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Abstract—The VIVE lighthouse system is evaluated for indoor
positioning of micro unmanned aerial vehicles (MUAVs). A
detailed mathematical analysis is provided, including a Cramer-
Rao bound derivation and performance analysis of the MUAV
state estimate. The lighthouse measurements are fused with
inertial measurements in a multiplicative extended Kalman filter
(MEKF). We consider two implementations, one with and the
other without nonlinear LS pre-filtering, and demonstrate both
in a real-time implementation. The results indicate that sub-
centimeter accuracy in the MUAV positioning, rivalling the best
positioning systems on the market at a comparatively low price.

Index Terms—UAV positioning, nonlinear Kalman filtering

I. INTRODUCTION

Research on indoor positioning is a rich and cross-
disciplinary field, motivated by its utility in practical appli-
cations and often driven by technological innovations. In this
paper, we take a control-theoretic approach to the problem
and restrict the scope to the positioning of multiple micro
unmanned aerial vehicles (MUAVs), specifically the Crazyflie
2.0 [1], [2]. The objective is to enable complete autonomy
in applications such as the inventorying of supermarkets, by
having each MUAV run all computation on its own CPU,
minimizing communication with the positioning system as a
whole. We shall assume that the MUAV can take a maximum
payload in the order of a few grams, with any additional load
resulting in a significantly decreased flight-time, posing great
restrictions on the sensory equipment that may be considered.
We further require that solutions be practically implementable,
both in terms of real-time compliance and a low monetary
cost. Given this context, the HTC VIVE lighthouse positioning
system (LHPS) [3] is explored, achieving accurate positioning
by fusing the measurements with inertial measurement unit
(IMU) measurements in a multiplicative extended Kalman
filter (MEKF) [4], [5]. The main focus of this paper is on
mathematically describing the LHPS in order to perform a
general and qualitative evaluation of the system based on its
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noise characteristics. The fusion with inertial measurements in
a MEKF is then demonstrated as a proof of concept.

Notable contenders to the proposed LHPS approach are
found in classical computer vision, where positioning is often
made possible by optical-flow based methods with cameras
mounted on the MUAV, or by feedback from a set of rigidly
mounted cameras, see e.g., [6] and the references therein. The
former methods tend to be scalable but become intractable
considering the computational constraints of the MUAV, while
the best static camera solutions offer sub-millimeter position-
ing at a much higher high hardware cost. Other interesting
alternatives include Ultra-Wideband (UWB) approaches, and
specifically the time-difference-of-arrival (TDOA) method,
which is scalable in the sense that many MUAVs can operate
in the same system [7]. While more generally applicable
and cheaper than the static camera systems, the positional
accuracy of the state-of-the-art UWB positioning is in the
multi-centimeter range [5], [8], [9].

It is clear that solutions to the indoor positioning problem
generally trade scalability and accuracy for monetary cost
and computational effort. This makes the considered LHPS a
strong candidate in several respects. Firstly, the complete sys-
tem is cheaper than both the high-performance static camera
systems and the UWB systems, with a single lighthouse base
station costing approximately $130 [3]. Secondly, the LHPS
is scalable with respect to the number of MUAVs that can
operate simultaneously in the flyable space. Thirdly, the IR-
diodes can be surface mounted on the MUAV, greatly reducing
the payload and increasing flight-time. Fourthly, the processing
of the measured signals can be made computationally cheap
to a point where it may be done on the embedded system.
Finally, the LHPS enables highly accurate positioning with
standard deviations of the estimates in the millimeter range,
as shown in the discussion of Section V.

In the field of UWB positioning, accuracy is often evaluated
in terms of a Cramer-Rao bound (CRB) [2], [8]. The CRB is
a theoretical lower bound of any unbiased parameter estimate
by its relation to Fisher information, see e.g., [10], [11]. To
evaluate the LHPS and properly compare it to UWB posi-
tioning, we first give a rigorous mathematical description of
the positioning system in Section III, followed by a derivation
of the measurement equations with an experimental charac-



terization of the stochastic noise in Section IV. An analysis
is done by deriving the CRB for the LHPS in Section V,
concluding sub-centimeter accuracy in the positional estimate
in large regions of space. This statement is experimentally
verified in Section VI. Finally, and a real-time example of
MUAV positioning is given in Section VII, fusing the LHPS
measurements with inertial measurements in a MEKF.

II. DEFINITIONS AND NOMENCLATURE

Throughout the document, vectors and matrices are written
in bold font, letting IN ∈ RN×N denote the identity matrix,
and and 1N ∈ RN×N denote a matrix with all elements
set to one. The expectation, variance, standard deviation and
covariance of a random variable, X, are denoted with E[X],
V[X], σ(X), and C[X], respectively. Indices of sets or vectors
are defined using logical and (∧) and logical or (∨) operators,
such that in a set with three vectors, {ai}3i=1 = {a1,a2,a3},
reference to vectors a2,a3 ∈ {ai}3i=1 is written a2∨3, and
the expectation of any of these vectors is written E[a2∨3].
Furthermore, let ⊗ denote the standard Kronecker product.

Let p ∈ R3 be the MUAV position in a standard global
orthonormal frame {e1, e2, e3} with ei ∈ R3. Furthermore,
let v ∈ R3 be the velocity of the MUAV in the body
frame of reference, defined by the orthonormal basis vectors
{b1,b2,b3} with bi ∈ R3. Let R ∈ SO(3) denote the
rotation of a vector from this body frame to the global frame,[

e1 e2 e3

]
= R

[
b1 b2 b3

]
. (1)

For a vector v ∈ R3 with elements vi, we let

[v]× =

 0 −v3 v2

v3 0 −v1

−v2 v1 0

 (2)

and take ω ∈ R3 [rad] to be the attitude rate of the MUAV in
the body frame, satisfying

Ṙ(t) = R(t)[ω(t)]×. (3)

Refer to [12]–[14] for details on attitude representations and
identities related to the Lie algebra of the SO(3)-manifold.

A. The Extended Kalman Filter Prediction Model

With the above definitions, the dynamics of the SE(3)-
configured MUAV is expressed in an attitude error form,

ρ̇(t) = ω(t) +
1

2
[ρ(t)]×ω(t),

ṗ(t) = R(t)(I3 + [ρ(t)]×)v(t), (4)

v̇(t) =
f(t)

m
e3 − [ω(t)]×v(t)− g(I3 − [ρ(t)]×)R(t)Te3,

where f(t)/m [m/s2] denotes an acceleration generated by the
rotors along b3, g [m/s2] denotes the gravitational acceleration
and ρ [rad] denotes an attitude error in the body frame [5].
Prior work on utilising this prediction model in a MEKF is
found in [4], with details on the attitude-error in [12]. We refer
to the deterministic prediction model of the MEKF in (4), by

ẋ(t) = f(x(t),u(t)) ∈ R9, (5)

defining the corresponding control signal and state vector as

x ,
[
pT vT ρT

]T ∈ R9, u ,
[
f ωT

]T ∈ R4. (6)

The attitude-error relates to an element of SO(3) by,

δR{ρ} , I3 +
sin(β)

β
[ρ]× +

(1− cos(β))

β2
[ρ]2×,

denoting β = ‖ρ‖2. In the MEKF proposed in [4], this attitude
error-state is incorporated into the rotational estimate and reset
to 0 only when it exceeds a bound in the l1-norm. The error is
accumulated over a time-interval [tu, t], updating the rotational
estimate by the rotational composition

R(t) = R(tu) · δR{ρ(t)}, (7)

only when ‖ρ‖1 > c for some constant c ≈ 10−3 [rad]. A
new update time tu = t is then set, and ρ(tu) , 0. As
such, the length of the time interval [tu, t] varies depending on
how much the MUAV is rotated. This idea may seem dubious,
as the attitude error will be small at all times with its norm
appearing in the denominator of both expressions. However,

lim
β→0

sin(β/a)

β
=

1

a
, lim

β→0

1− cos(β)

β2
=

1

2
, (8)

with δR{ρ} → I3 as β → 0, showing that the method
is feasible even for small attitude-errors. Filters with such
aperiodic updates come with many numerical benefits, but
add complexity when deriving the associated measurement
equations, as there only ever exists a relative attitude error-state
in the MEKF. A central objective of this paper is therefore to
express the measurements in the LHPS as a function of the
x(t) for fusion in the MEKF in [5].

B. The Lighthouse Geometry

In the LHPS, a set of base stations emit light that is sensed
by a set of mobile photodiodes mounted to the MUAVs,
with the BWP34 IR-diodes used in the real-time implemen-
tation [15]. To define the LHPS geometry in relation to the
MEKF prediction model, we give two definitions.

Definition 1: Let Si, i ∈ N denote an IR-sensor mounted
rigidly at a position pis ∈ R3 in the MUAV body frame. The
set of N sensors attached to the MUAV is denoted {Si}Ni=1.

In the current hardware, a total of N = 2 sensors are
implemented (see Fig. 1), but future revisions could include
more sensors requiring sufficiently general definitions. The
nominal LHPS configuration with two base stations depicted
in Fig. 2 and explicitly stated in the Appendix.

Definition 2: Let Bj , j ∈ N, denote a base station, defined
at a fixed point pjb ∈ R3 in the global frame of reference. The
fixed frame of the base Bj is given by an orthonormal frame
{bj1b,b

j
2b,b

j
3b}, where similarly to the rotation in (1),[
e1 e2 e3

]
= Rj

b

[
bj1b bj2b bj3b

]
.

The set of M base stations is denoted {Bj}Mj=1.



Fig. 1. A MUAV with two sensors {Si}2i=1 attached to the body frame.

Fig. 2. Nominal system geometry with two base stations {Bj}2j=1, and
spaces X j depicting the flyable region in which the scanning planes exist.

III. THE VIVE LIGHTHOUSE SYSTEM

The lighthouse system functions much like a conventional
lighthouse, in that it periodically sweeps planes of light over
a space. The sweeps are done by multiple base stations, Bj ,
located at known spatial positions, and the light is detected
by a set of mobile BWP34 photodiodes [15], attached to
the MUAVs as shown in Figure 1. In each base station, two
spinning discs are equipped with wide-angle lasers situated
on the two axis bj1b and bj2b. The discs spin with constant
angular rates, effectively generating two half-planes of infra-
red light revolving around the corresponding axis at 120 [Hz],
and each base station Bj enables positioning in a half sphere,
with a radius of approximately 5 [m].

Definition 3: Let Bj be a base station and define

X j = {xbj1c + ybj2c + zbj3c | z < 0, x2 + y2 + z2 ≤ 5},

as the space scanned by the lasers in the base station Bj .
Definition 4: Let Si be a sensor and Bj be a base station.

Define two angles αijA(t) and αijB(t) [rad], where

nijA(t) =
[
cos(αijA(t)) 0 − sin(αijA(t))

]T ∈ R3, (9a)

nijB(t) =
[
0 cos(αijB(t)) sin(αijB(t))

]T ∈ R3, (9b)

denote the two normal vectors to each of the scanning planes
in the frame {bj1b,b

j
2b,b

j
3b} associated with Bj , such that

Πij
A(t) = {p ∈ R3 | pTnijA(t) = 0,p · (nijA(t)× bj1b) ≥ 0},

Πij
B(t) = {p ∈ R3 | pTnijB(t) = 0,p · (nijB(t)× bj2b) ≥ 0}.

Note here that by the mechanics in the LHPS, αijA(t) =
αijB(t) + π ∀t. As such, the two planes in each Bj satisfy

Πij
A(t) ∪ X

j 6= ∅ ⇒ Πij
B(t) ∪ X

j = ∅,
Πij
B(t) ∪ X

j 6= ∅ ⇒ Πij
A(t) ∪ X

j = ∅,

meaning that at most one of the two planes Πij
A∨B(t) exists

in X j at any point in time.

A. The Single Lighthouse

The measurements taken in the mobile sensors are timer-
based, measuring the time-delays between IR-pulses emitted
from the base stations. To illustrate this, consider first a single
lighthouse Bj and a single sensor Si. In each state αijA(t0) =
2nπ, n ∈ N, a relatively long pulse of light is emitted from
the lighthouse in all of X j , lasting for tjs ∈ [65, 135] [µs].
Starting from t0, the plane Πij

A then sweeps over the entirety
of X j during tδ = 1/120 [ms] rotating about bj1b. If a sensor
Si detects a short pulse of length tjp ≈ 10 [µs] at a time
tijA ∈ [t0, t0 + tδ], then the angular state of the disc (A) at this
time is αijA = π(tA−t0)/tδ . At t0+tδ , another synchronization
flash is emitted indicating the start of a sweep Πij

B over X j .
A short pulse is registered by the sensor at a time tijB ∈ [t0 +
tδ, t0 +2tδ], where then αijB = π(tB− t0 + tδ)/tδ , completing
a full cycle of scans. When using a single base, B0, with a
single sensor, SX , a cycle of scans is done in measuring the
two time-delays

t0s | t0p︸ ︷︷ ︸
αX0

A

| t0s | t0p︸ ︷︷ ︸
αX0

B

, (10)

allowing for the computation of two angles {αX0
A , αX0

B }.

B. Multiple Lighthouses

When operating a set of two lighthouses, {B0,B1}, two
synchronization flashes are done in quick succession before
beginning a sweep, allowing the bases to coordinate their
mechanical movement. Let {SX ,SY } define two sensors. The
sequence of flashes in the base stations is then,

t0s | t1s | t0p︸ ︷︷ ︸
αX0

A

| t0s | t1s | t0p︸ ︷︷ ︸
αX0

B

| t0s | t1s | t1p︸ ︷︷ ︸
αX1

A

| t0s | t1s | t1p︸ ︷︷ ︸
αX1

B

, (11a)

t0s | t1s | t0p︸ ︷︷ ︸
αY 0

A

| t0s | t1s | t0p︸ ︷︷ ︸
αY 0

B

| t0s | t1s | t1p︸ ︷︷ ︸
αY 1

A

| t0s | t1s | t1p︸ ︷︷ ︸
αY 1

B

, (11b)

which are measured in parallel in SX and SY . Similarly
to the single lighthouse, the sequences above allow for the
computation of the angles defining plane normals. In this
case, we get two sets of angles {αX0

A , αX0
B , αX1

A , αX1
B } and

{αY 0
A , αY 0

B , αY 1
A , αY 1

B }, one corresponding to each sensor. For
simplicity, we consider the all measurements in the LHPS in
terms of the plane angles, as opposed to the time-delays.



IV. MEASUREMENT EQUATIONS

To make use of the information contributed by the LHPS
measurements, we first derive the associated equations in terms
of the system state vector x(t) defined in (6). For the sake of
generality, we consider a set of N sensors {Si}Ni=1 and a
set of M base stations {Bj}Mj=1. When processing the pulses
emitted from the lighthouses measured by the sensors, we then
compute a total of 2MN measured angles as,

α̂ijA∨B(t) = αijA∨B(x(t)) + bijA∨B(t) + nijA∨B(t), (12)

for some function αijA∨B(x(t)) of the system state, a bias
term bijA∨B(t) and stochastic noise nijA∨B(t). The objective
in this section is to characterize these functions, and verify
any assumption with experimental data. We start with the
angular function αijA∨B(x(t)) in Section IV-A, followed by
the analytical expression of its Jacobians in Section IV-B and
a characterisation of the stochastic noise in Section IV-C.

A. The Plane Angle Measurement Functions

To model the angles of the sweeping planes in terms of
the state vector x(t), we utilize the attitude error-state as an
incremental rotation. To recapitulate this idea, δR{ρ} denotes
an incremental rotation of the MUAV since last updating the
rotational estimate at some time tu ≤ t. As such, the rotation
at a time t becomes R(t) = R(tu)δR{ρ(t)}. In the global
frame, the vector from Bj to a sensor Si is then

dij(x(t)) , p(t) + R(t)pis − pjb (13a)

= p(t) + R(tu)δR{ρ(t)}pis − pjb, (13b)

which, when normalized, yields a ray vector,

rij(x) , dij(x)/‖dij(x)‖2. (14)

The normal of the corresponding plane is then given by

nijA(x) = (rij(x)× bj1b) = −[b
j
1b]×rij(x), (15a)

nijB(x) = (rij(x)× bj2b) = −[b
j
2b]×rij(x). (15b)

To proceed, we define an intermediary function

gijA (x) = eT1 nijA(x), gijB (x) = eT2 nijB(x), (16a)

which notably differs in the A and B angle cases. Finally, we
write the angles from the definition of the plane normals (9),

αijA(x) = arccos(gijA (x)), αijB(x) = arccos(gijB (x)), (17a)

with two different functions for the A and B cases, which
exist for all dij(x) 6= 0.

B. The Plane Angle Measurement Jacobians

The obtained expression of the angular measurements al-
lows for the analytical derivation of the Jacobian with respect
to the state vector x(t) =

[
p(t) v(t) ρ(t)

]
, defined in (6).

This is central to the measurement updates in the MEKF and

later derivations of the Cramer-Rao Bound. Starting by dif-
ferentiating with respect to the position, p, using the function
definitions in Section IV-A and applying the chain rule yields

∂αijA
∂p

=
∂αijA
∂gijA

·
∂gijA
∂nijA

·
∂nijA
∂rij

· ∂rij

∂dij
· ∂dij

∂p
∈ R1×3. (18)

Computing these partial derivatives, we find that

∂αijA
∂p

=
eT1 [b

j
1b]×√

1− (gijA )
2

[(dij)Tdij ]I3 − dij(dij)T

[(dij)Tdij ]3/2
, (19a)

∂αijB
∂p

=
eT2 [b

j
2b]×√

1− (gijB )
2

[(dij)Tdij ]I3 − dij(dij)T

[(dij)Tdij ]3/2
. (19b)

As αijA∨B(x) is independent of the velocity v(t),

∂αijA∨B
∂v

= 0 ∈ R1×3 ∀i, j. (20)

Finally, we consider the rotation in terms of the attitude error,

∂dij

∂ρ
=
∂R{ρ}pis

∂ρ
= −R(δR{ρ}[pis]×)J(ρ) , J̃(ρ),

(21)
where

J(θ) = I3 −
1− cos(‖θ‖2)
‖θ‖2

[θ]× +
‖θ‖2 − cos(‖θ‖2)

‖θ‖32
[θ]2×,

(22)
as shown in [16]. Application of the chain rule as in (18) yields

∂αijA
∂ρ

=
eT1 [b

j
1b]×√

1− (gijA )
2

[(dij)Tdij ]I3 − dij(dij)T

[(dij)Tdij ]3/2
J̃(ρ),

(23a)

∂αijB
∂ρ

=
eT2 [b

j
2b]×√

1− (gijB )
2

[(dij)Tdij ]I3 − dij(dij)T

[(dij)Tdij ]3/2
J̃(ρ).

(23b)

We have then managed to model the angle αijA∨B(x) associated
with each plane Πij

A∨B(t) for any sensor Sj when receiving a
sweep from a base station Bj . We have also expressed the
Jacobian of this function with respect to the state x(t) in
equations (19a), (19b), (20), (23a) and (23b).

C. The Plane Angle Measurement Noise

To investigate the stochastic noise nijA∨B(t) in the measure-
ment equation (12), a set of 80 measurement sets were taken
with two sensors Si with i ∈ [X,Y ] and two base stations Bj
with j ∈ [1, 2] in the nominal system configuration depicted
in Figure 2. The sensors were placed 0.04 [m] apart and
at random locations pk ∈ X 1 ∪ X 2 with k ∈ [1, · · · , 80].
A total of 103 samples of α̂ijA∨B were taken in each set,
referred to by D(A ∨ B, i, j, k). The sets are visualized in
Figure 3 with two sample sets, one representing a typical
inlier set D(A,X, 2, 2) (red) and one a typical outlier set
D(A,X, 1, 4) (blue). In addition, the logarithmic standard



Fig. 3. Top Left: The distribution of the measurements in the inlier set,
D(A,X, 2, 2), with a scaled Gaussian density function. Top Right: The
distribution of the measurements in the sample the outlier set D(A,X, 1, 4).
Bottom: Logarithmic standard deviation of D as a function of its mean.

deviation log(σ[D]) is plotted against E[D], with the two
sample sets highlighted.

The standard deviation of the angular measurement noise
approaches σ[D] ≈ 10−4.5 [rad] in a vast majority of the
measurement sets, exemplified by a sample inlier measurement
set (red). There are, however, some outlier sets, which have
an interesting structure with distinct multimodal distributions
(blue) where σ[D] ∈ [10−4, 10−3] [rad]. Note that the standard
deviation of the two peaks in the outlier set corresponds to
that of the inlier set. This is the result of a discrete jump in
the measurement mean, made visible when showing angular
measurements of the outlier set in Figure 4.

Fig. 4. Top: The sample inlier set of angular measurements, D(A,X, 2, 2).
Bottom: The sample outlier set of angular measurements, D(A,X, 1, 4).

It is clear that the angular measurement expectation makes
a discrete jump at a singular point in time in the outlier
sequence, an odd behaviour which cannot be attributed to
the geometry of the room. We also note that all measure-
ment sequences come in pairs in Figure 3, in the sense that
measurement sets of the same angle from the two sensors
will be strongly correlated, both for inlier sequences and
outlier sequences. This is clearly demonstrated by studying
the covariance of the inlier and outlier sets at a fixed position
in the room, plotted in for position p2 and p4 in Figure 5).
In the first plot, all eight measurement series qualify as inlier
sequences, with unimodal distributions at σ[D] < 10−4. In the
second plot, taken in p4, only the sets D(A,X∨Y, 1, 4) qualify
as outlier sequences of which one, is depicted in Figure 4.

Fig. 5. Left: Covariance of measurements at a fixed position in the room
where no outlier sets appear. Right: Covariance of measurements at a fixed
position in the room where two significant outlier sets are present.

This illustrates the odd nature of the outlier sets, where
small shifts in the expectation of the angular measurements
seen in Figure 4, taken of the same angle from the same
base station occur simultaneously and independently in both
sensors. A plausible explanation for this phenomenon is the
internal control of the discs in the base stations of the LHPS,
accounting for the systematic and very small timing errors in
the measurements of single angles in the base station.

From these experiments, we conclude that angular mea-
surements are locally approximately Gaussian in their dis-
tribution with a standard deviation of σ[D] ≈ 10−4.5 [rad]
corresponding to a variance of V[D] = 10−9, with the same
cross-correlation for measurements of the same planar angle in
different sensors. Furthermore, no significant correlation was
found between the noise distribution and the spatial position
of the sensor in X 1 ∪ X 2. As seen in Figure 4, there exists a
time-varying bias term which may be modeled in the MEKF
with an additional two states per base station, as the same
bias affects measurements of the same angle in the same base
station taken by different sensors. To summarise, the noise is
approximately Gaussian, and a small time-varying bias exists,
which can be assumed identical over all sensors, and could
be modeled as a first-order Markov process in the MEKF.
However, we stress that the bias terms are small, being in
the order of 10−3 [rad] corresponding the maximum distance
between the multimodal peaks in the outlier data sets.

V. THE CRAMER-RAO LOWER BOUND

With the measurement equations modeled and experimen-
tally verified, we may assess the informational content of
LHPS measurements. Consider an unknown parameter vector
consisting of the MUAV position and rotational attitude error,

θ =
[
θ1 θ2 θ3 θ4 θ5 θ6

]T
,
[
pT ρT

]T ∈ R6,

which is to be estimated by a set of measured angles relative
to M base stations {Bj}Mj=1 sensed by N sensors {Si}Ni=1.
The reason for not including the velocity is that instantaneous
measurements of the LHPS do not contribute any velocity
information. Consequently, we start by forming a vector of
all measurements taken at a singular point in time,

α̂ ,
[
α̂11
A α̂21

A · · · α̂
(N−1)M
B α̂NMB

]T
∈ R2NM ,



partitioned such that all the measurement of the same angle
in the same base station from every sensor appears in sets of
N measurements, similar to the structure of the measurements
in Figure 5. From the discussion in Section IV-C, the vector
of measurements can be seen as random variable with a
multivariate Gaussian distribution, with expectation

µ(θ) ,
[
α11
A (x) · · · αNMB (x)

]T ∈ R2NM ,

as derived in Section IV-A. Furthermore, the covariance of the
stochastic noise was shown to be independent of θ, and may
therefore be defined with the Kronecker product as

Q(θ) = 10−9 · (I2M ⊗ 1N ) ∈ R2NM×2NM ,

by the discussion in Section IV-C. Consequently, we have

α̂ ∼ N (µ(θ),Q(θ)), (24)

with a corresponding probability density function

p(α|θ) =
exp
(
− 1

2 (α− µ(θ))
TQ−1(θ)(α− µ(θ))

)
√
(2π)2NM |Q(θ)|

,

(25)
if taking the angular bias in (12) to be zero. We may then find
a simple formula for the computation of the Fisher information
matrix (FIM), denoted I(θ) [10].

Proposition 1: An element of the FIM at a row k and column
l when taking Ns independent samples from the multivariate
Gaussian distribution in (24) is given by

Ikl(θ) = E
[
∂ log p(α|θ)

∂θk

∂ log p(α|θ)
∂θl

]
= 2

Ns∑
t=1

∂µT (θ)

∂θk
Q−1(θ)

∂µ(θ)

∂θl

+Ns tr
(
Q−1(θ)

Q(θ)

∂θk
Q−1(θ)

Q(θ)

∂θl

)
, (26)

provided the Fisher information is always defined and the
density function p(α|θ) in (25) has bounded support in α.

Proof 1: The result follows immediately from the definition
of the FIM and insertion of the density function in (24). The
complete proof is given in Appendix 3C in [10].

Corollary 1: In the event of parameter independence in
Q(θ), the second term in (26) vanishes, and the Jacobians
in the first term, ∂µ(θ)/∂θi, i ∈ [1, 6], are given explicitly in
equations (19a), (19a), (23a), and (23b) in Section IV-B.

The well known CRB of the estimate covariance, see e.g.,
[10], is then given by the inverse of the FIM as,

E[(θ − θ̂)(θ − θ̂)T ] ≥ I−1(θ). (27)

To exemplify this bound, consider the nominal base station
configuration in Figure 2 with a single sensor and an unknown
parameter consisting of its positional estimate p̂ = [θ̂1, θ̂2, θ̂3].
Taking the FIM with Ns = 1 and k, l ∈ {1, 2, 3}, the CRB can
be evaluated as a function of the position in a given problem
geometry. The logarithmic trace of the CRB,

min log(tr(E[(p− p̂)(p− p̂)T ])), (28)

Fig. 6. Bound of the positional estimate covariance, with the logarithm of the
CRB trace as a function of a spatial position in two ze3 = 0.5 and ze3 = 2.

is shown in Figure 6 in the planes ze3 = 0.5 and ze3 = 2.
Based on this result, two observations can be made. Firstly,

there is a significant portion of the flyable space in which
the logarithmic trace of the positional estimate covariance
matrix approaches −8, corresponding to a standard deviation
of any positional estimate in the sub-millimeter range. This
applies only under the assumption of the bias terms being
perfectly estimated or zero at all times, but is still notably
lower than the multi-centimeter standard deviation in modern
UWB positioning [5], [9]. We also note a rapid growth in
the CRB when approaching the line intersecting the positions
of p1

b and p2
b of the two base stations. This is readily seen

in the ze3 = 2, plane and conforms nicely with intuition, as
angular measurements alone in a two-base station case cannot
determine where on the line the MUAV is positioned. As such,
there will exist an eigenvalue of the FIM approaching zero,
where then min log(tr(E[(p− p̂)(p− p̂)T ]))→∞.

VI. NONLINEAR LEAST-SQUARES FILTERING

To show the theoretical CRB in practice, a least-squares
(LS) algorithm is derived to estimate the position of a single
sensor Si based on the 2M angular measurements from M
base stations {Bj}Mj=1. Consider two angular measurements,
α̂ijA∧B , taken from the same base station, Bj . By the orthog-
onality of the plane normals defined in (9), the line in the
intersection of these planes is given by a direction

rij = Rj
b(n

ij
A(α̂

ij
A)× nijB(α̂

ij
B)), (29)

resulting in the line lij = pjb + λrij in the global frame, for
some λ ∈ R. With the angular measurements transformed into
M lines, it is then possible to estimate the sensor position si

in the global frame. The closest distance squared between the
desired point si and a line lij may be written in terms of
the idempotent projector Pij = Iij − rij(rij)T , satisfying
(Pij)2 = Pij . We then attempt to minimize a quadratic
distance ‖si − lj‖22 for every measured line, similar to the
approach in [2], resulting in an LS-problem with a cost

J(si) =

M∑
j=1

‖si − lij‖22 =

M∑
j=1

(pjb − si)TPij(pjb − si). (30)



The optimal estimate, ŝi, with respect to minimizing (30) is

ŝi = argmin
si
‖Asi − b‖22 = (ATA)−1(ATb), (31)

where

A ,
M∑
j=1

Pij , b ,
M∑
j=1

Pijpjb. (32)

To test the accuracy of the derived LS filtering and relate
it to the previous result on the CRB, an experiment was done
with the nominal base station configuration in Figure 2. The
positions of two sensors S1 (blue) and S2 (red) respectively
were estimated independently online by (31). The sensors were
mounted precisely 0.04 [m] apart at all times, and the result
the result depicted in (see Figure 7).

Fig. 7. Top: The positional trajectories of the two sensors, discrete jumps
in measurements are caused by outlier rejection during occlusion. Bottom:
Estimated inter-sensor distances (red), and MA-filtered estimates (blue),
zoomed in on a volatile segment during movement (black box).

With this relatively simple form of filtering, we note that
the independently estimated sensors are indeed approximately
0.04 [m] apart at all times, especially when the sensors are
laying still. When manually moving the sensors in the room,
there is a clear deterioration in positional estimates, as seen in
the second plot of Figure 7, where the estimated distance (red)
jumps back and forth between two points around a moderately
varying mean (blue). The explanation for this behaviour lies
in the way in which the LHPS-angles are computed. There
is a time-delay of approximately 1/60 [s] between the angle
computations in the two base stations, by virtue of the way
in which the base stations synchronise the plane sweeps as

discussed in Section III. Consequently, the two lines in the
LS-regression are never computed simultaneously, resulting in
the distance between the sensors exhibiting a zing-zagging
behaviour which is easily remedied by averaging the two most
recent estimates in a moving average (MA) filter (blue).

The LS-filtering has some interesting connections to the
CRB analysis in Section V. When the MUAV is laying still
in an approximate position,

s1 ≈
[
0.122, 0.125, 0.813

]
, s2 ≈

[
0.116, 0.085, 0.813

]
over approximately 20 seconds, we compute the logarithm of
the trace of the covariance of the LS-estimated positions,

log(tr(C[ŝ1])) = −7.408, log(tr(C[ŝ2])) = −7.364,

which is close to, but greater than the theoretical CRB at the
corresponding points, computed as

log(tr(I−1[s1])) = −7.536, log(tr(I−1[s2])) = −7.534.

In addition, the observation that the inverse FIM blows up as
the MUAV resides on the line intersecting the position of both
base stations is also nicely in the LS filtering, where it was
shown that two parallel lines li1‖li2 result in a zero-eigenvalue
in the idempotent operator Pij , and a blow up of the positional
estimates. With two base stations, this is only possible if li1

and li2 both intersect the positions p1
b and p2

b , concurring with
the observations made in Section V.

VII. FUSION WITH IMU-DATA IN THE MEKF

We now have two options when considering the fusion of
IMU-data with the LHPS data in the MEKF. The first is to
model the measurement using an MA-filtered LS-estimate of
the MUAV position, implementing the measurement equation

yLS(t) = hLS(x) = p(t) + eLS(t) ∈ R3, (33)

with eLS ∼ N (0,C[ŝi]) and a corresponding Jacobian

∂hLS(x)

∂x
=
[
I3 03 03

]
∈ R3×9, (34)

where measurement updates are done each time a full set of
plane measurements are taken from each base station. This
amounts to an update rate of approximately 30 [Hz] of the
positional information, and sensitivity to outliers as an entire
set of inlier angles needs to be retrieved from a base station
before making a positional measurement update.

The second option is to implement the plane angle measure-
ment equation in (12), and use this equation directly in the
measurement update of the MEKF. This is appealing as new
measurements are included at 120 [Hz] instead of 30 [Hz] in
the LS case, and any inlier angle may be incorporated directly
into the MEKF even if the second measured angle from the
same base station is an outlier measurement. We assume a
zero bias in the angles, and use a scalar equation

yΠ(t) = hΠ(x) = αijA∨B(x) + nijA∨B ∈ R, (35)



as was derived in Section IV, with the corresponding Jacobian

∂hΠ(x)

∂x
=

[
∂αijA∨B(x)

∂p
03×1

∂αijA∨B(x)

∂ρ

]
∈ R1×9.

(36)
We refer to [4], [5] for additional details on the MEKF, but
the resulting positioning when implementing the direct plane
measurements is shown in Figure 8, including the positional
trajectory with simultaneous LS estimate done on-line, and the
estimated attitude as extrinsic ZYX Tait-Bryan angles.

Fig. 8. A joystick controlled flight with LS-estimates and direct plane MEKF-
estimates estimates logged during the flight. Top: Positional trajectory. Center:
Zoomed in positional trajectory on ŷ during t ∈ [48.2, 49.5] (black box).
Bottom: Rotational trajectory in the extrinsic ZYX Tait-Bryan angles.

From this experiment, we note that the performance is very
similar in the LS and MEKF cases, but the jagged estimate
of the LS-scheme is clearly visible when zooming in on the
state trajectory. While the LHPS is accurate to a point where
the LS-estimates can be used directly in the feedback loop,
the MEKF should always be considered, with or without LS
pre-filtering, due to its robustness to temporary occlusion.

VIII. CONCLUSION

In this paper, the HTC VIVE Lighthouse system has been
evaluated for MUAV positioning. The CRB of the MUAV
state estimate was derived based on the LHPS measurement
equations and the noise characteristics of the measured signals.
This bound was subsequently experimentally validated by
comparison to the covariance of the positional estimates of
two different sensors at known locations in space. In all
tested cases, the covariance was lower bound by the CRB,
corresponding to a standard deviation of the positional esti-
mates in millimetre range. We further illustrated the quality
of the positional information by independently estimating the
location of two sensors at a fixed positional offset, as mounted
on the MUAV, recovering the true estimated inter-sensor
distance with millimetre precision at various locations in the
flyable space. Finally, we demonstrated two ways of fusing
LHPS measurements with IMU-data in a MEKF running on
the MUAV; the first using the LS pre-filtering on a set of four
angular measurements in (33) and (34), and the second using

the angular measurement equations directly by (35) and (36).
In conclusion, the LHPS is an accurate alternative to classical
camera- and radio-based positioning systems in the same price
range. Future work will explore alternative algorithms to the
MEKF and the usage of more than two base stations.
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APPENDIX

The nominal configuration of the LHPS is given by

pjb =

 1.5769
−1.6014
2.4486

 ,Rj
b =

−0.6346 −0.2806 0.7202
−0.7727 0.2099 −0.5991
−0.0169 0.9366 0.3500

 ,
pjb =

−1.82901.2565
2.6285

 ,Rj
b =

 0.4820 0.4467 −0.7537
0.8761 −0.2405 0.4178
−0.0053 0.8617 0.5074

 .
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