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Parameter Identification of the Nonlinear Double-Capacitor Model for
Lithium-Ion Batteries: From the Wiener Perspective

Ning Tian, Huazhen Fang and Yebin Wang

Abstract— Battery parameter identification is emerging as
an important topic due to the increasing use of battery
energy storage. This paper studies parameter identification for
the nonlinear double-capacitor (NDC) model for Lithium-ion
batteries, which is a new equivalent circuit model developed
in the authors’ previous work [1]. It is noticed that the NDC
model has a structure similar to the Wiener system. From the
Wiener perspective, this work builds a parameter identification
approach for this model upon the well-known maximum a
posteriori (MAP) estimation. The purpose of using MAP is
to overcome the nonconvexity and local minima that can cause
unphysical parameter estimates. The proposed approach is the
first one that we aware of exploits MAP for Wiener system
identification. It also demonstrates significant effectiveness for
accurate identification of the NDC model, validated through
simulations and experiments.

I. INTRODUCTION

Battery modeling and parameter identification are of foun-
dational importance for model-based battery management
to ensure the performance, safety and life of various bat-
tery systems. Despite a growing amount of research, many
new challenges continue to arise due to an ever-increasing
demand for better accuracy, efficiency and availability of
battery models. In this context, this paper contributes a study
of parameter identification for the nonlinear double-capacitor
(NDC) model, an equivalent circuit model for Lithium-ion
batteries (LiBs) proposed in our previous work [1]. Our study
connects the Wiener system identification with the NDC
model as the latter demonstrates a Wiener-type structure.
We propose a parameter estimation approach that enhances
existing Wiener identification methods and proves to be
effective for the NDC model.

Literature Review. Battery parameter identification has
attracted considerable attention in recent years. The cur-
rent literature can be divided into two main categories,
experiment-based and data-based. The first category conducts
experiments of charging, discharging or electrochemical im-
pedance spectroscopy (EIS) and utilizes the experimental
data to directly determine the parameters of a model. It is
pointed out in [2–4] that the transient voltage responses under
constant- or pulse current charging/discharging can expose
the resistance, capacitance and time constant parameters of
the well-known Thevenin’s model. The relationship between
the state-of-charge (SoC) and open-circuit voltage (OCV)
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greatly characterizes a battery’s dynamics. It can be experi-
mentally identified by charging or discharging a battery using
a very small current [5], or alternatively, using a current of
normal magnitude but intermittently (a sufficiently long rest
period is applied between two discharging operations) [6; 7].
The EIS experiments have also been widely used to identify
a battery’s impedance properties [8–10]. While involving
basic data analysis, methods of this category generally put
emphasis on the design of experiments. By contrast, the
second category seeks to deeply understand the model-data
relationship and build sophisticated data-driven approaches
to construct models from data. It can beneficially enable
provably correct identification, even for complex models,
in addition promising better use of data and convenient
application. It is proposed in [11] to identifying the The-
venin’s model by solving a set of linear and polynomial
equations. Another popular means is to formulate model-data
fitting problems and solve them using least squares or other
optimization methods to estimate the parameters [12–17].
In [18; 19], a linear state-space model is formulated for batte-
ries, and subspace identification is then performed to infer the
system matrices. When more complex electrochemical mo-
dels are considered, the identification usually involves large-
size nonlinear nonconvex optimization problems. In this case,
particle swarm optimization and genetic algorithms are often
leveraged to search for the best parameter estimates [20–23].
Another topic of interest is optimal input design to maximize
the parameter identifiability [24; 25].

Compared with the above studies, the NDC model presents
a different yet intriguing challenge—it has a Wiener-type
structure featuring a linear dynamic subsystem in cascade
with a static nonlinear subsystem. Although our work in [1]
provides a parameter estimation scheme, it is limited to
only constant charging or discharging protocols. Note of the
existing methods is applicable here since they are desig-
ned for non-Wiener-type models. We are thus motivated to
custom-develop an approach with an awareness of the NDC
model’s Wiener-like structure. Wiener system identification
is an important subject in the area of system identification,
which has seen a few methods proposed in the literature [26].
Among them, one of the most promising is based on the
maximum likelihood (ML) estimation [27; 28]. However, the
optimization procedure resulting from the ML formulation
often suffers the issue of local minima, fundamentally bla-
med on the nonlinearity involved in the NDC model. If not
addressed, this problem can easily lead to parameter estima-
tes physically meaningless and useless when one applies the
ML method to identifying the NDC model.
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Fig. 1: Diagram of a nonlinear double-capacitor model.

Statement of contributions. Focused on the NDC model
identification, this work offers three contributions. First, we
propose to enable Wiener system identification based on
maximum a posteriori (MAP) estimation. Compared to ML,
MAP incorporates into the estimation design a prior distribu-
tion of the unknown parameters, which represents additional
information or prior knowledge and can help drive the
parameter search toward a physically reasonable parameter
space. Second, based on the above notion, we systematically
develop an MAP-based parameter identification approach for
the NDC model. The proposed approach can estimate all the
model parameters in just one shot and allows for almost
arbitrary current profiles. Finally, we evaluate the approach
using simulations and experiments, well validating validating
its efficacy.

Organization. The rest of the paper is organized as fol-
lows. Section II reveals the Wiener-type structure underlying
the NDC model. Inspired by Wiener system identification,
Section III develops a new MAP-based parameter estimation
approach to identify the NDC model. Section IV presents
numerical simulation to assess the proposed approach, and
further, experimental validation is offered in Section V.
Finally, some concluding remarks are gathered in Section VI.

II. THE NDC MODEL

This section introduces the NDC model and further unveils
its inherent Wiener-type architecture.

The NDC model is schematically shown in Figure 1. It
is an extension of a linear double-capacitor model in [1]
to account for a battery’s nonlinear phenomena. Its first
main part is two R-C circuits, i.e., Cb-Rb and Cs-Rs, which
are configured in parallel. They are designed to imitate a
battery’s electrode. Specifically, Cb-Rb is analogous to the
electrode’s bulk inner part, and Cs-Rs corresponds to the
surface region. The charge is stored in and migrates between
Cb and Cs. This hence implies Cb � Cs, and Rb � Rs. The
second part consists of a voltage source U and an internal
resistance R0. Here, U is an analog to the OCV and based on
a nonlinear mapping of Vs, i.e., U = h(Vs). In addition, R0

is included to mimic the electrolyte resistance. It is shown
in [1] that this model provides excellent predictive capability
for a battery’s voltage behavior.

The dynamics of the NDC model can be characterized by

the following state-space model:
[
V̇b(t)

V̇s(t)

]
= A

[
Vb(t)
Vs(t)

]
+BI(t),

V (t) = h(Vs(t)) +R0I(t),

(1a)

(1b)

where Vb and Vs are the voltages across Cb and Cs, re-
spectively, I the current applied for charging (I > 0) or
discharging (I < 0), V the terminal voltage, and

A =

[
− 1

Cb(Rb+Rs)
1

Cb(Rb+Rs)
1

Cs(Rb+Rs) − 1
Cs(Rb+Rs)

]
, B =

[
Rs

Cb(Rb+Rs)
Rb

Cs(Rb+Rs)

]
.

In addition, we parameterize h(Vs) as a fifth-order polyno-
mial:

h(Vs) = β0 + β1Vs + β2V
2
s + β3V

3
s + β4V

4
s + β5V

5
s ,

where βi for i = 0, 1, . . . , 5 are coefficients. Note that Vb
and Vs should be set to belong to an interval [V s, V s], and
for simplicity we let V s = 0 V and V s = 1 V. Then, Vb =
Vs = 1 V for full charge (SoC = 100%), and Vb = Vs = 0
V for full depletion (SoC = 0%). In this work, we consider
full discharging experiments to identify the model. That is,
the initial V is V that corresponds to the voltage at full
charge, and the discharging ends when V hits the cut-off
threshold V . Then, we can obtain β0 = V and

∑5
i=1 βi =

V . Furthermore, it can also be easily derived that OCV =
h(SoC) holds [1].

Looking further at the NDC model, we can see that it
has a structure akin to a Wiener system—the parallel R-C
circuits constitute a linear dynamic subsystem, and cascaded
with it is a static nonlinear mapping. Next, we convert (1)
to a discrete-time Wiener-type formulation.

Applying zero-order-hold discretization to (1a) and the
deriving the the transfer-function form, we have

Vs(t) = G1(q)I(t) +G2(q)Vs(0), (2)

where

G1(q) =
α1q
−1 + α2q

−2

1− (1 + α3)q−1 + α3q−2
,

G2(q) =
1

1− q−1
,

with

α1 =
A21B11 +A12B21

A12 +A21
∆t

− A21B11 −A21B21

(A12 +A21)2

(
1− e−(A12+A21)∆t

)
,

α2 = −A21B11 +A12B21

A12 +A21
e−(A12+A21)∆t∆t

+
A21B11 −A21B21

(A12 +A21)2

(
1− e−(A12+A21)∆t

)
,

α3 = e−(A12+A21)∆t.

Here, q−1 is the backshift operator, i.e., q−1s(t) = s(t− 1)
for a signal s(t), and ∆t the sampling period. It should be
noted that only three parameters, αi for i = 1, 2, 3 appear
in (2), though (1a) involves four physical parameters, Cb, Cs,
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Fig. 2: The Wiener-type structure of the NDC model.

Rb and Rs. Hence, there is a redundancy for the physical
parameters, which implies unidentifiability. To fix this issue,
we let Rs = 0 following [17], because of the relatively less
important role of Rs. Then, one can find out that

α1 =
∆t

Cb + Cs
+

RbC
2
b

(Cb + Cs)2
(1− α3) ,

α2 = − ∆t

Cb + Cs
e
− Cb+Cs

CbCsRb
∆t − RbC

2
b

(Cb + Cs)2
(1− α3) ,

α3 = e
− Cb+Cs

CbCsRb
∆t
.

If αi for i = 1, 2, 3 are determined, we can easily reconstruct
Cb, Cs and Rb as follows:

Cs =
(1− α3)2∆t

(α1 + α2)(1− α3) + (α2 + α1α3)logα3
,

Cb =
(1− α3)∆t

α1 + α2
− Cs,

Rb = −
(α2 + α1α3)

(
∆t2

)
(α1 + α2)2C2

b

.

Finally, it is obvious that V is governed by

V (t) = h [G1(q)I(t) +G2(q)Vs(0)] +R0I(t). (3)

With the above formulation, we have the block-oriented
Wiener-type structure of the NDC model as depicted in
Figure 2, in which the linear dynamic model G1(q) and
the nonlinear function h(Vs) are interconnected sequentially.
Given this Wiener-type model, we wish to estimate all of its
parameters simultaneously, including αi for i = 1, 2, 3, βi
for i = 1, 2, . . . , 4 and R0, from the I-V data.

III. PARAMETER IDENTIFICATION

We address the NDC parameter identification from the
Wiener perspective in this section. We build the solution on
Bayesian MAP estimation.

Before proceeding further, we pose the following model
based on (3):

y(t) = V (θ;u(t)) + v(t), (4)

where u is the input current I , y the measured voltage, v
the measurement noise added to V and assumed to follow a
Gaussian distribution N (0, q), and

θ =
[
α1 α2 α3 β1 β2 β3 β4 R0

]>
,

V (θ;u(t)) = h [G1(q,θ)u(t) +G2(q)Vs(0),θ] + θ8u(t).

The input (current) and output (voltage) datasets are denoted
as

y =
[
y1 y2 · · · yN

]>
,

u =
[
u1 u2 · · · uN

]>
,

where N is the total number of sample instants. A combi-
nation of them is expressed as

Z =
[
y u

]
.

An ML-based approach is developed in [27] to deal with
Wiener system identification. If applied to (4), it leads to
consideration of the following problem:

θ̂ = arg max
θ

p(Z|θ).

Following this line, one can derive a likelihood cost function
and find out the parameter estimates to minimize it. However,
this method can be vulnerable to the risk of getting stuck of
local minima because of the nonconvexity issue resulting
from the static nonlinear function h(·). This can cause
unphysical estimates. While carefully selecting an initial
guess is suggested as a means to alleviate this problem [29],
it may still not be adequate.

To overcome this problem, we propose to perform MAP
estimation as it incorporates some prior knowledge to help
drive the parameter search toward a reasonable minimum
point. Specifically, we consider maximizing the a posteriori
probability distribution of θ conditioned on Z:

θ̂ = arg max
θ

p(θ|Z). (5)

Using the Bayes’ theorem, we have

p(θ|Z) =
p(Z|θ)p(θ)

p(Z)
∝ p(Z|θ) · p(θ). (6)



TABLE I: A Quasi-Newton method for MAP estimation.

Data: current, voltage y, prior knowledge m and P
given initial iterate θ0 and convergence tolerance ε
repeat

compute the gradient vector gk
if k = 0 then

set H0 = 0.001 1
‖g0‖I

end if
if k = 1 then

compute δk = θk − θk−1, γk = gk − gk−1,
set Hk =

δ>k γk

γ>
k γk

I

else
set Hk =

(
I − δkγ

>
k

δ>k γk

)
Hk−1

(
I − γkδ

>
k

δ>k γk

)
+
δkδ

>
k

δ>k γk

end if
compute sk = −Hkgk
assign λ = 0.2 and c1 = 10−6

if J (θk + λsk) ≤ J(θk) + c1λg
>
k sk then

set θk+1 = θk + λsk
else

assign c2 = 0.1 and set θk+1 = θk + c2λsk
end if

until J(θk) converged
return θ̂ = θk

In above, p(θ) quantifies the prior information available
about θ. A general way is to characterize it as a Gaussian
random vector following the distribution p(θ) ∼ N (m,P ).
Based on (4), p(y|θ) ∼ N (V (θ,u),Q), where Q = qI
and

V (θ,u) =
[
V (θ, u(t1)) · · · V (θ, u(tN ))

]>
.

It then follows that

p(Z|θ) · p(θ) ∝ exp

(
− 1

2
[y − V (θ,u)]

>
Q−1

· [y − V (θ,u)]

)
· exp

(
−1

2
(θ −m)

>
P−1 (θ −m)

)
.

Considering the log-likelihood, the problem formulated in (5)
can be expressed as

θ̂ = arg max
θ

J(θ), (7)

where

J(θ) =
1

2
[y − V (θ,u)]

>
Q−1 [y − V (θ,u)]

+
1

2
(θ −m)

>
P−1 (θ −m) .

One must resort to numerical optimization to solve (7).
Here, we exploit a Quasi-Newton method [44] and introduce
it briefly in the following for the sake of completeness. This
method is premised on iteratively updating the parameter
estimate, i.e.,

θk+1 = θk + λsk.

Here, λ denotes the step size, and sk the gradient-based
search direction given by

sk = −Bkgk,

where Bk is a positive definite matrix that approximates the
Hessian matrix∇2J (θk), and gk = ∇J (θk). Based on [45],
the iterative update of Bk can be through

Bk =

(
I − δkγ

>
k

δ>k γk

)
Bk−1

(
I − γkδ

>
k

δ>k γk

)
+
δkδ
>
k

δ>k γk
,

with δk = θk − θk−1 and γk = gk − gk−1. In addition, gk
can be obtained as

gk = −∂V (θk,u)
>

∂θk
Q−1 [y − V (θk,u)]

+ P−1 (θk −m) .

Specifically, each element in g is given by

gi = − 2

σ

N∑
j=3

ηjΣju(j − i) + Λi, for i = 1, 2,

g3 = − 2

σ

N∑
j=3

ηjΣj · (xj−1 − xj−2) + Λ3,

gi = − 2

σ

N∑
j=3

ηj
(
xi−3
j − x5

j

)
+ Λi, for i = 4, . . . , 7,

g8 = − 2

σ

N∑
j=1

ηju(j) + Λ8,

with
ηj = yj − V (θ;u(tj)),

xj = G1(q,θ)u(j) +G2(q)Vs(0),

Σj =

7∑
i=4

(i− 3)θix
i−1
j + 5

(
V − V −

7∑
i=4

θi

)
x4
j ,

Λi =
2

Pii
(θi −mi).

Finally, note that λ needs to be chosen carefully to make
J(θ) decrease monotonically. We can use the Armijo con-
dition and let λ be selected such that

J (θk + λsk) < J (θk) + c1λg
>
k sk,

for some constant c1 ∈ (0, 1). In practice, c1 is selected to
be quite small, e.g., c1 = 10−6. To satisfy Armijo condition,
a simple implementation is to start λ with a small value,
say λ = 0.2. If the Armijo condition is not met, reduce λ
and proceed further. Summarizing the above, we outline the
computational algorithm in Table I.

Remark 1: The proposed approach requires some prior
knowledge of the parameters to be available. One can de-
velop such a prior knowledge in several ways in practice.
First, R0 can be roughly estimated using the voltage drop
at the beginning of the discharge, to which it is a main
contributor. Second, the polynomial coefficients of h(·) can
be approximately obtained from an experimentally calibrated



SoC-OCV curve. Third, one can derive a rough range for
Cb + Cs if a battery’s capacity is approximately known.
Finally, as the parameters of batteries of the same kind and
brand are usually close, one can use the parameter estimates
obtained from one battery as prior knowledge for another.

IV. NUMERICAL SIMULATION

This section offers a numerical example to evaluate the
efficacy of the identification method proposed in Section III.

Consider a battery with Cb = 10, 101 F, Cs = 1, 277 F,
Rb = 39.73 mΩ, Rs = 0 mΩ, R0 = 80 mΩ, and

h(Vs) = 3.2 + 2.586 · Vs − 9.024 · Vs2 + 18.88 · Vs3

− 17.84 · Vs4 + 6.358 · Vs5.

Suppose that the battery is initially at full charge with the
terminal voltage equal to the upper threshold V = 4.16 V. It
is then discharged until hitting the lower cut-off threshold
V = 3.2 V, respectively. The discharging current profile
is based on the Urban Dynamometer Driving Schedule
(UDDS) [? ] and adjusted to fall between 0 A and 6 A,
see Figure 3(a). The sampling period ∆t = 1 s, and the
Gaussian measurement noise has mean of 0 and covariance
of 10−4.

For simulation, the proposed identification approach is
applied to synthetic data generated in the above setting.
The simulation is run for M = 100 times to make a fair
evaluation. In each run, the initial parameter guess is given in
Table II. We use only the prior knowledge about α1 through
α3 and set m and P accordingly as shown in Table II. Two
metrics are considered to evaluate the estimation accuracy:

θ̄i =
1

M

M∑
j=1

θ̂i(j),

σr,i =

√√√√ 1
M

∑M
j=1

(
θ̂i(j)− θi

)2

θ2
i

,

for i = 1, 2, . . . , 8, which represents the average estimate and
estimation error, respectively. The results obtained from the
simulation runs are also summarized in Table II. It is seen
that there is a close match between the parameter estimates
and the true value, showing the effectiveness of the proposed
identification approach. We further show the reconstruction
of Cb, Cs and Rb in III. It is observed that their estimates
match the truth with high accuracy. Besides, Figure 3(b)
offers a comparison between measured and predictive voltage
in simulation run, which illustrates an excellent predictive
accuracy.

V. EXPERIMENTAL VALIDATION

This section evaluates the effectiveness of the identifica-
tion approach in the real-world application.

Our experiments were conducted on a PEC R© SBT4050
battery tester. Using this facility, charging/discharging tests
were performed on a Panasonic NCR18650B Li-ion battery
cell, which has a rated capacity of 3.25 Ah. In one test,
the battery was discharged from full capacity by the UDDS

current profile depicted in Figure 3(a). The obtained voltage
profile is shown in Figure 4 (see the red curve). The sampling
time interval ∆t was 1 s, and the cut-off voltage V is 3.2
V. We applied the proposed approach to the collected cur-
rent/voltage data to identify the parameters. The initial guess,
selected m and P , and the obtained parameter estimates
are summarized in Table IV1. Here, the initial guess and
prior knowledge understandably play an important role in
the estimation accuracy. To sensibly obtain them, we run the
method in [1] to make an approximate estimation first. The
voltage prediction is made using the parameter estimates and
compared against the measured voltage in Figure 4. One can
observe an excellent agreement between them. In addition,
it will be interesting to compare the estimated SoC-OCV
curve with the true one of the battery. As aforementioned,
OCV = h(SoC) for the NDC model. It is identified here as

OCV = 3.2 + 2.586 · SoC− 9.024 · SoC2 + 18.88 · SoC3

− 17.84 · SoC4 + 6.358 · SoC5.

Figure 5 compares it with the SoC-OCV curve obtained
experimentally by discharging the battery from full capacity
to a cut-off voltage 3.2 V using a small current of 0.1 A.
It is seen that the identified SoC-OCV curve is very close
to the actual one. All the results above show the parameter
estimates are reasonable and that the identification method
introduced in Section IV is effective.

VI. CONCLUSION

This paper deals with parameter identification for the NDC
model proposed in our previous work. The NDC model is
structurally similar to a Wiener system as it consists of a
linear dynamic subsystem and a nonlinear static subsystem
in cascade. Known as a challenging problem, Wiener system
identification can often easily fall victim to nonconvexity and
local minima due to the model’s nonlinearity. To address
this issue, we proposed to use MAP estimation so as to
incorporate some prior knowledge about the unknown para-
meters into the design of parameter estimation. Based on this
idea, we developed a parameter estimation approach for the
NDC model. We validated the approach through simulation
and experiments, consistently observing its effectiveness in
producing accurate estimation. The proposed approach can
advantageously estimate all the model parameters in one
shot, imposes no restrictions on the current profiles, and are
more capable of ensuring physically reasonable estimates
to be obtained. The notion of MAP-based Wiener system
identification can also find prospective use in many other
applications.
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TABLE II: Parameter identification results from Monte Carlo simulation.

Name α1 α2 α3 β1 β2 β3 β4 R0

θ 7.7552× 10−4 −7.7359× 10−4 0.97804 2.586 -9.024 18.88 -17.84 0.08
m 7.7552× 10−4 −7.7359× 10−4 0.97804 - - - - 0.08
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θ̄ 7.7378× 10−4 −7.7185× 10−4 0.97804 2.586 -9.024 18.88 -17.84 0.08
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