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Abstract
In this paper, a data-driven control approach is developed by reinforcement learning (RL)
to solve the global robust optimal output regulation problem (GROORP) of partially linear
systems with both static uncertainties and nonlinear dynamic uncertainties. By developing a
proper feedforward controller, the GROORP is converted into a global robust optimal stabi-
lization problem. A robust optimal feedback controller is designed which is able to stabilize
the system in the presence of dynamic uncertainties. The closed-loop system is assured to
be input-to-output stable regarding the static uncertainty as the external input. This robust
optimal controller is numerically approximated via RL. Nonlinear small-gain theory is applied
to show the input-to-output stability for the closed-loop system and thus solves the original
GROORP. Simulation results validates the efficacy of the proposed methodology.
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Abstract—In this paper, a data-driven control approach is
developed by reinforcement learning (RL) to solve the global
robust optimal output regulation problem (GROORP) of partially
linear systems with both static uncertainties and nonlinear
dynamic uncertainties. By developing a proper feedforward
controller, the GROORP is converted into a global robust optimal
stabilization problem. A robust optimal feedback controller is
designed which is able to stabilize the system in the presence
of dynamic uncertainties. The closed-loop system is assured to
be input-to-output stable regarding the static uncertainty as the
external input. This robust optimal controller is numerically
approximated via RL. Nonlinear small-gain theory is applied to
show the input-to-output stability for the closed-loop system and
thus solves the original GROORP. Simulation results validates
the efficacy of the proposed methodology.

Index Terms—Reinforcement learning, small-gain theory, ro-
bust control, output regulation.

I. INTRODUCTION

The output regulation problem aims at designing control
strategies to achieve the rejection of a nonvanishing distur-
bance and forcing the output of dynamic systems to asymptoti-
cally track a desired reference. This problem has been tackled
for linear systems since 1970s [1]. Due to its relevance to
many real-world applications, the output regulation problem
for nonlinear systems has also attracted considerable attention
with focus on either local, semi-global or global stabilization
[2], [3], [4], [5], [6].

In the most existing output regulation problems, both the
nonvanishing disturbance and the reference are generated
by an autonomous system, named exosystem—wherein the
unmodeled disturbance is neglected. In [7], a more generalized
case; H∞ output regulation problem, where both the nonvan-
ishing and unmodeled disturbances were considered. This H∞
optimal control and output regulation techniques are efficiently
combined for robust model-based control design. The H∞
optimal control can be formulated a zero-sum differential
games involving two players; the controller (player 1) and the
unmodeled disturbance (player 2) which are the minimizing
and the maximizing players, respectively [8]. In this setting,
one can solve the output regulation problem for the system
with unmodeled disturbances which are static uncertainties.
Considering a nonlinear system with dynamic uncertainties,
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the notion of input-to-state stability and small-gain theory [9],
[10] have been employed to solve the global robust output
regulation problems [11]. However, we are not aware of any
existing work on output regulation problems that taking both
static and dynamic uncertainties into consideration. Also, it
is noteworthy that most of the existing control strategies to
output regulation problems are model-based, which means that
an accurate knowledge of system’s model is absolutely needed.

Reinforcement Learning (RL) is a non-model-based and
data-driven approach which solves optimal control problems
via online state and input information [12]. RL has been used
to design optimal feedback controllers for both continuous-
time and discrete-time systems for achieving stabilization;
see [13], [14], [12], [15], [16], [17] wherein optimal cost
and feedback controllers are computed using online data.
In [18], a robust data-driven approach is proposed to solve
control problems in linear and nonlinear systems with dynamic
uncertainties. Reference [16] extends the solution to global
optimal output regulation problems by incorporating dynamic
uncertainties in the system. The exact knowledge of system
dynamics and dynamic uncertainties are not required to design
the robust optimal controllers.

This paper aims at proposing a novel data-driven solu-
tion to the global robust optimal output regulation problem
(GROORP) for a class of partially linear composite systems.
It is challenging since the system studied in this paper is
with unknown dynamics, and both static and dynamic uncer-
tainties. First, we convert the GROORP into a global robust
optimal stabilization problem. Then, a data-driven approach is
developed to compute the robust adaptive optimal controller
and disturbance policy via online input and state information.
In the presence of dynamic uncertainty, it is ensured to
achieve the rejection of nonvanishing disturbance and forcing
its trajectories to asymptotically track the desired reference.
With both static and dynamic uncertainty, it is guaranteed that
the closed-loop system is input-to-output stable regarding the
static uncertainty as the external input. Optimality and global
output regulation are both achieved for the class of partially
linear systems.

The remainder of this paper is organized as follows. In
Section II, we briefly review the linear optimal output regu-
lation problem and linear optimal control theory. Considering
static and nonlinear dynamic uncertainties, we formulate the
GROORP for a class of partially linear systems in Section
III. An offline solution on the basis of nonlinear small-gain
theory is proposed therein. In Section IV, the RL technique is
employed to design a robust optimal controller via online data.
Simulation results on a partially linear system are provided in
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Section V. Finally, concluding remarks are given in Section
VI.

Notations. Throughout this paper, R+ (resp. Z+) denotes
the set of nonnegative real numbers (resp. integers). C−
indicates the open left-half complex plane. | · | represents the
Euclidean norm for vectors and the induced norm for matrices.
A continuous function α : R+ → R+ is of class K if it is
strictly increasing and α(0) = 0. It belongs to class K∞ if,
in addition, it is unbounded. A function β : R+ × R+ → R+

is of class KL if for each fixed t, the function β(·, t) is of
class K and, for each fixed s, the function β(s, ·) is non-
increasing and tends to 0 at infinity. Id stands for an identity
function. ⊗ indicates the Kronecker product operator and
vec(A) = [aT1 , a

T
2 , · · · , aTm]T , where ai ∈ Rn are the columns

of A ∈ Rn×m. For an arbitrary column vector v ∈ Rn,
vecv(v) = [v2

1 , v1v2, · · · , v1vn, v
2
2 , v2v3, · · · , vn−1vn, v

2
n]T ∈

R 1
2n(n+1). vecs(P ) = [p11, 2p12, · · · , 2p1m, p22, 2p23, · · · ,

2pm−1,m, pmm]T ∈ R 1
2m(m+1) for a symmetric matrix P ∈

Rm×m. λM (P ) (resp. λm(P )) denotes the maximum (resp.
minimum) eigenvalue of a real symmetric matrix P . For any
piecewise continuous function u : R+ → Rm, ‖u‖ stands for
supt≥0 |u(t)|. For two functions f and g, (f ◦g)(·) := f(g(·)).

II. ROBUST OPTIMAL OUTPUT REGULATION OF LINEAR
SYSTEMS

Considering a class of linear systems with nonvanishing dis-
turbance and reference signals generated by linear exosystems,
the robust optimal output regulation problem (ROORP) is for-
mulated by minimizing both static and dynamic optimization
problems. Then, we recall the basics of robust control and
policy iteration (PI) technique. An approach solving explicitly
the regulator equation is presented as well.

A. Problem formulation

To begin with, consider the linear system

ẋ = Ax+B1u+B2ω +Dv, (1)
v̇ = Ev, (2)
y = Cx, (3)
yd = −Fv, (4)
e = y − yd (5)

where x ∈ Rn is the state vector, u ∈ Rm the control input,
and v ∈ Rq the state of the exosystem (2). The exosystem
generates both the nonvanishing disturbance η = Dv and the
reference y0 = −Fv for the output of the plant y = Cx ∈ Rr.
e ∈ Rr is the tracking error. ω ∈ Rd is an unmodeled square
integrable disturbance. A ∈ Rn×n, B1 ∈ Rn×m, B2 ∈ Rn×d,
C ∈ Rr×n, E ∈ Rq×q, F ∈ Rr×q , and D ∈ Rn×q are system
matrices with (A,B1) stabilizable. Throughout this paper, the
following assumptions are made.

Assumption 2.1: The transmission zeros condition holds,
i.e.,

rank

[
A− λI B1

C 0

]
= n+ r, ∀λ ∈ σ(E). (6)

Assumption 2.2: All the eigenvalues of E are simple with
zero real part.

Based on Assumptions 2.1-2.2, one can get the following
technical result.

Theorem 2.1: Let the feedback gain K ∈ Rm×n be such
that σ(A − B1K) ∈ C−. Then, if a controller is designed as
u = −K(x −Xv) + Uv, where X ∈ Rn×q and U ∈ Rm×q
solve the following equations:

XE = AX +B1U +D,

0 = CX + F, (7)

then the closed-loop linear system achieves disturbance rejec-
tion and asymptotic tracking.
Proof. Letting x̄ = x − Xv, ū = u − Uv and using (7), we
have

˙̄x = Ax+B1u+B2ω +Dv −XEv
= Ax−B1K(x−Xv) + (B1U +D)v +B2ω −XEv
= (A−B1K)x̄+B2ω. (8)

Since σ(A − B1K) ∈ C− and w(t) is square integrable,
we observe lim

t→∞
x̄(t) = 0 and lim

t→∞
ū(t) = 0, which implies

lim
t→∞

e(t) = lim
t→∞

Cx̄(t) = 0. The proof is completed.
Remark 2.1: (7) is called the linear regulator equation.

Assumption 2.1 is made such that (7) is solvable for any
matrices D,F [6].

Inspired by [19], [20], we tackle the robust optimal output
regulation problem (ROORP) by solving a static optimization
Problem 2.1 to find the optimal solution (X∗, U∗) to (7) and
a dynamic optimization Problem 2.2 to find the optimal gains
K∗ and N∗.

Problem 2.1:

min
(X,U)

Tr(XT Q̄X + UT R̄U), (9)

subject to (7)

where Q̄ = Q̄T > 0, R̄ = R̄T > 0.
One can write the error system of (1)-(5) as:

˙̄x∗ = Ax̄∗ +B1ū
∗ +B2ω, (10)

e = Cx̄∗ (11)

where x̄∗ = x−X∗v, ū∗ = u− U∗v.
Problem 2.2:

min
ū

max
ω

∫ ∞
0

[(x̄∗)TQx̄∗ + (ū∗)T ū∗ − γ−2ωTω]dt

subject to (10)− (11),

where Q = QT > 0, and γ ≥ γ∗ ≥ 0. The γ∗ is named by
H∞ gain.

Remark 2.2: In order to solve the ROORP, we ought to
design a control policy u = −K∗(x − X∗v) + U∗v and a
disturbance policy ω = N∗(x −X∗v) where optimal control
gains K∗ and N∗, and optimal regulator parameters X∗ and
U∗ are achieved by solving optimization Problems 2.1 and
2.2. Theorem 2.1 ensures that the resultant closed-loop system
achieves disturbance rejection and asymptotic tracking.
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Remark 2.3: It is shown in [21, Remark 5] that the Problem
2.1 can be converted as a convex optimization problem with
a quadratic cost and linear constraints. The solution to the
Problem 2.1 is unique given positive definite matrices Q̄
and R̄. The motivation of introducing the Problem 2.1 is to
optimize the steady-state behavior the system.

B. H∞ control and Policy Iteration (PI)

By linear optimal control theory, we design an optimal
feedback controller ū∗ = −K∗x̄∗ and a disturbance policy
ω∗ = N∗x̄∗ to minimize the cost of Problem 2.2. The optimal
feedback control gain K∗ and disturbance gain N∗ are

K∗ = B1
TP ∗, (12)

N∗ = γ−2B2
TP ∗, (13)

respectively, with P ∗ = P ∗T > 0 the unique solution to the
following game algebraic Riccati equation (GARE)

ATP ∗+P ∗A+Q

−P ∗(B1B
T
1 − γ−2B2B

T
2 )P ∗ = 0. (14)

Remark 2.4: From (12) to (14), computing K∗ and N∗ does
not depend on X∗ or U∗. Problems 2.1 and 2.2 can be solved
separately.

Lemma 2.1 ([22]): Let K0 ∈ Rm×n be any stabilizing con-
trol gain, and let N0 ∈ Rd×n be a zero matrix. Pj = PTj > 0
is the solution to the following Lyapunov equation

(A−B1Kj +B2Nj)
TPj + Pj(A−B1Kj +B2Nj)

+Q+KT
j Kj − γ2NT

j Nj = 0 (15)

where Kj and Nj , with j = 1, 2, · · · , are defined by

Kj =BT1 Pj−1 (16)

Nj =γ−2BT2 Pj−1 (17)

Then, the following properties hold, for j = 0, 1, 2, · · · ,
1) σ(A−B1Kj) ∈ C−,
2) P ∗ ≤ Pj+1 ≤ Pj ,
3) lim

j→∞
Kj = K∗, lim

j→∞
Nj = N∗ and lim

j→∞
Pj = P ∗.

C. Solving regulator equations

Define a Sylvester map S : Rn×q → Rn×q by

S(X) = XE −AX,X ∈ Rn×q. (18)

If we choose a X1 ∈ Rn×q such that CX1 + F = 0, and
Xi ∈ Rn×q , for i = 2 · · ·h+1, such that all the vec(Xi) form
a basis of ker(Iq ⊗C), where h is the nullity of Iq ⊗C, then
a pair (X0

† , U
0
† ) is a solution to the regulator equation (7) if

and only if there exist α0
2, α

0
3, · · · , α0

h+1 ∈ R such that

S(X0
† ) = B1U

0
† +D, (19)

X0
† = X1 +

h+1∑
i=2

α0
iXi. (20)

If the solution is not unique, we find all linearly independent

vectors vec(

[
Xk
†

Uk†

]
) by seeking sequences αki ∈ R such that,

for k = 1, 2, · · · , H with H = q(m− r),

Xk
† =

h+1∑
i=2

αkiXi, BU
k
† =

h+1∑
i=2

αki S(Xi). (21)

Then, the solution set of (7) is equivalent to

S ={(X,U)|X = X0
† +

H∑
k=1

βkX
k
† , U = U0

† +

H∑
k=1

βkU
k
† ,

∀β1, β2, · · · , βH ∈ R}. (22)

If we compute S(Xi) for i = 0, 1, · · · , h+1 via online data,
the solution set of the regulator equation (7) is obtained with
unknown system matrices. The proposed method for solving
the regulator equation paves the way for online robust optimal
controller design in Section IV.

III. GLOBAL ROBUST OPTIMAL OUTPUT REGULATION OF
PARTIALLY LINEAR SYSTEMS

In this section, we formulate the GROORP of a class of
partially composite linear systems. An offline solution to the
GROORP is given by developing a global robust optimal
controller.

A. GROORP formulation

Motivated by the class of partially linear systems in [23],
we study a general class of perturbed partially linear systems:

ζ̇ = g(ζ, y, v), (23)
ẋ = Ax+B1[u+ ∆(ζ, y, v)] +B2ω +Dv, (24)
v̇ = Ev, (25)
y = Cx, (26)
yd = −Fv, (27)
e = y − yd, (28)

where ζ ∈ Rp and v ∈ Rq represents the states of the
dynamic uncertainty (23) and the exosystem (25), respectively.
The functions g(ζ, y, v) : Rp × Rr × Rq → Rp, and
∆(ζ, y, v) : Rp × Rr × Rq → Rm are sufficiently smooth
functions satisfying g(0, 0, 0) = 0 and ∆(0, 0, 0) = 0. Suppose
A,B1, B2, D, g,∆ are unknown with ζ unmeasurable.

Remark 3.1: The GROORP is solvable for the partially
linear system (23)-(28) if a robust optimal controller is found
by solving optimization Problems 2.1 and 2.2 such that for
v : [0,∞) → V with V being a prescribed compact set of
Rq , any initial conditions ζ(0), x(0), the trajectory of closed-
loop system (23)-(28) exists and is bounded for any t ≥ 0,
and satisfies lim

t→∞
e(t) = 0 when ω ≡ 0. And the system is

input-to-output stable for nontrivial ω.
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B. Offline solutions to GROORP

Let Σv be the class of piecewise functions from [0,∞) to
V . Then two assumptions are made on the system (23)-(28):

Assumption 3.1: A sufficiently smooth function ζ(v) with
ζ(0) = 0 exists satisfying the following equation for any v ∈
Rq:

∂ζ(v)

∂v
Ev = g(ζ(v), yd, v),

0 = ∆(ζ(v), yd, v). (29)

Under equations (7) and (29), we write the error system of
(23)-(28) by letting ζ̄ = ζ − ζ(v),

˙̄ζ = ḡ(ζ̄, e, v), (30)
˙̄x = Ax̄+B1[ū+ ∆̄(ζ̄, e, v)] +B2ω, (31)
e = Cx̄, (32)

where

ḡ(ζ̄, e, v) = g(ζ, y, v)− g(ζ(v), yd, v),

∆̄(ζ̄, e, v) = ∆(ζ, y, v)−∆(ζ(v), yd, v).

Two assumptions are made on the dynamic uncertainty, i.e.,
ζ̄-system, with e as the input and ∆̄ as the output.

Assumption 3.2: There exist a function σs of class KL and
a function γs of class K, both of which are independent of
any v ∈ Σv such that for any measurable locally essentially
bounded e on [0, T ) with 0 < T ≤ +∞ and any v ∈ Σv , ζ̄(t)
right maximally defined on [0, T ′)(0 < T ′ ≤ T ) satisfies

|ζ̄(t)| ≤ σs(|ζ̄(0)|, t) + γs(‖[eT[0,t], ∆̄
T
[0,t]]

T ‖),∀t ∈ [0, T ′),

where e[0,t] and ∆̄[0,t] are the truncated functions of e and ∆̄
over [0, t], respectively.

Assumption 3.3: There exist a function σ∆ of class KL and
a function γ∆ of class K, both of which are independent of any
v ∈ Σv such that, for any initial state ζ̄(0), any measurable
locally essentially bounded e on [0, T ) with 0 < T ≤ +∞
and any v ∈ Σv , ∆̄(t) right maximally defined on [0, T ′)(0 <
T ′ ≤ T ) satisfies

|∆̄(t)| ≤ σ∆(|ζ̄(0)|, t) + γ∆(‖e[0,t]‖),∀t ∈ [0, T ′). (33)

Remark 3.2: Assumptions 3.2 and 3.3 are made so that
system (30) has strong unboundedness observability (SUO)
[24] with zero-offset and input-to-output stability (IOS) [25]
properties . Then by nonlinear small-gain theory, a controller
exists to globally asymptotically stabilize the error system.
Similar assumptions appear in [11].

Theorem 3.1: Under Assumptions 3.2 and 3.3, let symmetric
matrices Q ≥ γxIn, R = Im with γx > 0. If the gain function
γ∆(s) satisfies the following inequality

γ∆(s) ≤ (Id+ ρ1)−1 ◦ γ−1
e ◦ (Id+ ρ2)−1(s),∀s ≥ 0 (34)

for γe(s) = |C|
√

1/γxs and ρ1, ρ2 of class K∞, then, for any
exostate v, the error system (30)-(32) in closed-loop with the
optimal control policy ū = −K∗x̄ is globally asymptotically
stable when ω ≡ 0. Moreover, when ω is nontrivial, the closed-
loop system is input-to-output stable regarding ω as an input
[24].

Proof. The GARE can be rewritten as

(A−B1K
∗)TP ∗ + P ∗(A−B1K

∗) +Q

+ P ∗B1B
T
1 P
∗ + γ−2P ∗B2B

T
2 P
∗ = 0 (35)

Differentiating the Lyapunov function V = x̄TP ∗x̄ gives

V̇ =x̄T [(A−B1K
∗)TP ∗ + P ∗(A−B1K

∗)]x̄+ 2x̄TP ∗B1∆̄

+ 2x̄TP ∗B2ω

=− x̄T (Q+ P ∗B1B
T
1 P
∗ + γ−2P ∗B2B

T
2 P
∗)x̄

+ 2x̄TP ∗B1∆̄ + 2x̄TP ∗B2ω

≤− x̄TQx̄− |∆̄−BT1 P ∗x̄|2 − |γw − γ−1BT2 P
∗x̄|2

+ |∆̄|2 + γ2|ω|2

≤− x̄TQx̄+ |∆̄|2 + γ2|ω|2

≤− γx|x̄|2 + |∆̄|2 + γ2|ω|2 (36)

for any t ≥ 0, we have

V (t) ≤ exp

(
− γx
λm(P ∗)

t

)
V (0) +

λm(P ∗)

γx
‖∆̄‖2

+
γ2λm(P ∗)

γx
‖ω‖2. (37)

An immediate consequence of the previous inequality is

|x̄(t)| ≤ exp

(
− γx

2λm(P ∗)
t

)√
λM (P ∗)

λm(P ∗)
|x̄(0)|

+

√
1

γx
‖∆̄‖+ γ

√
1

γx
‖ω‖, ∀t ≥ 0, (38)

which implies that the x̄-system with the pair (∆̄, ω) as the
input is input-to-state stable [26]. One can write

|e(t)| ≤ σe(|x̄0|, t) + γe‖∆̄‖+ γγe‖ω‖, (39)

where

σe(|x̄0|, t) = |C| exp

(
− γx

2λm(P ∗)
t

)√
λM (P ∗)

λm(P ∗)
|x̄0|

is a function of KL and γe = |C|
√

1/γx, which guarantees
that the x̄-system with e as output has SUO property with zero-
offset and IOS properties [24]. On the other hand, Assump-
tions 3.2 and 3.3 indicate that the ζ̄-system has SUO property
with zero-offset and IOS properties with input-to-output gain
function γ∆(s). By the nonlinear small-gain theory [24], under
the following small-gain condition

(Id+ ρ2) ◦ γe ◦ (Id+ ρ1) ◦ γ∆(s) ≤ s,∀s ≥ 0, (40)

the error system (30)-(32) with ū = −K∗x̄ is globally
asymptotically stable at the origin if ω ≡ 0. For a nontrivial
square-integrable disturbance ω, one can achieve that the
closed-loop system is input-to-output stable regarding ω as
an external input. �.
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C. Solvability of GROORP

Now, we are ready to design a robust optimal controller to
solve the GROORP of the partially linear system (23)-(28).

Theorem 3.2: Under the conditions of Assumptions 2.1,2.2-
3.3, if weight matrices are chosen Q = QT ≥ γxIn, R = Im
such that small-gain condition (40) holds, then the GROORP
of the partially linear system (23)-(28) is solvable by the robust
optimal controller u = −K∗(x−X∗v) + U∗v.

Proof. By Theorem 3.1, the robust optimal feedback con-
troller ū∗ = −K∗x̄∗ globally asymptotically stabilizes the
error system (30)-(32) for any v(t). Then, the trajectory of
error system satisfies lim

t→∞
ζ̄(t) = 0 and lim

t→∞
x̄∗(t) = 0 for

ω ≡ 0. We observe

lim
t→∞

e(t) = Cx̄∗(t) + (CX∗ + F )v(t) = 0, (41)

for any x(0), ζ(0). Also, it is checkable that the input-to-output
stability of the closed-loop system still holds. The proof is
completed.

IV. RL ONLINE LEARNING

A novel online learning strategy is presented to solve
X∗, U∗ and online approximation of optimal values P ∗ and
K∗. Similar as the robust adaptive dynamic programming
strategy studied in [18], suppose ∆ is available during the
learning phase. Defining x̄i = x−Xiv for i = 0, 1, 2, · · · , h+1
with X0 = 0n×q , we have

˙̄xi =Ax+B1(u+ ∆) +B2ω + (D −XiE)v

=Aj x̄i +B1(Kj x̄i + z) +B2(ω −Nj x̄i)
+ (D − S(Xi))v, (42)

where Aj = A−B1Kj +B2Nj , z = u+ ∆.
Then

x̄i(t+ δt)TPj x̄i(t+ δt)− x̄i(t)TPj x̄i(t)

=

∫ t+δt

t

[
x̄Ti (ATj Pj + PjAj)x̄i + 2(z +Kj x̄i)

TBT1 Pj x̄i

+2vT (D − S(Xi))
TPj x̄i + 2(ω −Nj x̄i)TBT2 Pj x̄i

]
dτ

=−
∫ t+δt

t

x̄Ti (Q+KT
j RKj − γ2NT

j Nj)x̄idτ

+ 2

∫ t+δt

t

(z +Kj x̄i)
TRKj+1x̄idτ

+ 2

∫ t+δt

t

vT (D − S(Xi))
TPj x̄idτ

+ 2γ2

∫ t+δt

t

(ω −Nj x̄i)TNj+1x̄idτ. (43)

For a large enough positive integer l and two vectors a ∈
Rna , b ∈ Rnb , we define

Γab = [

∫ t1

t0

a⊗ bdτ,
∫ t2

t1

a⊗ bdτ, · · · ,
∫ tl

tl−1

a⊗ bdτ ]T ,

δx̄ix̄i
= [vecv(x̄i(t1))− vecv(x̄i(t0)), vecv(x̄i(t2))−

vecv(x̄i(t1)), · · · , vecv(x̄i(tl))− vecv(x̄i(tl−1))]T ,

where t0 < t1 < · · · < tl are positive integers. (43) indicates
the following equation.

Ψij


vecs(Pj)

vec(Kj+1)
vec((D − S(Xi))

TPj)
vec(Nj+1)

 = Φij , (44)

where

Ψij = [δx̄ix̄i
,−2Γx̄ix̄i

(In ⊗ (KT
j R)− 2Γx̄iz(In ⊗R),

− 2Γx̄iv,−2γ2(Γx̄iω − Γx̄ix̄i
(In ⊗NT

i ))],

Φij = −Γx̄ix̄ivec(Q+ (Kj
i )TRKj

i − γ
2NT

i Ni).

Equation (44) is uniquely solved by the least squares method
if the matrix Ψij is of full column rank, i.e.,

vecs(Pj)

vec(Kj+1
i )

vec((D − S(Xi))
TPj)

vec(Nj+1)

 = (ΨT
ijΨij)

−1ΨT
ijΦij . (45)

Note that D is computable by (45) given S(X0) = 0. If we
seek a sequence α0

2, α
0
3, · · · , α0

h+1 ∈ R and a matrix U0
† ∈

Rm×q such that

S(X1) +

h+1∑
i=2

α0
iS(Xi) = P−1

j Kj+1RU
0
† +D, (46)

then (X0
† , U

0
† ) is a solution to the regulator equation (7), where

X0
† = X1 +

∑h+1
i=2 α

0
iXi.

If the solution to (7) is not unique, we find all lin-

early independent vectors vec(

[
Xk
†

Uk†

]
) by seeking sequences

αk2 , α
k
3 , · · · , αkh+1 ∈ R such that for k = 1, 2, · · · , H with

H = q(m− r)

Xk
† =

h+1∑
i=2

αkiXi,

h+1∑
i=2

αki S(Xi) = P−1
j Kj+1RU

k
† . (47)

Then, we define a set:

S ={(X,U)|X = X0
† +

H∑
k=1

βkX
k
† , U = U0

† +

H∑
k=1

βkU
k
† ,

∀β1, β2, · · · , βH ∈ R}. (48)

Theorem 4.1: Given a stabilizing K0 ∈ Rm×n, if Ψij

is in full column rank for i = 0, 1, · · · , h + 1, j ∈ Z+ ,
the sequences {Pj}∞j=0, {Kj}∞j=1 obtained from solving (45)
converge to P ∗ and K∗, respectively.

Proof. Given a stabilizing Kj , if Pj = PTj is the solution
of (15), Kj+1 and Nj+1 is determined by Kj+1 = R−1BT1 Pj
and Nj+1 = γ−2BT2 Pj , respectively. Let Tj = (S(Xi))

TPj .
By (43), we know that Pj , Kj+1 and Tj satisfy (45). On the
other hand, let P = PT ∈ Rn×n, K ∈ Rm×n, N ∈ Rd×n
and T ∈ Rq×n, such that

Ψij


vecs(P )
vec(K)
vec(T )
vec(N)

 = Φj .

Then, we have Pj = P , Kj+1 = K, Nj+1 = N , Tj = T .
Moreover, P,K,N, T are unique when Ψij is in full column
rank. By Lemma 2.1, the convergence of Pj , Kj and Nj is
proved.



6

Algorithm 1 RL Algorithm Algorithm for Solving GROORP

1: Select a K0 such that σ(A−B1K0) ∈ C− and a threshold
ε > 0. Choose Q = QT ≥ γxIn such that the small-gain
condition holds. Compute trails X0, X1, · · · , Xh+1

2: Employ u = −K0x+ξ as the control input on [t0, tl] with
ξ an exploration noise.

3: j ← 0, i← 0
4: repeat
5: Solve Pj ,Kj+1, Nj+1 from (45).
6: j ← j + 1
7: until |Pj − Pj−1| < ε
8: Obtain the approximated optimal control gains K∗ and
N∗, and approximated solution P ∗ to (14)

9: repeat
10: Solve S(Xi) from (46)
11: i← i+ 1
12: until i = h+ 2
13: Obtain (X∗, U∗) by solving Problem 2.1
14: The robust optimal controller u = −Kj(x−X∗v) +U∗v

and the optimal disturbance policy ω = Nj(x−X∗v) are
computed.

V. EXAMPLE

Consider a partially linear system:

ζ̇ = −ζ3 + ζe,

ẋ =

[
−1 −2
0.5 −2

]
x+

[
2
2

]
(u+ v1ζ

2) +

[
1
4

]
ω,

v̇ =

[
0 −1
1 0

]
v,

e = x1 + v2.

In this example, for any v ∈ R2, ζ(v) = 0 satisfies the
Assumption 3.1. Taking Vζ = ζ2/2, the derivative of V along
the trajectories of the dynamic uncertainty is given by

V̇ζ =− ζ4 + ζ2e

=− 0.5ζ4 − 0.5ζ4 + ζ2e

≤− 0.5ζ4, ∀|ζ| ≥
√
|e|
0.5

(49)

Given the fact that ∆ = ζ2, it is checkable that Assumptions
3.2 and 3.3 are satisfied with gain function

γ∆(s) =
s

0.5
.

If γe(s) < 0.5s, the error system (30)-(31) is guaranteed
globally asymptotically stable at the origin. In this paper, we
choose Q = 5I2, γ = 11, the initial stabilizing feedback
control gain matrix as K0 =

[
0 0

]
, the initial disturbance

control gain as N0 =
[
0 0

]
, the exploration noise as

ξ = sin(2t), and the convergent criterion as ε = 10−8. For
i = 1, 2, 3, matrices Xi are chosen

X1 =

[
0 −1
0 0

]
, X2 =

[
0 0
1 0

]
, X3 =

[
0 0
0 1

]
.

Moreover, the initial values of states are x =
[
1 2

]T
and

v =
[
3 0

]T
. The online data is collected from t = 0s to

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
Number of Iteration

0

0.1

0.2

0.3

0.4

0.5

0.6

Fig. 1: Convergence of Pj to its optimal value P ∗ during the
learning process

t = 15s. After that, we iteratively compute the optimal values
and convergence is attained after 6 iterations. Figs. 1-3 depict
the errors between Pj and P ∗, between Kj and K∗, and Nj
and N∗.

For i = 0, 1, 2, 3, we solve the linear map S(X)i from
online information. From (46) and (47), we get the set of
unique solution of regulator equation, which is also the optimal
solution (X∗, U∗):

X∗ =

[
0.0000 −1.0000
1.4999 −1.0003

]
, U∗ =

[
0.9996 −1.5002

]
.

Then we get the robust optimal controller and optimal
disturbance policy

u = −
[

0.8016 1.5239
]
x+

[
3.2853 −3.8262

]
v,

ω =
[
−0.0268 0.0553

]
x+

[
0.0829 −0.0285

]
v,
(50)

respectively. The learned controller is implemented after t =
15s. Fig. 4 depicts that the output of the plant asymptotically
tracks the reference. Figs. 5-8 depict the trajectories of the
states, the control input, the disturbance and the dynamic
uncertainty respectively.

In order to validate the effect of disturbances on the cost,
we change the disturbance input by

ω =
1

2

([
−0.0268 0.0553

]
x+

[
0.0829 −0.0285

]
v
)
.

(51)

We record the cost∫ 500

0

[(x̄∗)TQx̄∗ + (ū∗)T ū∗ − γ−2ωTω]dt

for different disturbances until t = 500s. This is reasonable
since the cost does not change significantly after t > 500s for a
stabilized system. It is obtained that the cost under disturbance
(51) has reduced by 21.7296 compared with the cost under
(50).
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Fig. 2: Convergence of Kj to its optimal value K∗ during the
learning process
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Fig. 3: Convergence of Nj to its optimal value N∗ during the
learning process
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Fig. 4: Trajectories of the output and reference
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Fig. 5: Trajectories of the states
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Fig. 6: Trajectory of the dynamic uncertainty ζ(t)
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Fig. 7: Trajectory of control input u(t)
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Fig. 8: Trajectory of the disturbance ω(t)

VI. CONCLUSION

This paper proposes a novel control approach for global
optimal output regulation of a class of partially linear systems
with an exosystem and nonlinear dynamic uncertainties. By
using reinforcement learning, a data-driven control strategy
is proposed for designing robust adaptive optimal controllers
and an optimal disturbance policy to achieve the rejection of
nonvanishing disturbance and forcing the output to asymptot-
ically track a desired output. The obtained simulation results
ascertain the effectiveness of the proposed approach.
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[8] T. Başar and P. Bernhard, H-infinity optimal control and related minimax
design problems: a dynamic game approach. Springer Science &
Business Media, 2008.

[9] T. Liu, D. J. Hill, and Z. P. Jiang, “Lyapunov formulation of ISS cyclic-
small-gain in continuous-time dynamical networks,” Automatica, vol. 47,
no. 9, pp. 2088 – 2093, 2011.

[10] T. Liu and Z. Jiang, “A small-gain approach to robust event-triggered
control of nonlinear systems,” IEEE Transactions on Automatic Control,
vol. 60, no. 8, pp. 2072–2085, 2015.

[11] J. Huang and Z. Chen, “A general framework for tackling the output
regulation problem,” IEEE Transactions on Automatic Control, vol. 49,
no. 12, pp. 2203–2218, 2004.

[12] F. L. Lewis and D. Vrabie, “Reinforcement learning and adaptive
dynamic programming for feedback control,” IEEE Circuits and Systems
Magazine, vol. 9, no. 3, pp. 32–50, 2009.

[13] Y. Jiang and Z. P. Jiang, “Computational adaptive optimal control for
continuous-time linear systems with completely unknown dynamics,”
Automatica, vol. 48, no. 10, pp. 2699–2704, 2012.

[14] W. Gao, Y. Jiang, Z. P. Jiang, and T. Chai, “Adaptive and optimal output
feedback control of linear systems: An adaptive dynamic programming
approach,” in Proceedings of the 11th World Congress on Intelligent
Control and Automation, Shenyang, China, 2014, pp. 2085–2090.

[15] W. Gao, Z. P. Jiang, and K. Ozbay, “Adaptive optimal control of
connected vehicles,” in Proceedings of the 10th International Workshop
on Robot Motion and Control, Poznan, Poland, 2015, pp. 288–293.

[16] W. Gao and Z. P. Jiang, “Global optimal output regulation of partially
linear systems via robust adaptive dynamic programming,” in Proc.
1st Conference on Modelling. Identification and Control of Nonlinear
Systems, vol. 48, no. 11, Saint-Petersburg, Russia, 2015, pp. 742–747.

[17] B. Sun, M. He, Y. Wang, W. Gui, C. Yang, and Q. Zhu, “A data-driven
optimal control approach for solution purification process,” Journal of
Process Control, vol. 68, pp. 171 – 185, 2018.

[18] Y. Jiang and Z. P. Jiang, “Robust adaptive dynamic programming and
feedback stabilization of nonlinear systems,” IEEE Transactions on
Neural Networks and Learning Systems, vol. 25, no. 5, pp. 882–893,
2014.

[19] W. Gao and Z. P. Jiang, “Linear optimal tracking control: An adaptive
dynamic programming approach,” in Proceedings of the American
Control Conference, Chicago, IL, 2015, pp. 4929–4934.

[20] A. J. Krener, “The construction of optimal linear and nonlinear reg-
ulators,” in Systems, Models and Feedback: Theory and Applications,
A. Isidori and T. J. Tarn, Eds. Birkhauser Boston, 1992, vol. 12, pp.
301–322.

[21] W. Gao and Z. P. Jiang, “Adaptive dynamic programming and adaptive
optimal output regulation of linear systems,” IEEE Transactions on
Automatic Control, vol. 61, no. 12, pp. 4164–4169, 2016.

[22] H. Modares, F. L. Lewis, and Z. Jiang, “H∞ tracking control of com-
pletely unknown continuous-time systems via off-policy reinforcement
learning,” IEEE Transactions on Neural Networks and Learning Systems,
vol. 26, no. 10, pp. 2550–2562, 2015.

[23] A. Saberi, P. Kokotovic, and S. Summers, “Global stabilization of
partially linear composite systems,” SIAM Journal of Control and
Optimization, vol. 2, no. 6, pp. 1491–1503, 1990.

[24] Z. P. Jiang, A. R. Teel, and L. Praly, “Small-gain theorem for ISS
systems and applications,” Mathematics of Control, Signals and Systems,
vol. 7, no. 2, pp. 95–120, 1994.

[25] E. D. Sontag, “Input to state stability: Basic concepts and results,” in
Nonlinear and Optimal Control Theory, P. Nistri and G. Stefani, Eds.
Berlin: Springer-Verlag, 2007, pp. 163–220.

[26] ——, “Smooth stabilization implies coprime factorization,” IEEE Trans-
actions on Automatic Control, vol. 34, no. 4, pp. 435–443, 1989.


	Title Page
	page 2

	/projects/www/html/my/publications/docs/TR2019-080.pdf
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8


