilient 90% 92.60%
[23] CNN 4 Softmax Sensor fusion 70% 99.40%
[25] CNN based on LeNet-5 8 FC layer Better feature extraction 83% 99.79%

[26] Deep fully CNN (DFCNN) 8 Connectionist
temporal classification

Validation with
actual service data 78% 99.22%

[27] SAE 3 ELM Adapt to load change 50% 99.61%
[28] SAE 3 ELM Reduce training time 50% 99.83%
[29] Stacked denoising AE (SDAE) 3 N/A Noise-resilient 50% 91.79%
[30] SDAE 3 Softmax Noise-resilient 80% 99.83%

[35] dual-tree
complex wavelet 5 N/A Adaptive DBN 67% 94.38%

[36] DBN 2 Softmax Adapt to load change N/A 98.80%

[37] DBN with
ensemble learning 4 Sigmoid Accurate & robust N/A 96.95%

[39] CNN-LSTM 3 Softmax Accurate 83% 99.6%

1) Examine the setup environment: Thoroughly examine the
working environment and all possible operating con-
ditions of the setup (i.e., indoor/outdoor, fixed/volatile
operating conditions, etc.). For the simplest case with an
indoor and a single operating point setup, conventional
ML methods or even frequency-based analytical models
should suffice. Otherwise, more advanced DL approaches
with certain denoising blocks and extra layers should be
considered to improve the diagnostic robustness.

2) Sensors: Determine the number and type of sensors to
be mounted close to bearings. For traditional frequency
based and ML based methods, one or two vibrations
sensors mounted close to the bearing should be sufficient.
For DL based approaches, due to the fact that many algo-
rithms such as CNN are mainly developed for computer
vision to handle the 2-D image data, multiple 1-D time-
series data obtained by the sensors in the bearing setup
need to be stacked to form this 2-D data. Therefore, it
would be better to have more than two vibration sensors
installed at the same time. In addition, other types of
sensors such as AE and stator current sensors can be
installed to form a multi-physics dataset to enhance the
performance.

3) Data Size: If the size of the collected dataset is not suf-
ficient to train a DL model with good generalization, the
algorithm and its training process should be selected to
make the most out of the data and computation resources.
For example, the dataset augmentation techniques such as
generative adversarial network (GAN), and data random
sampling with replacement such as boostrapping can be
used, as well as some cross validation methods such as
leave-one-out, Monte Carlo, etc. With the problem of a
small labeled dataset, a promising routine is to apply a
semi-supervised learning paradigm.

B. Future Research Directions
The following research directions may facilitate the transi-

tion from research labs to real-world applications:

1) More complicated datasets: Apply more complicated
bearing datasets to prevent the accuracy saturation prob-
lems.

2) From artificial to real-world: Make attempts to predict
natural faults with algorithms trained by artificial faults,
which is a reasonable expectation for DL-based fault
indicators in real-world applications.

3) Explainability: Explain how DL methods work in fault
detection applications. The interpretation of DL in general
is not so developed as traditional ML methods. Several
works, such as [53], [54], visualized the learnt CNN
kernel to interpret its physical meaning. These works have
provided intuitions on the explainability of DL, but more
in-depth investigations are necessary.

VI. CONCLUSIONS

In this paper, a systematic review is conducted on existing
literature employing deep learning algorithms to motor bearing
fault diagnostics, which has spurred the interest of academia
for the last five years. It is demonstrated that, despite the
fact that deep learning algorithms require a large dataset to
train, they can automatically perform adaptive feature ex-
tractions on the bearing data without any prior expertise on
fault characteristic frequencies or operating conditions, making
them very suitable for real-time bearing fault diagnostics.
A comparative study is presented and discussed regarding
the effectiveness of different algorithms. Insights and future
research directions toward performance improvement and real-
world implementation are provided.

REFERENCES

[1] M. El Hachemi Benbouzid, “A review of induction motors signature
analysis as a medium for faults detection,” IEEE Trans. Ind. Electron.,
vol. 47, no. 5, pp. 984–993, Oct. 2000.

[2] P. Zhang, Y. Du, T. G. Habetler and B. Lu,“A survey of condition
monitoring and protection methods for medium-voltage IMs,” IEEE
Trans. Ind. Appl., vol. 47, no. 1, pp. 34–46, Jan./Feb. 2011.

[3] “Report of large motor reliability survey of industrial and commercial
installations, Part I,” IEEE Trans. Ind. Appl., vol. IA–21, no. 4, pp.
853-864, Jul./Aug. 1985.

6



[4] JEMA, “On recommended interval of updating IMs”, 2000.
[5] T. Harris, Rolling Bearing Analysis, Hoboken, NJ, USA: Wiley, 1991.
[6] J. Schmidhuber, “Deep learning in neural networks: An overview,”

Neural Netw., vol. 61, pp. 85–117, Jan. 2015.
[7] F. Immovilli, A. Bellini, R. Rubini and C. Tassoni, “Diagnosis of

bearing faults in induction machines by vibration or current signals:
A critical comparison,” IEEE Trans. Ind. Appl., vol. 46, no. 4, pp.
1350–1359, Jul./Aug. 2010.

[8] M. Kang, J. Kim and J. Kim, “An FPGA-based multicore system for
real-time bearing fault diagnosis using ultrasampling rate AE signals,”
IEEE Trans. Ind. Electron., vol. 62, no. 4, pp. 2319–2329, Apr. 2015.

[9] R. R. Schoen, T. G. Habetler, F. Kamran and R. G. Bartfield, “Motor
bearing damage detection using stator current monitoring,” IEEE
Trans. Ind. Appl., vol. 31, no. 6, pp. 1274–1279, Nov./Dec. 1995.

[10] D. López-Pérez and J. Antonino-Daviu, “Application of infrared
thermography to failure detection in industrial IMs: case stories,”
IEEE Trans. Ind. Appl., vol. 53, no. 3, pp. 1901–1908, May 2017.

[11] E. T. Esfahani, S. Wang and V. Sundararajan, “Multisensor wire-
less system for eccentricity and bearing fault detection in IMs,”
IEEE/ASME Trans. Mechatronics, vol. 19, no. 3, pp. 818-826, 2014.

[12] B. Yazici and G. B. Kliman, “Adaptive, on line, statistical method and
apparatus for motor bearing fault detection by passive motor current
monitoring,” U.S. Patent 5 726 905, Sep. 27, 1995.

[13] M. A. Awadallah and M. M. Morcos, “Application of AI tools in
fault diagnosis of electrical machines and drives – an overview,” IEEE
Trans. Energy Convers., vol. 18, no. 2, pp. 245–251, June 2003.

[14] F. Filippetti, G. Franceschini, C. Tassoni and P. Vas, “Recent develop-
ments of induction motor drives fault diagnosis using AI techniques,”
IEEE Trans. Ind. Electron., vol. 47, no. 5, pp. 994–1004, Oct. 2000.

[15] L. Batista, B. Badri, R. Sabourin, and M. Thomas, “A classifier fusion
system for bearing fault diagnosis,” Expert Syst. Appl., vol. 40, no. 7,
pp. 6788–6797, Dec. 2013.

[16] R. Liu, B. Yang, E. Zio, and X. Chen, “Artificial intelligence for
fault diagnosis of rotating machinery: A review,” Mech. Syst. Signal
Process., vol. 108, pp. 33–47, Aug. 2018.

[17] (2018, December). Amazon Mechanical Turk, [Online]. Available:
https://www.mturk.com/.

[18] M. Raghu, B. Poole, J Kleinberg, S. Ganguli, and J.-S.Dickstein, “On
the expressive power of DNNs,” arXiv:1606.05336, 2016.

[19] K. Fukushima, “Neocognitron: A self-organizing neural network
model for a mechanism of pattern recognition unaffected by shift
in position,” Biolog. Cybernetics, vol. 36, pp. 193–202, 1980.

[20] S. Singh, C. Q. Howard, and C. Hansen, “Convolutional neural
network based fault detection for rotating machinery,” J. Sound Vib.,
vol. 377, pp. 331–345, 2016.

[21] X. Guo, L. Chen, and C. Shen, “Hierarchical adaptive deep convo-
lution neural network and its application to bearing fault diagnosis,”
Meas., vol. 93, pp. 490–502, 2016.

[22] C. Lu, Z. Wang, and Bo Zhou, “Intelligent fault diagnosis of rolling
bearing using hierarchical convolutional network based health state
classification,” Adv. Eng. Informat., vol. 32, pp. 139–157, 2017.

[23] M. Xia, T. Li, L. Xu, L. Liu and C. W. de Silva, “Fault diagnosis for
rotating machinery using multiple sensors and CNNs,” IEEE/ASME
Trans. Mechatronics, vol. 23, no. 1, pp. 101–110, Feb. 2018.

[24] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient based
learning applied to document recognition, Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, Nov. 1998.

[25] L. Wen, X. Li, L. Gao and Y. Zhang, “A new convolutional neural
network-based data-driven fault diagnosis method,” IEEE Trans. Ind.
Electron., vol. 65, no. 7, pp. 5990–5998, July 2018.

[26] W. Zhang, F. Zhang, W. Chen, Y. Jiang and D. Song, “Fault state
recognition of rolling bearing based fully convolutional network,”
Comput. in Sci. & Eng., vol. PP, no. PP, pp. PP–PP, 2018.

[27] F. Jia, Y. Lei, J. Lin, X. Zhou, and N. Lu, “Deep neural networks: A
promising tool for fault characteristic mining and intelligent diagnosis
of rotating machinery with massive data,” Mech. Syst. Signal Process.,
vol. 100, pp. 743–765, 2016.

[28] W. Mao, J. He, Y. Li, and Y. Yan, “Bearing fault diagnosis with auto-
encoder extreme learning machine: A comparative study,” Proc. Inst.
Mech. Eng. C, vol. 231, no. 8, pp. 1560–1578, 2016.

[29] C. Lu, Z.-Y Wang, W.-L. Qin, J. Ma, “Fault diagnosis of rotary
machinery components using a stacked denoising AE-based health
state identification,” Signal Process., vol. 130, pp. 377–388, 2017.

[30] X. Guo, C. Shen, and L. Chen, “Deep fault recognizer: An integrated
model to denoise and extract features for fault diagnosis in rotating
machinery,” Appl. Sci., 2017, vol. 7. no. 41, pp. 1–17.

[31] H. Shao, H. Jiang, H. Zhao, and F. Wang, “A novel deep autoencoder
feature learning method for rotating machinery fault diagnosis,” Mech.
Syst. Signal Process., vol. 95, pp. 187–204, 2017.

[32] Y. Bengio, Learning deep architectures for AI, Foundations and
Trends in Machine Learning, vol. 2, no. 1, pp. 1–127, 2009.

[33] Z. Chen and W. Li, “Multisensor feature fusion for bearing fault
diagnosis using sparse autoencoder and deep belief network,” IEEE
Trans. Instrum. Meas., vol. 66, no. 7, pp. 1693–1702, July 2017.

[34] S. Dong, Z. Zhang, G. Wen, S. Dong, Z. Zhang and G. Wen, “De-
sign and application of unsupervised convolutional neural networks
integrated with deep belief networks for mechanical fault diagnosis,”
in Proc. Progn. Syst. Health Manag. Conf., 2017, pp. 1–7.

[35] D. T. Hoang and H. J. Kang, “Rolling bearing fault diagnosis using
adaptive deep belief network with dual-tree complex wavelet packet,”
ISA Trans., vol. 69, pp. 187–201, 2017.

[36] D.-T. Hoang and H.-J. Kang, “Deep belief network and dempster-
shafer evidence theory for bearing fault diagnosis,” in Proc. IEEE
Int. Sym. Ind. Electron. (ISIE), 2018, pp. 841–846.

[37] T. Liang, S. Wu, W. Duan, and R. Zhang, “Bearing fault diagnosis
based on improved ensemble learning and deep belief network,” J.
Phys.: Conf. Ser., vol. 1074, art no. 021054, pp. 1–7, 2018.

[38] W. Abed, S. Sharma, R. Sutton, and A. Motwani, “A robust bearing
fault detection and diagnosis technique for brushless DC motors under
non-stationary operating conditions,” J. Control Autom. Electr. Syst.,
vol. 26, no. 3, pp. 241–254, Jun. 2015.

[39] H. Pan, X. He, S. Tang, F. Meng, “An improved bearing fault diagnosis
method using one-dimensional CNN and LSTM,” J. Mech. Eng., vol.
64, no. 7–8, pp. 443–452, 2018.

[40] M. He and D. He, “DL based approach for bearing fault diagnosis,”
IEEE Trans. Ind. Appl., vol. 53, no. 3, pp. 3057–3065, June 2017.

[41] Z. Chen, S. Deng, X. Chen, C. Li, R.-V. Sanchez, and H. Qin, “Deep
neural networks-based rolling bearing fault diagnosis,” Microelectron.
Rel., vol. 75, pp. 327–333, 2017.

[42] H. Shao, H. Jiang, H. Zhang, W. Duan, T. Liang, and S. Wu, “Rolling
bearing fault feature learning using improved convolutional deep
belief network with compressed sensing,” Mech. Syst. Signal Process.,
vol. 100, pp. 439–458, 2018.

[43] M. Zhao, M. Kang, B. Tang and M. Pecht, “Deep residual networks
with dynamically weighted wavelet coefficients for fault diagnosis of
planetary gearboxes,” IEEE Trans. Ind. Electron., vol. 65, no. 5, pp.
4290–4300, May 2018.

[44] M. Zhao, M. Kang, B. Tang and M. Pecht, “Multi-wavelet coefficients
fusion in deep residual networks for fault diagnosis,” IEEE Trans. Ind.
Electron., vol. PP, no. PP, pp. PP–PP, 2018.

[45] C. Sun, M. Ma, Z. Zhao and X. Chen, “Sparse deep stacking network
for fault diagnosis of motor,” IEEE Trans. Ind. Informat., vol. 14, no.
7, pp. 3261–3270, July 2018.

[46] H. Liu, J. Zhou, Y. Zheng, W. Jiang, and Y. Zhang, “Fault diagnosis of
rolling bearings with recurrent neural network-based autoencoders,”
ISA Trans., vol. 77, pp. 167–178, Jun. 2018.

[47] S. Sabour, N. Frosst, and G. E. Hinton, “Dynamic routing between
capsules,” in Proc. NIPS, 2017, pp. 3859–3869.

[48] Z. Zhu, G. Peng, y. CHen, and H. Gao, “A convolutional neural
network based on a capsule network with strong generalization for
bearing fault diagnosis,” Neurocomput., vol. 323, pp. 62–75, 2019.

[49] X. Li, W. Zhang, and Q. Ding, “A robust intelligent fault diagnosis
method for rolling element bearings based on deep distance metric
learning,” Neurocomput., vol. 310, pp. 77–95, 2018.

[50] W. Qian, S. Li, J. Wang, and Q. Wu, “A novel supervised sparse
feature extraction method and its application on rotating machine fault
diagnosis,” Neurocomput., vol. 210, pp. 129–140, 2018.

[51] D. H. Ballard, “Modular learning in neural networks,” in Proc.
AAAI’87 National Conf. AI, Seattle, WA, 1987, pp. 279–284.

[52] C. Beleites, U. Neugebauer, T. Bocklitz, C. Krafft, and J. Popp,
“Sample size planning for classification models,” Analytica Chimica
Acta, vol. 760, pp. 25–33, 2013.

[53] W. Zhang, G. Peng, C. Li, Y. Chen, Z. Zhang, ”A new deep learning
model for fault diagnosis with good anti-noise and domain adaptation
ability on raw vibration signals,” Sensors., 17 (2) (2017), p. 425.

[54] W. Zhang, C. Li, G. Peng, Y. Chen, Z. Zhang, ”A deep convolutional
neural network with new training methods for bearing fault diagnosis
under noisy environment and different working load,” Mech. Syst. and
Sig. Proc., vol. 100, 2018, p. 439.

7


	Title Page
	page 2

	/projects/www/html/my/publications/docs/TR2019-084.pdf
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7


