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Abstract
Motivated by applications of the Internet of Vehicles where a large amount of data is avail-
able through communication, we consider the problem of reducing communication costs when
estimating the dynamical state of a system. More specifically, assuming the knowledge of sen-
sor specifications, such as noise characteristics, we solve the problem of determining which
sensor’s data are necessary to satisfy given timevarying constraints on the estimation errors.
By receiving only the necessary data, instead of all available data, we reduce the commu-
nication and processing bandwidth usage. We formulate a moving horizon sensor selection
problem and present an approximate, yet computationally tractable, solution to the problem
by employing a greedy heuristic approach. For the heuristic, we define a metric that measures
the contribution of each sensor data to the constraints in relation to its communication cost.
We validate our solution on two collision avoidance examples and compare the performances
of our approach with the conventional Kalman filter using all available sensor data. The
simulation results show that our approach significantly reduces communication costs without
compromising the system’s performance, such as safety guarantee, with high probability.
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Moving Horizon Sensor Selection for Reducing Communication Costs
with Applications to Internet of Vehicles

Heejin Ahn and Claus Danielson

Abstract— Motivated by applications of the Internet of Vehi-
cles where a large amount of data is available through commu-
nication, we consider the problem of reducing communication
costs when estimating the dynamical state of a system. More
specifically, assuming the knowledge of sensor specifications,
such as noise characteristics, we solve the problem of deter-
mining which sensor’s data are necessary to satisfy given time-
varying constraints on the estimation errors. By receiving only
the necessary data, instead of all available data, we reduce the
communication and processing bandwidth usage. We formulate
a moving horizon sensor selection problem and present an
approximate, yet computationally tractable, solution to the
problem by employing a greedy heuristic approach. For the
heuristic, we define a metric that measures the contribution
of each sensor data to the constraints in relation to its
communication cost. We validate our solution on two collision
avoidance examples and compare the performances of our
approach with the conventional Kalman filter using all available
sensor data. The simulation results show that our approach sig-
nificantly reduces communication costs without compromising
the system’s performance, such as safety guarantee, with high
probability.

I. INTRODUCTION

In applications of the Internet of Vehicles (IoV), a large
amount of data is available through communication. Using
available data, the conventional Kalman filter estimates the
dynamical state of systems within given error bounds with a
certain probability, but requires high costs of transmitting
and processing all the data. Moreover, constraints on the
communication bandwidth or computation power can limit
the amount of data used in state estimation. The objective of
this paper is to address this issue by communicating with
a subset of sensors in real-time state estimation, thereby
reducing communication costs, while satisfying time-varying
constraints on estimation errors.

In this paper, we propose a moving horizon sensor selec-
tion problem formulation based on the Kalman filter theory,
where the problem finds an optimal set of sensors over
a finite horizon. Common approaches to sensor selection
problems are search tree algorithms or greedy algorithms.
The work [1] exhaustively searches for an optimal solution
by evaluating all of the combinations of sensors, and [2]
provides efficient pruning strategies of a search tree to reduce
the computation time required to obtain an optimal solution.
The works [3]–[7] present algorithms that greedily choose
one sensor at a time based on some metrics. For specific
problems with submodular cost functions over matroids,
greedy algorithms achieve performances within quantified
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bounds of the optimal solutions [5]–[7]. In this paper, we
present a greedy algorithm that is tailored to solve our sensor
selection problem. Because the goal of this paper is to reduce
the data-usage, we focus on showing that our algorithm is
an improvement over the currently used Kalman filter, rather
than bounding the sub-optimality of our algorithm.

The sensor selection problem proposed in this paper is
motivated by applications of the IoV, and differs from other
sensor selection problems in the literature. Our problem
is subject to constraints on error covariance matrices and
minimizes the communication costs, whereas other prob-
lems typically optimize the trace, determinant, or maximum
eigenvalue of error covariance matrices by using a fixed
number of sensors without imposing additional constraints.
Also, the constraints on estimation errors in our problem
are time-varying to enable the design of a robust and less
conservative controller; for instance, in path planning, if a
vehicle is far away from other vehicles, the controller can
tolerate large estimation errors without causing a collision.
We present a heuristic algorithm that approximately solves
the sensor selection problem in a greedy manner, and validate
the algorithm on two motivating examples of the IoV through
computer simulations. Because our approach considers linear
time-invariant systems subject to Gaussian noise, we com-
pare the performances of our heuristic with the conventional
Kalman filter.

The rest of the paper is organized as follows. In Section II,
we provide two examples in the IoV that motivate this paper.
We formulate the moving horizon sensor selection problem
in Section III and provide approximate solutions in Section
IV. In Section V, we present the simulation results.

II. MOTIVATING EXAMPLES

In this section, we provide two motivating examples in the
IoV where multiple data from different sensors are available
for state estimation.

A. Rear-end Collision Avoidance

Consider an ego vehicle that is controlled to maintain
minimum safety distance dmin from a vehicle immediately
in front as shown in Fig. 1(a). Let ∆p(t) and ∆v(t) be the
difference in longitudinal position and speed, respectively,
between the two vehicles at time instance t. The dynamics
are expressed as the following linear system

x(t+ 1) =

[
1 ∆t
0 1

]
x(t) +

[
0

∆t

]
u(t) + w(t), (1)
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Fig. 1. (a) Estimating (∆p,∆v) to prevent rear-end collisions. (b)
Estimating the dynamical states of vehicles to prevent side collisions at
road intersections.

where ∆t is sampling-time, x(t) = (∆p(t),∆v(t)) is the
state, u(t) is the input (acceleration difference between the
two vehicles), and w(t) is the process noise.

The ego vehicle has access to measurements from 3
different sources:

yi(t) = Cix(t) + vi(t), i = 1, 2, 3, (2)

where Ci is the output matrix and vi(t) is the noise of mea-
surement i. Measurement i = 1 is provided from onboard
sensors. Measurements i = 2 and i = 3 are transmitted from
sensors located on the preceding vehicle and on the roadside
unit, respectively, accessible through communication. This
is depicted in Fig. 1(a). Although our approach can handle
different data types measured from different sensors as long
as the system is observable, we assume in this example for
simplicity that all sensors measure the state, that is, Ci is
the identity matrix. Each sensor is associated with a cost `i
that represents how expensive it is to transmit and process
data of the sensor. For instance, since sensor i = 1 is located
onboard, its cost is zero, `1 = 0. The off-board sensors i = 2
and i = 3 have transmission costs `2 = 3 and `3 = 5,
respectively.

We can easily compute a control input u(t) that ensures
that the ego vehicle avoids rear-end collisions and is robust
to state estimation errors within given error bounds Ω(t).
Error bounds are time-varying because for instance, if the
ego vehicle is far from the lead vehicle (i.e., ∆p � dmin),
less accuracy in state estimation is required. Because we just
need the state estimation error within the error bounds, we
can improve the total cost

∑
`i by using only a subset of

the sensor data.

B. Intersection Collision Avoidance

Consider a roadside unit at an intersection that coordinates
three vehicles to prevent them from colliding as shown in
Fig. 1(b). Let pi(t) and vi(t) are the longitudinal position
and speed of vehicle i at time instance t. With the state
xi(t) = (pi(t), vi(t)), the longitudinal dynamics of vehicle i
are expressed as the following linear system

xi(t+ 1) =

[
1 ∆t
0 1

]
xi(t) +

[
0

∆t

]
ui(t) + wi(t),

where ui(t) is the input that the roadside unit provides to
vehicle i and wi(t) is the process noise. The roadside unit
has access to 12 measurements

yi,j = Ci,jxi(t) + vi,j(t)

of the states of vehicles i = 1, 2, 3 measured by sensor
systems j = 1, 2, 3, 4 located on the three vehicles and the
roadside unit. Here, vi,j(t) is the sensor noise. Also in this
example, we let Ci,j be the identity matrix.

We can compute a control input that guarantees no side
collisions at the intersection for any state estimation errors
within given error bounds [8], [9]. As in the rear-end collision
avoidance example, the error bounds Ω(t) are time-varying
because large error bounds can be allowed when vehicles are
far from the intersection. We can improve the communication
costs by selecting a minimal number of the sensor data that
enable the state estimation within the error bounds.

III. PROBLEM STATEMENT

In this section, we formulate a moving horizon sensor
selection problem, following the problem setup and formu-
lation of estimation error constraints.

A. Problem Setup

Consider the problem of estimating x̂(t) of the state x(t)
of the following linear system

x(t+1) = Ax(t) +Bu(t) + w(t) (3a)
yi(t) = Cix(t) + vi(t) i = 1, . . . ,M (3b)

using a subset of the M sensors, where x(t) ∈ Rn is the
state, w(t) ∈ Rn is the process noise, and vi(t) ∈ Rmi is
the noise on the i-th sensors. The process w(t) and sensor
noises vi(t) are independent identically distributed, zero-
mean Gaussian variables with covariances E(w(t)w(t)ᵀ) =
W and E(vi(t)vi(t)

ᵀ) = Vi. Each of the measurement
yi = Cix + vi has an associated cost `i that represents the
costs of transmitting and processing data. For instance, this
cost would be small for sensors located on the system and
large for a high resolution image from a camera located far
from the system.

At each time instance, the estimation error e(t) = x(t)−
x̂(t) must satisfy the error bounds e(t) ∈ Ω(t) ⊂ Rn (see
Fig. 2). We assume that it is possible to achieve this objective
by communicating with all the surrounding sensors. Since
future estimation errors e(t+ k) will depend on the current
estimation error e(t), we use a moving horizon estimator
to plan which sensor data will be requested. At each time
instance t, we solve the following conceptual sensor selection
problem

min
∑T−1
k=0

∑M
i=1`iµi,t+k (4a)

s.t. et+k|t ∈ Ω(t+ k) (4b)

where the binary variables µi,t+k ∈ {0, 1} indicate whether
the i-th sensor data will be acquired at time t+k, and et+k|t
denotes future estimation errors at time t + k predicted at
time t. The cost function (4a) is the total cost, including the
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Fig. 2. Chance constraints P
(
e(t) ∈ Ω(t)

)
≥ p given in (5) are guaranteed

by the set-inclusion constraints E(t) ∈ Ω(t) given in (6).

costs of transmitting and processing data, over the horizon T .
The constraints (4b) ensure that the estimation error et+k|t
satisfies the future bounds et+k|t ∈ Ω(t + k). Notice that
planning ahead is required to ensure that enough data is
gathered to satisfy possibly more restrictive future bounds
Ω(t+ k) ⊂ Ω(t). The implementation of the moving horizon
estimator (4) is only conceptual since we omit how the sensor
data are used to bound the estimation error et+k|t. One
particular method is described in the following subsection.

B. Chance Constraint Formulation

One of the most common methods for state estimation is
the Kalman filter. However, the Gaussian estimation errors
produced by the Kalman filter are inherently unbounded.
Thus, the hard constraints e(t) ∈ Ω(t) are often replaced
by chance constraints

P(e(t) ∈ Ω(t)) ≥ p, (5)

which ensure that the constraints e(t) ∈ Ω(t) are satisfied
with at least probability p. For the Gaussian estimation
errors produced by the Kalman filter, the chance constraints
P
(
e(t) ∈ Ω(t)

)
≥ p are guaranteed by the set-inclusion

constraints

E(t) :=
{
e : eᵀP (t)−1e ≤ α(p)

}
⊆ Ω(t), (6)

as illustrated in Fig. 2. Here, P (t) = E
(
e(t)e(t)ᵀ

)
is

the covariance of the estimation error e(t), and α(p) is
obtained using the χ2 distribution with n-degrees of freedom,
which is the distribution of

∑n
i=1 Z

2
i where Z1, . . . , Zn are

independent Gaussian random variables [10]. For instance,
if n = 2, α(0.9) = 4.605, α(0.95) = 5.991, and α(0.99) =
9.210. The estimation errors produced by the Kalman filter
have zero mean E

(
e(t)

)
= 0.

To easily check the satisfaction of the set-inclusion con-
straints (6), we provide equivalent constraints in the follow-
ing proposition.

Proposition 1: If the error sets are polytopes

Ω(t) =
{
e : hᵀj e ≤ kj ∀j ∈ J (t)

}
,

then the set-inclusion constraints (6) are equivalent to the
linear matrix inequalities (LMI)

P (t)−1 � α(p)
hjh

ᵀ
j

k2j
, ∀j ∈ J (t). (7)

Proof: Suppose P (t) does not satisfy the LMI (7), that
is, there is j ∈ J (t) and a vector e such that

eᵀP (t)−1e <
α(p)

k2j
eᵀhjh

ᵀ
j e.

Any scaled vector ē = ce with a constant c also satisfies the
above inequality. Moreover, for e ∈ E , we can find a scaled
vector ē satisfying ēᵀP (t)−1ē = α(p). Then, k2j < ēᵀhjh

ᵀ
j ē,

which implies hᵀj ē > kj or hᵀj ē < −kj . This means that
ē /∈ Ω(t); for ē ∈ E(t), hᵀj ē ≤ kj also implies hᵀj ē ≥
−kj because the ellipse is centered at origin and symmetric.
Therefore, ē ∈ E(t) but ē /∈ Ω(t), which violates the set-
inclusion constraints (6).

Suppose P (t) satisfies the LMI (7), that is, for any j ∈
J (t) and for any vector e, eᵀP (t)−1e ≥ α(p)

k2j
eᵀhjh

ᵀ
j e. If e ∈

E(t), then α(p) ≥ eᵀP (t)−1e. This implies k2j ≥ eᵀhjh
ᵀ
j e

and thus, e ∈ Ω(t) with the same reasoning stated above.
Therefore, e ∈ E(t) implies e ∈ Ω(t), which satisfies the
set-inclusion constraints (6).

C. Moving Horizon Sensor Selection Problem

Using the Kalman filter theory, we can write the moving
horizon sensor selection problem (4) as follows: given P−1t|t ,

min
∑T−1

k=0

∑M

i=1
`iµi,t+k (8a)

s.t. P−1t+k+1|t+k+1 = P−1t+k+1|t+k +
∑M

i=1
µi,t+kC

ᵀ
i V
−1
i Ci,

(8b)

P−1t+k+1|t+k = f
(
P−1t+k|t+k

)
, (8c)

P−1t+k+1|t+k+1 � α(p)
hjh

ᵀ
j

k2j
, ∀j ∈ J (t+ k + 1). (8d)

where f(Q) = A−ᵀQA−1 − A−ᵀQA−1(W−1 +
A−ᵀQA−1)−1A−ᵀQA−1 is the open-loop dynamics of the
inverse state covariance P−1t+k|t+k without measurement. If
µi,t+k = 1 for all i, the constraints (8b) and (8c) are the
same as the Kalman covariance update. The constraints
(8d) guarantee that the chance constraints (5) are satisfied
according to Proposition 1.

IV. PROBLEM SOLUTION

Finding the optimal solution of the moving horizon sensor
selection problem (8) is computationally demanding since it
is non-convex and contains binary variables. Instead, we use
lazy and greedy heuristics to find a feasible solution to (8).
Simulation results in Section V show that our heuristic,
although suboptimal, provides good performances.

A. Lazy Approach

Instead of solving the problem (8) over the horizon T at
once, we divide the problem into T subproblems and focus
only on one time instance. Each subproblem refers to

min
∑M

i=1
`iµi,t (9a)

s.t. P−1t+1|t+1 = P−1t+1|t +
∑M

i=1
µi,tC

ᵀ
i V
−1
i Ci, (9b)

P−1t+1|t = f
(
P−1t|t

)
, (9c)

P−1t+1|t+1 � α(p)
hjh

ᵀ
j

k2j
, ∀j ∈ J (t+ 1). (9d)



where J (t + 1) indexes the constraints of the polytopic
error bounds Ω(t + 1). That is, to satisfy the error bound
e(t + k) ∈ Ω(t + k), we lazily wait until time t+k before
selecting sensors. In this paper, we assume that enough
data is available to satisfy constraints (9d) at every stage
of problem (8). In other words, µi,t = 1 for all i is always
a feasible solution of the subproblem (9). This assumption
ensures the feasibility of all subsequent subproblems, thereby
making the solutions to the subproblems (9) a feasible
solution to the problem (8). Hence, the rest of this paper
focuses on solving the subproblem (9).

B. Greedy Approach

We present a greedy heuristic for solving the single-stage
sensor selection problem (9). Using the Schur Complement
[11], the matrix positive-semidefinite constraints (9d) are
equivalent to the following scalar nonnegative constraints[

P−1t+1|t+1 hj
hᵀj k2j/α(p)

]
� 0, ∀j ∈ J (t+ 1)

⇔
k2j
α(p)

− hᵀj
(
P−1t+1|t+1

)−1
hj ≥ 0, ∀j ∈ J (t+ 1), (10)

where P−1t+1|t+1 � 0 is positive definite and k2j/α(p) > 0 is
positive. We define a slack on the j-th constraint as

sj,t(Q) :=
k2j
α(p)

− hᵀjQ
−1hj .

If sj,t(Q) ≥ 0, the j-th constraint in (9d) is satisfied, that is,
{e : eᵀQe ≤ α(p)} ⊆ {e : hᵀj e ≤ kj} according to (10) and
Proposition 1.

Using the inequality (10), we define a reward metric
ri,t(Q) on the i-th sensor as the maximum difference be-
tween the nominal constraint slack sj,t(Q) and the slack after
the removal of the i-th sensor sj,t(Q− Cᵀ

i V
−1
i Ci), that is,

ri,t(Q) := max
j∈J (t+1)

hᵀj (Q− Cᵀ
i V
−1
i Ci)

−1hj − hᵀjQ
−1hj .

Notice that because the slack is reduced as sensors are taken
away, the metric is always nonnegative. The quantity ri,t(Q)
measures how the removal of the i-th sensor’s data affects
the violation of the error constraints Ω(t+ 1). The smallest
ri,t(Q) means that removing the sensor has least effect on
slacks.

Our heuristic greedily removes the sensor that has the
minimum reward-relative-to-cost ratio, ri,t(Q)/`2i . The de-
tailed heuristic is provided as follows. At each iteration
of the heuristic, Iused is a set of sensors that are to be
communicated with at time t, and Q is the inverse of a
posteriori covariance matrix using the sensors in Iused (i.e.,
Q = f(P−1t|t ) +

∑
i∈Iused

µi,tC
ᵀ
i V
−1
i Ci).

• Initialization: Start with Iused = {1, . . . ,M}. Let Q =
f(P−1t|t ) +

∑M
i=1 C

ᵀ
i V
−1
i Ci.

• Iteration:
– Termination: If minj sj,t(Q − Cᵀ

i V
−1
i Ci) < 0 for

all i ∈ Iused, then terminate the iteration and return
Iused.

– Sensor selection: Among i in Iused satisfying
minj sj,t(Q − Cᵀ

i V
−1
i Ci) ≥ 0, select the index

imin corresponding to the minimum of ri,t(Q)/`2i .
– Update: Let Iused = Iused \ imin and Q = Q −
Cᵀ
imin

V −1imin
Cimin

.

We refer to this heuristic as greedy subtraction heuristic
because a sensor is subtracted from the set Iused at each
iteration.

The termination of iterations is determined by the sign
of the slack minj sj,t(Q − Cᵀ

i V
−1
i Ci), which indicates the

satisfaction of the estimation error constraints (9d) after the
removal of the i-th sensor. For instance, if it is negative,
then removing the i-th sensor will cause the estimator error
to violate the bounds Ω(t+ 1) according to (10). For sensor
with a positive slack, the sensor can be removed without
violating constraints. The iteration in the heuristic terminates
when there are no sensor that can be removed from Iused
without violating constraints.

Suppose we have rj,t(Q) > ri,t(Q) > 0. This tells that
removing the i-th sensor has less effect on the constraint
slack than the j-th sensor. If the two sensors have the same
communication cost, that is, `i = `j , then removing the i-th
sensor is preferable because it is then more likely that we will
be able to remove an additional sensor in the next iteration.
Here, we consider `2i rather than `i to balance the weights
of the contribution to the constraints and the associated cost
because the slack sj,t(Q) is defined in terms of the square
of kj , which defines half-spaces of the constraints (9d).

We implement the subtraction heuristic in a receding
horizon fashion. That is, at time instance t, we use the
heuristic to solve the T subproblems (9) and apply the first
sensor selection (µi,t for all i). At the next time instance
t+ 1, we again use the heuristic to solve the subsequent T
subproblems.

C. Other Heuristics

There are other possible heuristics to solve the subproblem
(9). One heuristic is to add sensors that correspond to
the maximum value of r′i,t(Q)/`2i until the constraints are
satisfied, where the metric r′i,t is defined as the minimum
difference between the slack after adding the i-th sensor
sj,t(Q + Cᵀ

i V
−1
i Ci) and the nominal slack sj,t(Q). That

is,

r′i,t(Q) := min
j∈J (t+1)

hᵀjQ
−1hj − hᵀj (Q+ Cᵀ

i V
−1
i Ci)

−1hj .

Notice that because the slack increases as sensors are added,
the metric is always nonnegative. In the heuristic iterations,
Q is initially f(P−1t|t ) and increases to Q + Cᵀ

i V
−1
i Ci as

more sensors are added, and we pick the sensor with the
maximum value of ri,t(Q)/`2i because we want to increase
the slack as much as possible (to a positive value) with small-
est costs by adding sensors. The iteration terminates when
minj sj,t(Q) becomes positive. We refer to this heuristic as
greedy addition heuristic.

Another heuristic is to add sensors randomly by choosing
one sensor at a time until the constraints are satisfied.
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Fig. 3. Greedy subtraction heuristic yields the estimation error within the
given bounds while requiring a significantly lower cost than the conventional
Kalman filter.

We refer to this heuristic as random heuristic. In the next
section, we compare the greedy subtraction heuristic with
these heuristics.

V. SIMULATION RESULTS

We implement the greedy subtraction heuristic in the two
motivating examples given in Section II, and compare the
results with the state-of-the-art results that are based on
the Kalman filter using all available sensors. We also show
via computational experiments that the greedy subtraction
heuristic exhibits better performances, in the sense that its
solutions are close to the optimal solutions in most of cases,
than the other two heuristics described in Section IV-C.

A. Rear-end Collision Avoidance

At generic time instant 0, we compute a robust control
input that maintains the minimum safety distance, dmin =
3, between the ego vehicle and the preceding vehicle. In
particular, given estimation error bounds Ω(t), the control
input is robust in the sense that the position between the two
vehicles, denoted by ∆p, is no smaller than dmin = 3 for
any bounded errors. In Fig. 3(a), the estimate of ∆p and the
estimation error bounds Ω(t) are represented by the black
solid line and gray region surrounding the line, respectively.
The ego vehicle, which is initially far from the preceding
vehicle, is controlled to get closer, but not closer than the
minimum safety distance of dmin = 3, for any estimation
error within the bound with at least probability of p = 0.95.
The system’s performance (safety in this case) is guaranteed
with high probability.

In Fig. 3(a), the blue dotted lines around the estimate
define a band in which the actual value exists with at
least probability of p = 0.95 if we update the posterior

Fig. 4. While the prior distribution (large ellipse) violates the set-inclusion
constraints (6) (i.e., being inside the rectangle defined by the four red lines),
the posterior distributions resulted from our subtraction heuristic (medium
ellipse) and from the Kalman filter (small ellipse) satisfy the constraints.

distribution using the Kalman filter based on all available
sensors (three measurements in this example). Similarly, the
red solid lines around the estimate represent the error band
given by the greedy subtraction heuristic. The Kalman filter
error band is contained by that of the greedy subtraction
heuristic. Notice that both error bands are inside the given
error bounds, thereby satisfying the chance constraints (5),
and our approach yields much better communication costs
as shown in Fig. 3(b).

This result is also represented graphically in Fig. 4. The
gray large ellipse is {e = (e1, e2)|eᵀP−11|0 e ≤ α(0.95)} based
on the prior distribution at time 0, and it violates the set-
inclusion constraints (6), where Ω(1) is the rectangle defined
by the four red lines. Our heuristic selects a minimal number
of sensors to yield the posterior distribution and gives the red
medium ellipse, {e : eᵀP−11|1 e ≤ α(0.95)}, which satisfies
the constraints. The conventional Kalman filter uses all the
sensors to yield the posterior distribution corresponding to
the blue smallest ellipse. Again, the Kalman filter ellipse is
always a subset of the ellipse resulted from our heuristic,
and both ellipses satisfy the constraints.

B. Intersection Collision Avoidance

At generic time instant 0, we compute a robust control
input that makes the three vehicles in Fig. 1(b) cross the inter-
section without conflicts for any estimation error within given
bounds. Fig. 5(a) shows the position estimate trajectories of
the three vehicles (black lines). Any two positions within
the error bounds (gray region) are not simultaneously inside
the intersection located between 20 and 25. The error bands
of the Kalman filter and our greedy subtraction heuristic
around the estimate are contained in the error bounds Ω(t),
which confirms that they satisfy the chance constraints (5).
Fig. 5(b) shows that our approach significantly reduces the
total communication cost; the cost of the Kalman filter is
40 at every time step while the cost of our heuristic has the
average of 13.2.

C. Comparison with Other Heuristics and Optimal Solution

We compare the costs of exhaustive search (optimal so-
lutions) and the greedy subtraction, greedy addition, ran-
dom heuristics described in Section IV on a set of 1,000
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(b) Costs of the Kalman filter and our heuristic.

Fig. 5. Three vehicles in Fig. 1(b) cross the intersection located between
20 and 25 without collisions, and the estimation error of the subtraction
heuristic is within the given bounds with significantly reduced communica-
tion costs.

Fig. 6. Costs of different approaches on 1,000 sample data.

Fig. 7. Histogram of the errors between the optimal costs and the resulting
costs.

simulation cases. In each case, the noise covariance Vi for
i ∈ {1, 2, . . . , 8} (8 measurements) and a priori covariance
matrix P−1t+1|t are randomly generated.

Fig. 6 shows the costs of each approach on 1,000 simu-
lation cases. The optimal solution yields the smallest cost,
the greedy subtraction and addition heuristics result in costs
close to the optimal costs, and the random heuristic exhibits

random performances. Fig. 7 shows the histograms of the
cost differences between the optimal and heuristic solutions.
The greedy subtraction heuristic yields the optimal costs in
88.3 % of the cases and has a distribution that gives the
maximum cost error of 7. The greedy addition heuristic
obtains the optimal costs in only 29.8 % of the cases and
exhibits a distribution that gives the maximum error of 17.
These results show that our greedy subtraction heuristic
outperforms the other heuristics, and is able to obtain the
optimal solutions in most of cases.

VI. CONCLUSIONS

In this paper, we have formulated the moving horizon
sensor selection problem for estimating the vehicle states
within desired time-varying error bounds in the IoV, to
reduce the total cost associated with acquiring and processing
data. Rather than exactly solving the problem, which requires
significant computation time, we adopt a greedy heuristic
approach to approximately solve the problem. Via computer
simulations, we have shown that our approach exhibits
significant cost reduction compared to the state-of-the-art
Kalman filter approach and the other heuristics.

In order to further develop the approach, we plan to exploit
the moving horizon structure to update the control input and
state estimate at each time instance. Also, quantifying the
approximation error of our approach is interesting future
work.
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