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Abstract
Reinforcement learning (RL) is in essence a trialand-error process which involves exploratory
actions. These explorations can lead to system constraint violations and physical system
damages, impeding RL’s use in many realworld engineered systems. In this paper, we develop
a safe RL framework that integrates model-free learning with modelbased safety supervision to
bridge the gap. We exploit the underlying system dynamics and safety-related constraints to
construct a safety set using recursive feasibility techniques. We then integrate the safety set in
RL’s exploration to guarantee safety while simultaneously preserving exploration efficiency by
using the hit-and-run sampling. We design a novel efforts-toremain-safe penalty to effectively
guide RL to learn system constraints. We apply the proposed safe RL framework to the active
suspension system in which actuation and state constraints are present due to ride comfort,
road handling, and actuation limits. We show that the developed safe RL is able to learn a
safe control policy safely while outperforming a nominal controller.
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Dynamics-Enabled Safe Deep Reinforcement Learning: Case Study on
Active Suspension Control
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Abstract— Reinforcement learning (RL) is in essence a trial-
and-error process which involves exploratory actions. These
explorations can lead to system constraint violations and
physical system damages, impeding RL’s use in many real-
world engineered systems. In this paper, we develop a safe
RL framework that integrates model-free learning with model-
based safety supervision to bridge the gap. We exploit the
underlying system dynamics and safety-related constraints to
construct a safety set using recursive feasibility techniques. We
then integrate the safety set in RL’s exploration to guarantee
safety while simultaneously preserving exploration efficiency by
using the hit-and-run sampling. We design a novel efforts-to-
remain-safe penalty to effectively guide RL to learn system
constraints. We apply the proposed safe RL framework to
the active suspension system in which actuation and state
constraints are present due to ride comfort, road handling,
and actuation limits. We show that the developed safe RL is
able to learn a safe control policy safely while outperforming
a nominal controller.

I. INTRODUCTION

The past decades have witnessed the great success of rein-
forcement learning (RL) in a broad spectrum of applications
such as board games [1], [2], natural language processing
[3], [4], economics [5], [6], among many others. However, its
applications to real-world engineered systems are still rare.
The primary reason is that RL is essentially a trial-and-error
learning process that may lead to system constraint violations
during training, which could cause disastrous consequences
such as battery overheat, robot breakdown, and car crashes.
Therefore, there is a critical need to advance RL with safety
guarantees to fill the gap of RL’s applications towards real-
world engineered systems.

Several methodologies have been proposed to treat system
constraints during RL training and deployment. Worst-case
scenario based approaches have been developed to maximize
worst-case return, mitigating the effects of variability and
uncertainty [7], [8]. Risk management approaches have also
been developed to control risks such as variance of the return
[9] and the probability of entering into an error state [10].
A comprehensive literature review on the topic of model-
free safe RL can be found in [11]. These methodologies
can manage risks in RL to some extent. However, they

This work was supported by Mitsubishi Electric Research Laboratories.
Zhaojian Li is with the Department of Mechanical Engineer-

ing, Michigan State University, East Lansing, MI 48824, USA. Email:
lizhaoj1@egr.msu.edu

Tianshu Chu is with the Department of Civil and Environ-
mental Engineering, Stanford University, Stanford, CA, USA. Email:
cts1988@stanford.edu
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provide no guarantees in avoiding constraint violations.
Recently, a human intervention based RL has been proposed
in [12], where a human operator supervises the training to
ensure the safety during the training process. This may not
be practical since RL generally involves extensive training
episodes which require a large amount of supervision effort,
in which humans are typically error-prone. A promising
direction has emerged which exploits system dynamics to
formulate a safety certification for learning supervision [13]–
[17]. However, these methods are computationally very ex-
pensive for online implementation [13], [14]. Also, these
methods offer limited exploration efficiency as certifications
are integrated using preliminary strategies.

In this paper, we propose a dynamics-enabled safe RL
framework that combines model-free RL with a model-
based safety regulator for learning supervision. The safe RL
we propose is a significant extension of the conventional
RL algorithm (see Figure 1). Specifically, we propose to
supervise conventional learning process by incorporating a
state-dependent constraint-admissible safety set. We leverage
recursive feasibility techniques and exploit the underlying
physical dynamics and safety-related system constraints to
obtain the safety set. We integrate the safety set in RL’s ex-
ploration to guarantee safety while preserving the exploration
efficiency. We develop a safety enforcement scheme using
hit-and-run sampling that projects unsafe exploratory actions
to the safety set with good exploration efficiency. We design a
penalty function to characterize unsafe explorations and use
it to accelerate learning by augmenting actual experiences
with unsafe exploration penalties. The proposed safe RL
framework is independent of and complimentary to existing
RL algorithms. As compared to our preliminary work [18],
the constructed safety set is less conservative. In contrast to
studies in [13]–[17], the proposed framework requires less
computational power and has better exploration efficiency.

We apply the safe RL approach to active suspension sys-
tem which involves system constraints due to ride comfort,
road handling, and actuation limits [19]. Those constraints
are sometimes considered implicitly in the cost function
such as in the linear quadratic regulator (LQR) design [20]
and H∞ design [21]. These control designs thus cannot
avoid constraint violations. Model predictive control (MPC)
approaches have also been developed to explicitly deal with
the constraints [19], [22], [23]. However, MPC controllers
need to solve online optimization problems at each step,
requiring great computation for online implementation. In
this paper, we exploit the proposed safe RL framework
and show that no constraint violations happen during either



the training or validation process. We also show improved
performance over a nominal controller.

The rest of the paper is organized as follows. In Sec-
tion II, we present an overview of the proposed safe RL
in comparison with conventional RL. In Section III, the
constraint-admissible set is constructed for safety regulation.
The complete safe RL algorithm is presented in Section
IV with an application to active suspension system. Finally,
conclusions and future work are discussed in Section V.

II. SAFE RL WITH SAFETY REGULATION

Conventional RL is a trial-and-error learning process that
aims at optimizing the agent’s policy to maximize accumu-
lated rewards (or minimize accumulated costs) through its
continuous interaction with the environment. Specifically, at
each discrete time step t, the agent takes an observation
x(t) ∈ Rn, executes an action/control u(t) ∈ Rm and
receives a scalar cost (or reward) r(t) ∈ R. In general, the
environment/system is typically impacted by some unknown
disturbance w(t). The entire history of observation and
action is an information state, s(t) =

(
x(0), u(0), . . . , u(t−

1), x(t)
)
. We assume a Markovian environment and thus

redefine information state as s(t) = x(t). A policy, π :
X → Pr(U), is a mapping from states to a probability
distribution over the action space and it describes the agent’s
behavior. A RL agent learns a control policy from the expe-
rience {x(0), u(0), r(0), x(1), u(1), r(1), · · · } to maximize
the overall future rewards defined by R =

∑∞
t=0 γ

tr(t),
where γ is the discount factor. Many times the agent’s policy
is parameterized by some parameters θ, i.e., πθ : X → U .
The goal is to learn the values of parameters θ that maximize
the reward function. Note that RL is a trial-and-error method,
and exploratory actions have to be performed to explore
the optimal policy. Therefore, disastrous consequences can
happen due to violations of internal system constraints in
real-world engineered systems during this exploration. We
therefore propose a safe RL framework that can train the
agent to learn a safe policy safely.

The proposed safe RL is a significant extension of the
conventional RL algorithm. Specifically, as shown in Fig-
ure 1, we introduce a safety supervisory element between a
standard RL agent and the environment to ensure safe and
reliable system operations. If an exploratory action is not
admissible according to the supervisor, it will be projected
onto the safe set. At the same time, a bad-exploration penalty
signal is passed to the agent, providing feedback to the RL
agent to learn the system constraints. The proposed safety
supervisor consists of four modules: a safety set that defines
the state-dependent admissible actions, a safety enforcement
scheme that projects unsafe exploratory actions to a safe
one, and a penalty function that characterizes the unsafe
exploration margin. We will describe these modules in the
subsequent sections.

III. SAFETY SETS

In this section, we introduce the set of safe, admissible
actions. The set is based on the stochastic analogue to the
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Fig. 1. Safe RL with model-enabled supervision.

maximal output-admissible set [24], a preliminary version of
which has been developed in [25]. To see how we construct
the set, consider the closed-loop constrained linear system,

x(t+ 1) = Ax(t) +Bu(t) +Bww(t), (1a)
y(t) = Cx(t) +Du(t) +Dww(t) ∈ Y, (1b)

where x(t) ∈ Rn is the state, u(t) ∈ Rm is the modifying
control input, w(t) ∈ Rη is the disturbance input, and y(t) is
the output. The output-constraint set Y ⊂ Rp is a polytope
containing 0. Since the system is closed-loop, we assume
that A is asymptotically stable.

In the application considered in this work, the predicted
disturbance for time k performed at time t, w(k|t), can be
decomposed according to,

w(k|t) = wd(k|t) + ws(k|t), (2)

where wd(t) and ws(t) are referred to as the worst-case and
stochastic components of the disturbance input, respectively.
Henceforth, for a vector signal v, the notation v(k|t) denotes
the prediction of v(t+k) performed at time t. The prediction
of the worst-case component wd(k|t) is assumed to be
contained in a set Wk, which is compact and contains 0.
The stochastic component is assumed to be i.i.d. Gaussian,
zero-mean, with covariance matrix W . Mathematically, these
properties can be expressed as,

wd(k|t) ∈ Wk, ws(t) ∼ N (0,W ), ∀t, k ∈ Z+, (3)

satisfying E(ws(t)ws(k)T) = 0 if t 6= k.
We are interested in the stochastic, maximal output-

admissible set for the system (1). This is the set of all initial
conditions x(0) that, when the control is held constant at
0, i.e., u(t) = 0, constraints will be satisfied with proba-
bility β, when subject to any possible predicted disturbance
{wd(k|t)}, and for all present and future time. Its definition
is given by,

Oβ∞ = {x : x(0|t) = x, u(k|t) = 0, {y(k|t)} ⊕ Pβk ⊂ Y,
∀wd(k|t) ∈ Wk, k ∈ Z+}, (4)

where the predicted terms are given by,

x(k + 1|t) = Ax(k|t) +Bu(k|t) +Bwwd(k|t), (5a)
y(k|t) = Cx(k|t) +Du(k|t) +Dwwd(k|t), (5b)

and Pβk is the uncertainty ellipsoid containing y(t + k) −
y(k|t) with probability β, i.e., it satisfies,

P(y(t+ k)− y(k|t) ∈ Pβk ) = β.



Note that the predicted values in (5) exclude the stochastic
disturbance term.

The computation of Oβ∞ is described in [24], [25]. Note
that oftentimes Oβ∞ cannot be determined in a finite number
of steps; however, we can always compute an arbitrarily close
approximation of Oβ∞ in a finite number of steps, with the
number of steps of the computation algorithm proportional
to the desired precision. In previous work on maximal output
admissible sets, worst-case and stochastic disturbances have
been considered separately. In the case of linear systems, the
combination of the two is straightforward because, according
to the principle of linear superposition, the state can be
expressed as a linear combination of the contributions from
each component.

Note that the deterministic disturbance set Wk depends
on k. Since the set Oβ∞ is used in a receding-horizon
fashion, this implies that the worst-case component of the
disturbance sequence is reconsidered at every run of the
prediction algorithm. From a theoretical perspective, this
does not make sense because repeated application of the
worst-case disturbance can only be handled robustly by
holding the disturbance bound to be constant; however, from
a practical perspective, this formulation is useful when con-
sidering jump disturbances. Importantly, in the application
to suspension systems, we set the disturbance set to equal
Wk = [−jmax, jmax] for k = 0, 1, . . . , Nj and Wk = {0}
for k > Nj , where Nj is a design parameter. In practice,
this allows us to be somewhat robust to jumps of magnitude
jmax and width Nj as long as the jumps happen infrequently
enough to allow the effect of previous jumps to dissipate.

In this work, we wish to compute the control effort
required to return the state to the maximal set where the
nominal closed-loop controller is likely feasible, i.e., the
maximal output-admissible set Oβ∞. To do this we optimize,

N−1∑
k=0

|u(k|t)| → min, (6)

subject to the prediction dynamics (5), the constraint
{y(k|t)}⊕Pβk ⊂ Y , k = 0, 1, . . . , N−1, and the requirement
that x(N |t) ∈ Oβ∞, for some time N ∈ Z+, which is
a design parameter. This amounts to solving a constrained
optimization problem.

We set up the constrained optimization by determining a
maximal output-admissible set, with dynamics that have been
modified to treat the control inputs as a state. The system
with extended dynamics is therefore given by,

X(k + 1|t) = ÃX(k|t) + B̃wwd(k|t), (7a)

y(k|t) = C̃X(k|t) + D̃wwd(k|t), (7b)

where,

X(k|t)T =
[
x(k|t)T u(k|t)T u(k + 1|t)T

· · · u(k +N − 1|t)T
]
,

and the system matrices are determined according to defini-
tions given previously.

Since the system (7) is asymptotically stable, we are able
to determine its stochastic maximal output-admissible set. It
is given by,

P β = {X : X(0|t) = X, {y(k|t)} ⊕ Pβk ⊂ Y,
∀wd(k|t) ∈ Wk, k ∈ Z+}. (8)

As mentioned previously, details on computing the set P β

are given in [24], [25].

IV. SAFE DEEP RL

A. Augmented Rewards and Safe Sampling

In this section, we integrate the safety set obtained from
Section III to regulate unsafe explorations. Specifically, at
time step t under state x(t), RL takes an exploratory action
a(t). The reward r(t) corresponding to the action a(t) takes
the form,

r(t) =

{
−c(t)− α · E(t), if a(t) is admissible,
−G, otherwise,

(9)

where c(t) = c(x(t)) is the objective cost in standard
RL, E(t) = E(x(t), a(t)) is an additional cost measuring
the amount of effort needed to keep the system within
constraints, and α is a weight on the latter cost. The cost
G � c ≥ 0 is a large penalty assigned to an unsafe
exploratory action.

To determine if a(t) is admissible and to obtain E(t), we
solve the following optimization problem,

E(x(t), a(t)) = min ‖U‖1 (10a)

subj. to X(t) ∈ P β , (10b)

where XT(t) =
[
xT(t) aT(t) UT

]
and P β is defined in

(8). The optimization variable U ∈ R(N−1)·m is the vector of
admissible future actions in N − 1 steps. In our application,
the norm in the optimization (10) corresponds to the vector
1-norm, but could be any norm, depending on the type of
distance that we wish to minimize. Note that since x(t) and
a(t) are known, the problem (10) can be posed as a linear
programming (LP) problem.

Since P β is the set of all admissible control sequences,
when a solution to (10) does not exist, it indicates that a(t)
is not admissible. Whenever this occurs, we perform the
following procedure. Firstly, as shown in (9), we assign the
RL agent a large penalty −G to inform it that the exploratory
action is unsafe. Secondly, in order to continue the learning
process, we randomly sample an admissible action vector
ã(t) that satisfies

[
x(t)T ã(t)T U ′T

]
∈ P β for some U ′.

Towards that end, we use a hit-and-run sampling scheme,
which works efficiently to sample points inside a polyhedron
[26]. It works as follows: for P β , we begin with an initial
point p0 ∈ P β . We then generate a random unit vector v
uniformly sampled on SN ·m−1 := {x ∈ RN ·m : ‖x‖2 = 1}
and compute the smallest λ satisfying p0 + λv ∈ P β , i.e.,

λ0 = min{λ′ : p0 + λ′v ∈ P β}. (11)



We then set,
p1 = p0 + µλv, (12)

where µ is a random variable uniformly sampled from the
interval [0, 1]. We repeat this procedure to generate the
sequence {pk}. As k approaches ∞, it is guaranteed that
a point in P β will be sampled uniformly [26]. As a practical
matter, we stop the procedure at some k = k∗, and set
ã(t) = pk∗ [1 : m], the first m elements of the vector pk∗ .

Remark 4.1: The augmented reward defined in (9) has
three terms, the regular cost c(x(t)), an efforts-to-retain-
safe cost E(t), and a big penalty G for unsafe explorations.
These augmented reward signals present dynamic-enabled
information that can guide the RL agent learn the system
constraints efficiently.

B. Application to Active Suspension System

In this section, we apply the proposed safe RL to the
active suspension system illustrated in Figure 2, in which
Ms and Mus, respectively, represent the sprung mass (car
body) and unsprung mass (wheel) of the quarter car; zs
and zus represent the displacement of Ms and Mus from
the equilibrium; the suspension is modeled as a spring with
stiffness ks and a damper with damping coefficient cs. As
opposed to semi-active suspension control, active suspension
system can generate actuation force F from an actuator;
the tire is modeled as a spring-damper system with spring
stiffness kt and damping coefficient ct; and zr is the vertical
road disturbance.
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𝑀𝑢𝑠

𝑘𝑡

𝑘𝑠 𝐹
𝑧𝑢𝑠

𝑀𝑠

𝑐𝑡

𝑧𝑟

Fig. 2. A quarter-car active sus-
pension system.

Fig. 3. Quanser Active Suspension
Station

Define x = [zs − zus, żs, zus − zr, żus]T, u = F , w = żr
and y = [x1, ẋ2, x3, u], then the equation of motion of the
suspension system can be written as:

ẋ = Aox+Bu+Bww,

y = Cox+Du,
(13)

where Ao =


0 1 0 −1
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The system constraints are represented using the output
vector. Specifically, the suspension displacement travel is
limited due to mechanical design and in the Quanser sus-
pension station (see Figure 3) we have −1 ≤ y1 ≤ 0.015;
the vertical body acceleration is related to ride comfort and
is subject to −2 ≤ y2 ≤ 2; the tire deflection represents the
road handling and is also limited by the mechanical design
in the Quanser suspension system: y3 ≥ −0.015; and the
control force is constrained as −10 ≤ u ≤ 10 due to physical
limitations.

We implement a nominal LQR controller with a gain K
corresponding to Q = diag{10, 0, 1, 0} and R = 1e − 3.
Then system (13) can be re-written as

ẋ = Ax+Bv +Bwẇ,

y = Cx+Du,
(14)

where A = Ao−BK and C = Co−DK are the closed-loop
system matrices. v is the control adjustment and the goal is
to learn a policy v(x(t)) such that the system constraints are
satisfied while maximizing riding comfort, i.e., minimizing
|y2|. We apply the proposed safe RL algorithm and the results
are shown in the next subsection.

C. Learning implementations

While the proposed safe RL framework can work with
many off-policy RL algorithms, in this paper, we use Deep
Deterministic Policy Gradient (DDPG) as the RL strategy
due to its capability of dealing with continuous controls.
DDPG learns both a critic network to estimate the long-
term value for a given policy and a actor network to sample
the optimal action according to the value estimation. More
details of DDPG algorithm can be found in [27]. In this
section we mainly address how to integrate the proposed
augmented reward and safe sampling (see Section IV-A)
with the conventional DDPG to ensure safety in both learned
policies and exploration during training.

As many off-policy RL algorithms, DDPG applies action
noise on the output of the actor network to generate ex-
ploratory actions and maintains a replay buffer to store the
explored experience (x(t), a(t), x(t + 1), r(t)) for training.
In particular, it adopts the Ornstein-Uhlenbeck (OU) process
to achieve temporally correlated exploration:

a(t) = min(max(πθ(x(t)) + εOU (t), umin), umax), (15)

where umin and umax are used to constrain the exploration
to the valid control range. Obviously, there is no safety
guarantee on a(t), and unsafe exploration is indeed required
for DDPG to learn to avoid it in the future. By virtue of
the admissible set developed earlier, we can determine if
a certain exploration is safe without actually applying it
to the system. Specifically we solve Eq. (10) to find the
safety effort E(x(t), a(t)) for a sampled OU exploration
a(t). If there is no valid solution, it indicates that the current
exploration will lead to unsafe conditions as discussed in
Section IV-A. Then we find its closest safe control ã(t) by
projecting it to the admissible set and perform ã(t) instead
to the system to collect the experience (x(t), ã(t), x(t +



1), r(t)). In this way all exploratory actions are guaranteed
to be safe during training. However, the agent will not
be able to learn a safe policy at the end as it never has
a chance to explore unsafe actions and update the value
estimations accordingly. To address this issue, we create a
virtual experience (x(t), a(t), x(t + 1),−G) whenever a(t)
is the original unsafe exploration function. The pseudo-code
of this modified algorithm is illustrated in Algorithm 1, on
top of traditional model-free DDPG.

Normalization is an important step in DDPG training as
the scale of each input signal is maintained when it is passed
through critic and actor networks. To obtain appropriate nor-
malization factors, we run a few trajectories with uniformly
sampled admissible actions to find the typical range for each
state, and then we calculate the normalization offset and
scale accordingly. Note all normalized states are clipped to
[−1.5, 1.5] to prevent outliers.

Algorithm 1: Safe DDPG

1 initialize DDPG model and replay buffer;
2 for each training episode do
3 initialize a safe initial state x(0);
4 while t < T do
5 observe state x(t);

/* OU exploration */
6 sample exploration a(t) using (15);

/* safety regulation */
7 if (10) returns a solution then
8 retain control u(t) = a(t);
9 else

10 project a(t) to the admissible polyhedral
P β to obtain an admissible control
u(t) = ã(t) using (11) and (12);

11 end
/* experience collection */

12 perform safe control u(t) to system ;
13 observe next state x(t+ 1), reward r(t) by (9);
14 store (x(t), u(t), r(t), x(t+ 1)) to replay buffer;
15 if u(t) 6= a(t) then
16 store (x(t), a(t),−C, x(t+ 1)) to replay

buffer;
17 end
18 update traditional DDPG using sampled data

from replay buffer;
19 end
20 end

Now we describe the implementation regarding practical
challenges in the active suspension control systems. The road
disturbance is specified as a combination of Gaussian process
with zero mean and variance 1e− 5 and random jumps with
jump size 0.001 for 10 steps. Those jumps can represent
road anomalies such as potholes and speed bumps. Due
to these jumps, training a single safe and optimal DDPG
agent is challenging since the agent only learns a statisti-
cal knowledge about jump distributions while the violation

usually happens when there are frequent jumps within a
particular time window. To address this challenge, we train
two DDPG agents: DDPGopt and DDPGsafe. DDPGopt learns
a safe and optimal action statistically, with α = 0.2 and a
wide exploration range a(t) ∈ [−2, 2]. DDPGsafe learns a
safe action that will not cause violation even for frequent
jumps, with α = 0.5 and a conservative exploration range
a(t) ∈ [−1, 1]. The states for DDPGsafe also include a state
that indicates if there is a jump during the last step. We set
episode length of each run as T = 500 steps and safety
penalty as G = 100.

D. Results

For fair comparison, we train DDPGopt and DDPGsafe over
100 episodes with shared random seeds, and we evaluate
their performance over 5 testing episodes after every 5
training episodes. Note both agents perform safe exploration
during training episodes while they strictly follow the learned
policies during testing episodes. First, we compare the learn-
ing capability of optimality between DDPGopt and DDPGsafe,
by plotting the evaluated returns R =

∑T
t=0 r(t) in Fig. 4.

To prevent exploited value after huge penalty after safety
violation, only non-violated testing episodes are used for
return evaluation. The curves in Fig. 4 show the average
return while the shades show the standard deviations of
returns across testing episodes. Obviously, DDPGopt is able
to learn a more optimal policy after a wider exploration, and
the evaluated return is improved from -24 to -16 over training
episodes. On the other hand, DDPGsafe barely improves
return due to a safety dominated reward definition and
discouraged exploration.

Second, we compare the learning capability of safety
between DDPGopt and DDPGsafe, by plotting the evaluated
number of violations in Fig. 4. As expected, both agents are
able to reach zero violation over this small set of testing
episodes near the end. More specifically, DDPGopt is able
to reach constant zero violations after 20 training episodes,
while DDPGsafe is able to achieve a safe policy even at the
first evaluation. This may because of the narrow exploration
range, the safety focused reward, and the additional state of
jump indicator in DDPGsafe.

Third, Fig. 6 illustrates the convergence of both agents by
plotting the average weight magnitude over training steps.
In order to remove the dependency on randomly generated
initial weights, we divide the absolute weight magnitude
by that of initial weight to estimate the relative weight
magnitude instead. Based on Fig. 6, DDPGsafe shows nice
monotonic convergence while DDPGopt experiences some
difficulties to find a stable optimal solution, which may
because the optimal policy is sensitive to non-Markovian
jump distribution.

Finally, we compare the performance of trained DDPG
agents against the nominal controller (LQR) over a larger
evaluation set of 500 episodes, using the same random seed
across agents for each episode. Similarly, the violation rate
and average return over non-violated runs are recorded to
demonstrate the safety and optimality of the controller. We
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Fig. 5. Optimality comparison between DDPGopt and DDPGsafe during
training. Curve indicates the number of testing episodes that are early
terminated due to safety violation.
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Fig. 6. Convergence comparison between DDPGopt and DDPGsafe during
training. Curve shows average weight magnitude per training step w.r.t. the
initial weight.

first evaluate DDPGopt and DDPGsafe separately, and then
evaluate a combined agent DDPGcomb that applies DDPGopt
if there is no jump detected in the last step and DDPGsafe
otherwise. The result is summarized in Table I. As expected,
DDPGcomb beats the nominal controller in both accumulated
return (-23.14 vs. -23.61) and constraint preservations (0%
vs. 1.8%).

TABLE I
EVALUATION RESULTS.

DDPGopt DDPGsafe DDPGcomb Nominal
violation rate 1.9% 0.0% 0.0% 1.8%
average return -16.04 -24.01 -23.14 -23.61

V. CONCLUSIONS AND FUTURE WORK

In this paper, we developed a deep safe RL framework that
integrates model-based safety supervision and model-free
learning. We exploit the underlying dynamics and system
constraints to construct a safety set for learning exploration
regulation using recursive feasibility techniques. We design
augmented reward signals to efficiently guide the RL agent to
learn the system constraints. We use the hit-and-run sampling
technique to sample safe actions to preserve exploration
efficiency. We applied the safe RL framework on an active
suspension station and showed that we can learn a safe
policy that outperforms the nominal controller. Future work
will include the implementation and testing in the physical
suspension station plant. We will also extend the framework
to general nonlinear systems.
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