
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

A Data-Driven Method for Predicting Capacity Degradation
of Rechargeable Batteries

Pajovic, M.; Orlik, P.V.; Wada, T.; Takegami, T.

TR2019-076 July 25, 2019

Abstract
Rechargeable batteries supply numerous devices with electric power and are critical part in
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on training data consisting of occasional measurements, taken under the same conditions, of
capacity and charge/discharge voltage/current of a certain number of batteries sharing the
same chemistry and manufacturer, that otherwise undergo different usage patterns. In the
operational/online stage, capacity degradation over future time horizon of a test battery cell
of unknown state of health and previous usage pattern is predicted based on its capacity and
voltage/current measurements over one charge/discharge cycle and the training dataset. The
experimental validation reveals that the proposed method predicts capacity of a test battery
cell over prediction time horizon of few hundred days of battery’s operation with relative
prediction error below 1%.
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Abstract—Rechargeable batteries supply numerous devices
with electric power and are critical part in a variety of ap-
plications. An accurate monitoring and prediction of capacity
degradation is directly related to making timely decision as to
when a battery should be replaced, so that power disruption
of the system it supplies power to is avoided. We propose a
methodology for predicting capacity of a battery over future
time horizon. The proposed method is based on training data
consisting of occasional measurements, taken under the same
conditions, of capacity and charge/discharge voltage/current of
a certain number of batteries sharing the same chemistry and
manufacturer, that otherwise undergo different usage patterns.
In the operational/online stage, capacity degradation over future
time horizon of a test battery cell of unknown state of health and
previous usage pattern is predicted based on its capacity and
voltage/current measurements over one charge/discharge cycle
and the training dataset. The experimental validation reveals
that the proposed method predicts capacity of a test battery cell
over prediction time horizon of few hundred days of battery’s
operation with relative prediction error below 1%.

Index Terms—battery prognosis, degradation prediction, data-
driven method, rechargeable battery, state of health

I. INTRODUCTION

Rechargeable batteries provide power supply to numerous
systems and applications, most prominent examples of which
include electric vehicles (EV), consumer electronic devices,
uninterrupted power supply (UPS) systems and photo-voltaic
(PV) cells. Battery management system (BMS) monitors and
manages operation of the associated battery based on measure-
ments from a variety of sensors it employs. The monitoring
part is conventionally comprised of estimation of the battery’s
state of charge (SoC) [1]–[3], state of health (SoH) [4] and
state of power (SoP) [5], which have been in the research focus
over the past years. More recently, battery state of degradation
(SoD) and the related remaining useful life (RUL), regarded as
more useful monitoring metrics, have started to gain research
interest [6].

The problem we address in this paper is related to predicting
how battery’s capacity will degrade over future time horizon.
The capacity of a battery is measured by the amount of charge
(expressed in Ah) it can store and deliver to its load. For
example, a capacity 10 Ah means that the battery can deliver
to its load a constant current 10 A during 1 h time period. The
capacity of a battery degrades over time due to aging, where
the degradation pattern depends on its usage, chemistry and

manufacturer. Once the capacity degrades to a certain level, the
battery is declared dead and needs to be replaced. Therefore,
it is important to monitor battery’s health and predict how its
capacity evolves over time so as to replace it when needed
and thus avoid power disruption.

One approach for predicting capacity degradation is to
model capacity evolution over time using an empirical model,
such as the one based on decaying exponential [7]–[11]. The
model parameters are tracked by using an adaptive filter,
such as particle filer, based on capacity measurements over
discharge cycles. The capacity evolution over future time
horizon is predicted by extrapolating empirical model using
the most recent values of the model parameters. The main
limitation of this approach is that the battery needs to be
fully charged and fully discharged over its operation so that
its capacity can be measured in each cycle. In addition, this
approach does not take into account voltage/current mea-
surements during charge/discharge cycles which are readily
available and indicative of battery’s health.

A data-driven approach [12], [13] is based on discharge
voltage measurements taken over lifetimes of one or more
batteries sharing the same chemistry and manufacturer, and
undergoing a fixed, pre-defined usage pattern. The remaining
useful life of a battery under test in the operational stage is
predicted based on the training data and measurements of its
voltage during the most recent discharge cycle. In comparison
to model-based approaches, this approach does not necessarily
rely on capacity measurements, meaning that the battery does
not need to be fully charged and discharged. However, the
main limitation is that the tested battery has to be of the
same manufacturer and chemistry, as well as to undergo the
same usage pattern as the batteries from the training data. In
other words, a separate training dataset is needed for each
relevant usage pattern, manufacturer and chemistry, making
this approach less practical.

We propose in this paper a data-driven method for predicting
capacity evolution of a test battery cell over future time
horizon. The training dataset comprises of capacity, voltage
and current measurements taken under the same conditions of
a certain number of batteries sharing the same chemistry and
manufacturer that otherwise undergo different usage patterns.
In other words, the training batteries are used in different
manners and the measurements that populate training dataset



are occasionally taken under the same conditions that force
the batteries to get fully charged and discharged so as to
obtain their capacity measurements. In the operational stage,
capacity and other measurements of a test battery (of the same
chemistry and manufacturer as the batteries used for collecting
training dataset) of unknown previous usage patterns are taken
under the same conditions (that are used for collecting the
training dataset) and leveraged to predict capacity degradation
of the test battery cell over future charge-discharge cycles.
To the best of our knowledge, our approach constitutes the
most practical setup for predicting capacity degradation of
batteries, compared to the existing literature. As such, in
comparison to [12] and [13], the train and test battery cells in
our setup are not required to undergo the same usage pattern.
On the other hand, unlike in [7]–[11], the batteries in our
framework are fully charged and discharged under the same
conditions only occasionally, however they need not be fully
charged/discharged during their regular course of operation.

The rest of the paper is organized as follows. Section II
introduces battery experimental dataset we use to aid the devel-
opment of the degradation model and validate the proposed ap-
proach. Section III presents main modelling principles behind
the proposed algorithm. Section IV describes the proposed
degradation prediction method. Section V discusses possible
extensions of the proposed methodology. Section VI validates
the proposed algorithm. Finally, Section VII concludes the
paper.

II. EXPERIMENTAL DATASET

We present an experimental dataset used to conceive the
main idea behind the proposed methodology. This dataset is
also used to validate the proposed algorithm.

Thirteen battery cells (labeled Cell 6, Cell 7, . . ., Cell 18) of
the same manufacturer and chemistry undergo different usage
patterns over a time period of few years. The cells are tested on
up to 43 random occasions during that time period under the
same conditions. In each test, a cell is charged with constant
current (CC) 1 A until the voltage on its terminals reaches
4.2 V. This voltage is kept constant (i.e., this is a floating
voltage of the cell) until the current falls to 0.05 A, which
concludes the charging cycle. The cell is then discharged with
constant current (CC) −1 A until the voltage on its terminals
falls to 3 V. We emphasize that at a given test occasion, a
subset of cells is tested and their charge-discharge current,
voltage and temperature variations are measured. The recorded
current and voltage waveforms of a cell on one such occasion
are shown in Fig. 1. We note that behavior of the voltage and
current just before the voltage starts floating during the charge
cycle (at ∼ 7.3 h in the plots) is due to a glitch in the battery
measurement system.

The amount of charge a cell stores (delivers) during a charge
(discharge) cycle is computed as the time integral of the charge
(discharge) current over the charge (discharge) cycle, where
the constant of proportionality depends on the cell’s chemistry.
The capacity or state of health (SoH) of a cell, C(t), is defined
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Fig. 1. Recorded voltage and current of a battery cell during one test.

as the maximum amount of charge it can deliver to its load
during a discharge cycle ending at time t, after it has been
fully charged in the preceding charge cycle. Given that all
cells in our dataset are tested under the same charge/discharge
conditions that aim to (almost) fully charge/discharge them,
the measured charge each cell delivers during its test discharge
cycle is essentially its capacity associated with the time instant
at which that cycle ends. Time evolutions of capacities of all
13 cells from our dataset are shown in Fig. 2.

As shown in Fig. 2, the capacities of the examined cells
exhibit quite different behavior over time. While some cells are
fairly heathy and last over a large number of charge-discharge
cycles, other cells relatively quickly degrade. This implies
that despite sharing the same chemistry and manufacturer,
the cells exhibit different degradation patterns due to distinct
usage patterns. This can be further evidenced from the voltage
waveforms measured during discharge cycles, referred to as
tail voltages. For example, the tail voltages of Cell 6 and Cell
13, respectively shown in Figures 3 and 4, present distinct
features and thus indicate that those two cells are impacted by
quite different degradation mechanisms. We note that the same
effect can be observed from the voltage waveforms measured
during test charge cycles.

III. DEGRADATION MODELING

Building upon the insights from the experimental dataset,
we formulate capacity and tail voltage models in this part
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Fig. 2. Measured capacity traces of battery cells in our dataset.

Fig. 3. Tail voltages of Cell 6.

Fig. 4. Tail voltages of Cell 13.

and use them in Section IV to develop the proposed capacity
prediction method.

As seen in Fig. 2, the examined battery cells experience
fairly different capacity degradation patterns over time. In
general, a battery cell is a complex physical and chemical
system which is susceptible to a variety of degradation pat-
terns. Different degradation patterns of battery cells of the
same chemistry and manufacturer are mostly due to different
manners the cells are used and handled. While, in principle,
one may try to discern all possible degradation patterns along
with their causes, this would be an exceedingly challenging
task. Instead, possible degradation patterns can be gleaned
from measured capacity traces of a number of cells over longer
time period. Each distinct degradation pattern effectively de-
fines one possible degradation class a battery cell can undergo.
In other words, each battery cell n is associated with a specific
degradation class d such that its capacity at time t is modelled
as

Cn(t) = Cn(t; d) (1)

Additional information about degradation of a battery cell
is obtained from its measured tail voltage. As indicated in
Figures 3 and 4, distinct degradation classes result in different
tail voltage curves. This means that the tail voltages of two
cells, associated with different degradation classes, differ even
when they are recorded during discharge cycles at which
they have the same capacity. For example, Fig. 5 shows tail
voltages of Cell 7 and Cell 10 recorded when they both have
the same capacity 2.55 Ah. As a side remark, we note that
discharge cycles of both cells are of equal duration because
they correspond to same capacity value and the cells are
discharged with CC −1 A. Overall, a measured tail voltage
of a cell n depends on its degradation class d and capacity
(i.e., state of health) at the corresponding discharge cycle,

Vn(τ) = Vn(τ ; d,Cn), (2)



where τ is a ”local” time of a discharge cycle. In comparison,
t represents ”global” time and can also be thought of as a
discharge cycle index. Although the dependance of tail voltage
on degradation class is implicit from (1), we still make it
explicit in (2).
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Fig. 5. Tail voltages of Cell 7 and Cell 10 corresponding to capacity 2.55 Ah.

IV. CAPACITY DEGRADATION PREDICTION

We describe in this part the proposed methodology for
predicting capacity degradation of a battery cell over future
time horizon based on measurements of capacity and tail
voltage during its most recent discharge cycle. As already
indicated, our data-driven methodology relies on measure-
ments related to battery cells sharing the same chemistry and
manufacturer, and undergoing different usage patterns. Those
measurements are recorded over a relatively small number of
charge-discharge cycles, driven under the same conditions. The
proposed methodology comprises of model learning stage and
online prediction stage.

A. Model Learning Stage

Assuming N battery cells undergo a sequence of test
charge-discharge cycles under the same conditions, the training
data comprises of capacity Cn(t) and tail voltage measure-
ments Vn(τ, t), where n = 1, . . . , N is battery cell index, t is
discharge cycle index, and τ is time axis of a discharge cycle.
In general, the number of possible degradation mechanisms
is finite. Thus, if N is large enough, some of the capacity
traces Cn(t) exhibit similar patterns. Therefore, to extract a
representative set of possible capacity degradation patterns,
the collected capacity traces may be clustered into a certain
number of clusters, i.e., degradation classes K. As a result
of clustering, each cluster is represented with its own capacity
model C̃d(t), where d = 1, . . . ,K is a degradation class index.
In case the number of cells N is relatively small such that the
capacity traces Cn(t) are fairly distinct, each capacity trace
may represent one possible degradation model.

As indicated in (2), the tail voltage depends on degradation
class d and capacity C. Therefore, a model for tail voltage
Ṽd(τ, C) is learned for each degradation class d and pos-
sible capacity value C using the training dataset. A simple
approach to learn tail voltage models is to average measured
tail voltages of the battery cells associated with the same
degradation class d and recorded when the corresponding
capacities are within small ε value of C. That is, assuming
V(d,C) = {Vn(τ ; d, c)}c∈(C−ε,C+ε) is a collection of all
recorded tail voltages corresponding to the same degradation
class d and ε neighborhood of C,

Ṽd(τ, C) =
1

|V(d,C)|
∑

Vn(τ)∈V(d,C)

Vn(τ), (3)

where |V| denotes the cardinality of the set V . In the case
where a single capacity trace represents a separate capacity
degradation model, each measured tail voltage associated with
that capacity trace is one tail voltage model, parameterized
with the corresponding capacity value C.

Overall, the model learning part yields K degradation
classes with capacity models C̃d(t) and tail voltage models
Ṽd(τ, C), where C takes values from the quantized range of
possible capacity values with the quantization step size ε.

B. Online Prediction Stage

The goal of the online stage is to predict capacity evolution
of a tested battery cell over future time horizon based on
measurements of its tail voltage V (τ) and capacity C, taken
under the same test conditions used to record the training data.
As a side remark, the capacity C can be directly measured or
computed based on discharge current. The discharge current
is, in turn, either measured or known in advance as part of
a discharge protocol. Essentially, the online prediction stage
determines degradation class of the test battery cell. Once the
degradation class is detected, the capacity trace is predicted as
the capacity degradation model associated with the detected
degradation class.

The first step in the online prediction stage comprises of
determining a similarity between the measured tail voltage
V (τ) and tail voltage models of all degradation classes that
correspond to the measured capacity C of the test battery cell.
More formally,

Sd = S
(
V (τ), Ṽd(τ, C)

)
(4)

where d = 1, . . . ,K, while S is a similarity operator. An
example of the similarity metric we use in the experimental
validation is

Sd ∝ exp{−‖V (τ)− Ṽd(τ, C)‖22}, (5)

where, with a slight abuse of notation, V (τ) and Ṽd(τ, C) are,
respectively, vectors of discretized tail voltage measurement
and tail voltage model, while ‖‖2 denotes the L2 norm of a
vector.

Upon normalization so that
∑K
d=1 Sd = 1, the resulting

similarity Sd can be viewed as a likelihood that the capacity



of the test battery cell degrades according to degradation class
d. Hence, a hard decision on degradation class the test battery
cell belongs to is obtained as

d̂ = argmax
d

Sd (6)

Finally, the predicted capacity trace of the test battery cell,
Ch(t), is the capacity model corresponding to the detected
degradation class d̂,

Ch(t) = C̃d̂(t) (7)

The capacity prediction (7) implicitly assumes that all
possible degradation classes are learned from the training
dataset in the training stage. However, this may not be the case,
especially when the training dataset contains measurements
from a relatively small number of battery cells N . Alterna-
tively, a soft prediction of capacity degradation trace, Cs(t),
of the test battery cell is obtained as a weighted combination
of all capacity degradation models C̃d(t), with the weights
given by the similarity scores Sd, such that

Cs(t) =

K∑
d=1

SdC̃d(t) (8)

V. DISCUSSION

We discuss in this part possible extensions and variations
of the proposed method.

A. Generalizations of Model Learning

The proposed prediction methodology involves clustering
capacity traces recorded over test charge-discharge cycles of
a number of battery cells as part of the model learning in
the training stage. As already pointed out and used in the
experimental validation, when the number of battery cells in
the training data is relatively small, each recorded capacity
trace is associated with one possible degradation class and
used as the corresponding capacity degradation model. In
general, we do not restrict our methodology to any particular
clustering method. Since the number of possible degradation
classes is not known in advance, Dirichlet Process Mixture
Model (DPMM) [14], [15] is a suitable clustering approach as
it has a built-in mechanism to automatically detect the number
of clusters.

As already elaborated, the tail voltage model for a given
degradation class and capacity value is obtained by averaging
the measured tail voltages associated with the same class and
capacity value. In general, other approaches for modelling tail
voltages may be used. As such, the tail voltage model for
each degradation class and capacity value can be obtained
by empirical curve fitting using the set of corresponding tail
voltage measurements. More generally, a capacity trace of a
battery cell, along with its recorded tail voltages, can be treated
as a data point in the clustering stage. In such a case, the
clustering procedure automatically yields degradation classes,
each one associated with models for capacity traces and tail
voltages. The DPMM [15] algorithm is a possible approach to
achieve that.

Finally, other approaches for computing similarity scores
between measured tail voltage of a test battery cell and tail
voltage models can be used. Essentially, online prediction
stage boils down to clustering a newly obtained data point,
comprised of the measured tail voltage and capacity, into one
of the clusters previously determined in the training stage.

B. Types of Measurements

Although we use capacity and tail voltage measurements
to learn degradation models and predict capacity evolution
of a test battery cell, measurements of other quantities can
also be utilized. For example, voltage measurements during
test charge cycles also contain battery degradation informa-
tion. Consequently, they can be used instead of tail voltage
measurements. More generally, a voltage waveform recorded
during test charge and the following test discharge cycle is
another type of measurement that, along with the battery
cell’s capacity, can be used for capacity prediction. We em-
phasize that the proposed prediction methodology does not
conceptually change irrespective of the type of utilized voltage
measurements.

In addition to charging and discharging a battery cell with
constant current, as is the case in our dataset, a variety of other
test charge and discharge protocols can be used. In general, all
quantities (charge and discharge voltage and current) that do
not follow a pre-determined pattern should be measured and
utilized for the prediction task. This is because the variations of
all those quantities over test charge-discharge cycles depend on
degradation pattern and can be leveraged to accurately predict
capacity evolution of a test battery cell.

Finally, the measurements of current and/or voltage during
more than one test charge and/or discharge cycle can be
taken and used to aid capacity prediction, provided that the
capacity does not considerably change over those cycles. As
in the previous case, the proposed algorithm is amenable to
be generalized to accommodate such measurements.

VI. EXPERIMENTAL VALIDATION

We validate the proposed algorithm using the experimental
battery dataset described in Section II. Since Cell 7 is among
battery cells with longer measurement log, we assume it is
a test battery cell. The measurements corresponding to other
battery cells comprise the training dataset, with the exception
of Cell 8 which is excluded from the dataset due to its quite
atypical and unhealthy capacity evolution.

For the experimental evaluation, we assume that capacity
and tail voltage of Cell 7 corresponding to a certain discharge
cycle t are available, predict using the proposed method how
its capacity will evolve in future discharge cycles, and compare
the predicted capacity with the measured capacity degradation,
considered as the ground truth. We measure the performance of
the proposed algorithm with the relative prediction error over
prediction time horizon for various discharge cycle indices t.
Note that the length of the prediction time horizon depends on
the discharge cycle index t. To the best of our knowledge, the
framework considered in this work is the first of its kind and,



consequently, we are not aware of other methods that can be
used to benchmark the proposed algorithm to.

The measurement log of Cell 7 contains measurements
from 39 test charge-discharge cycles. For an illustration of
the experimental evaluation, we predict capacity evolution of
that battery cell using capacity and tail voltage measurements
taken during the 20th test discharge cycle, which occurred on
the 344th day of the cell’s operation. As previously elabo-
rated, each capacity trace from the training dataset represents
one possible degradation class. Similarly, each measured tail
voltage from the training dataset is the tail voltage model for
the corresponding degradation class and capacity value. The
measured capacity of Cell 7 on the 20th test discharge cycle is
2.7135 Ah. The similarity score between Cell 7’s measured tail
voltage during that discharge cycle and measured tail voltages
from the training dataset associated with capacities from
the range of width 0.1 Ah around 2.7135 Ah, are computed
using (5). Their plot in Fig. 6 suggests that the tail voltage
of the test battery cell exhibits similar behavior to tail voltage
corresponding to degradation classed associated with Cell 6
and, to some extent, Cell 17. Consequently, as suggested in (8),
the capacity trace of the test battery cell is predicted as the
weighted combination of the capacity traces of the battery cells
from the training dataset, where the weights are the similarity
scores. Since not all cells from the training dataset underwent
all test charge/discharge measurements, the similarity scores
corresponding to cells with missing capacity measurements
on a given test discharge cycle are assumed zero and the
remaining similarity scores are thus re-normalized.
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Fig. 6. Similarity score for Cell 7 on the 20th test discharge cycle (344th
day of its operation).

The comparison between the predicted and measured (i.e.,
ground truth) capacity evolution of the test battery cell is
shown in Fig. 7. The horizontal axis represents the prediction
time horizon with respect to the reference day on which the
test discharge cycle measurements that are used for capacity
prediction are recorded. As can be seen, the predicted capacity
is fairly close to the ground truth even more than 500 days after

the reference day. More specifically, the relative prediction
error, shown in Fig. 8, does not exceed 3% over the prediction
time horizon, and is below 1% within the first 600 days after
the reference day.
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Fig. 7. Comparison between the predicted and measured capacity evolution
of Cell 7 over the prediction time horizon.
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Fig. 8. Relative prediction error of the capacity degradation of Cell 7 over
the prediction time horizon.

Finally, we predict capacity degradation of the test battery
cell using capacity and tail voltage measurements taken on dif-
ferent test discharge cycles. The maximum relative prediction
error over the corresponding prediction time horizon for each
considered test discharge cycle is shown in Fig. 9. We note that
as the index of the measurement log (i.e., test discharge cycle)
increases, the test discharge cycle occurs later in the battery
cell’s life and the prediction time horizon is shorter. As such,
the prediction time horizons corresponding to the maximum
relative errors reported in Fig. 9 range from 959 to 597 days.
Notably, the maximum relative prediction error, which usually



occurs towards the end of the corresponding prediction time
horizon, is below 3% for all but two measurement logs.
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Fig. 9. Maximum relative prediction error for test battery Cell 7 for different
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VII. CONCLUSIONS

We propose in this paper a data-driven method for pre-
dicting how capacity of a rechargeable battery will evolve
over future time horizon. Given a wide application area of
rechargeable batteries such as in electric vehicles, consumer
electronic devices, uninterrupted power supply systems, photo-
voltaic cells, predicting capacity degradation is one of the
key prerequisites needed for making timely decisions as to
when a battery should be replaced so as to avoid power
disruption of a system it supplies. The proposed algorithm
predicts capacity of a battery over future charge-discharge
cycles using measurements of the discharge voltage waveform
and capacity over the most recent discharge cycle. The training
data contains such measurements, taken under the same con-
ditions, of a number of batteries sharing the same chemistry
and manufacturer but undergoing otherwise different usage
patterns. In comparison to other approaches, the batteries
in the training dataset do not exhibit the same degradation
pattern and the algorithm learns possible capacity degradation
traces from the training data in the model learning stage. The
proposed algorithm classifies a test battery cell into one of
possible degradation classes based on voltage and capacity
measurements during the most recent test discharge cycle and
predicts its capacity evolution over future time horizon. The
experimental validation of the proposed methodology reveals
that the relative error in predicting capacity of the test battery
cell is below 1% over a prediction time horizon of few hundred
days of battery’s operation. The relative error increases over
longer prediction time horizons, however still remains within
reasonable range. As such, it is below 3% over several hundred
days of battery’s operation.
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