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Nonlinear Model Predictive Control of Coupled
Rotational-Translational Spacecraft Relative Motion

Bharani P. Malladi1, Stefano Di Cairano2, and Avishai Weiss2

Abstract— In this paper, a nonlinear model predictive control
(NMPC) policy is developed for kinematically and dynamically
coupled rotational-translational motion of a chaser spacecraft
relative to an uncooperative, tumbling target asteroid. The goal
of the NMPC policy is to rendezvous the chaser spacecraft,
equipped with a robotic grasper, to the asteroid surface to
collect a sample rock. The relative spacecraft motion model is
kinematically coupled due to the non-center-of-mass points on
both the target and chaser. Additionally, the chaser spacecraft
is actuated by eight gimbaled thrusters, introducing dynamic
coupling via control that simultaneously produces forces and
torques. The combined 6-degree-of-freedom kinematically and
dynamically coupled relative motion model is constrained by
the NMPC policy to approach the asteroid surface via a line-
of-sight cone, while enforcing thruster gimbal limit constraints.
Simulations demonstrate the effectiveness of the NMPC policy
in bringing the chaser spacecraft to rest relative the tumbling
asteroid while satisfying state and input constraints.

I. INTRODUCTION

NASA has identified rendezvous to non-cooperative free-
flying space objects as a high-priority technology area [1]. In
particular, rendezvous to and proximity operations near small
solar system bodies such as near-Earth asteroids have been
suggested priorities for future space missions [2]. Recently,
the JAXA spacecraft Hayabusa2 successfully deployed two
rovers to the surface of asteroid 162173 Ryugu [3]. Ad-
ditionally, there has been recent interest in the mining of
asteroids for raw materials by both private companies such
as Planetary Resources and Deep Space Industries, and
government entities such as NIAC and the USGS [4], [5].

Rendezvous to an uncooperative, tumbling asteroid target
presents several challenges. The dynamics of the asteroid
and a chaser spacecraft are nonlinear – both the rotational
attitude dynamics with potentially large angular velocities,
and the translational orbital dynamics in arbitrary orbits.
Additionally, full 6 degree-of-freedom (DOF) rigid body
models are necessary to describe relative rotational and trans-
lational motion between the target and chaser for rendezvous
maneuvers that include important alignment between robotic
graspers and surface rocks. Since graspers and rocks are
generally not located at the centers of mass of their respective
bodies, important kinematic coupling is established between
rotation and translation [6]. Furthermore, practical real-world
spacecraft thrusters aren’t aligned to provide pure forces and
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pure torques, but rather generate forces and torques con-
currently, introducing additional dynamic coupling between
rotation and translation [7]. Finally, for safe and controlled
approach during rendezvous that avoids collisions, the chaser
spacecraft is often constrained to a line-of-sight approach
cone.

Given the aforementioned challenges, the problem of
6-DOF kinematically and dynamically coupled rotational-
translational spacecraft rendezvous to an uncooperative, tum-
bling asteroid target is an ideal candidate for model pre-
dictive control (MPC). MPC has separately been applied
to point-mass-based spacecraft rendezvous and to space-
craft attitude control, see [8–12] and references therein.
There has been non-MPC work on control schemes for the
combined 6-DOF rigid-body rotational-translational space-
craft rendezvous problem [13], [14], and MPC-based dual
quaternion spacecraft pose control [15], [16] where the
authors consider position and attitude simultaneously, but
their models do not exhibit any kinematic, i.e. non-center-
of-mass, or dynamic, i.e. control input-based, coupling.

In this work, a nonlinear MPC (NMPC) policy is devel-
oped for kinematically and dynamically coupled rotational-
translational spacecraft relative motion in order to ren-
dezvous a chaser spacecraft, equipped with a robotic grasper,
to an asteroid surface to collect a sample rock. The objective
of the NMPC policy is for the chaser and its robotic grasper
to track the target asteroid’s orientation, angular velocity,
and orbital position and velocity of the non-center-of-mass
rock on the surface, that is, the objective is the stabilization
of the error dynamics between the target and chaser. The
relative motion model represents the chaser’s relative attitude
with rotation matrices in order to avoid the unwinding
phenomenon [17]. The chaser spacecraft is actuated by eight
gimbaled thrusters, introducing dynamic coupling via control
that simultaneously produces forces and torques. The NMPC
policy uses input constraints to satisfy gimbal and magnitude
limits on the thrusters, and output constraints to ensure that
the chaser’s robotic grasper approaches the asteroid’s surface
rock via a line-of-sight (LOS) constraint [9], [10].

The remainder of the paper is as follows. In Section II
we introduce the nonlinear 6-DOF kinematically and dy-
namically coupled spacecraft relative motion model. Section
III gives the problem statement and describes the proposed
NMPC policy. Simulation results are presented in Section
IV highlighting the successful maneuver in both the asteroid
frame and the inertial frame. Closing remarks are given in
Section V.



II. SPACECRAFT MODEL

This section begins with a summary of the notation,
followed by an overview of the satellite, and details about
the rotational and translational equations of motion.

A. Preliminaries and Notation

The following notation will be used throughout the paper.
A frame of reference Fx is defined by a set of three
orthonormal dextral basis vectors {ı̂, ̂, k̂}. The vector

⇀
r q/p

denotes the position of point q relative to point p, the vector
x·
⇀
r q/p denotes the derivative of the position of point q relative
to point p with respect to frame Fx, and the vector

⇀
ωy/x

denotes the angular velocity of frame Fy relative to frame

Fx. Note that
⇀

(·) denotes a coordinate-free (unresolved)

vector and that
⇀

(·)|x resolves the vector in frame Fx. All
frames are orthogonal and right-handed. Rn denotes the n-
dimensional Euclidean space. Given a matrix A ∈ Rn×n,
det(A) denotes its determinant, tr(A) denotes its trace. In
denotes the n-dimensional identity matrix. Given a vector
x =

[
x1 x2 x3

]> ∈ R3, x× is the skew symmetric cross-
product matrix of x given by

x× =

 0 −x3 x2
x3 0 −x1
−x2 x1 0

 .
The special orthogonal group SO(3) = {R ∈ R3×3 :
det(R) = +1, R>R = I3}. Principal rotations about the ı̂,
̂, k̂ basis vectors by an angle α are denoted by R{ı̂,̂,k̂}(α).

B. Model Overview

Consider a target and a chaser in orbit around a central
body. Without loss of generality, in this work that central
body is Earth. The frame Fe is the Earth Centered Inertial
(ECI) frame, e is an unforced particle, and it is assumed
that e is collocated with the center of the Earth. The target’s
center of mass is denoted by t and has a target-fixed frame
Ft. The target asteroid has a rock on the surface at point
pt. The chaser’s center of mass is denoted by c and has a
chaser-fixed frame Fc. The chaser has a robotic manipulator
with an end effector at point pc. The chaser is a rectangular
cuboid equipped with eight thrusters mounted on the corners
of two faces of the satellite. Each thruster has a frame
Fk, with an origin at point tk for thrusters k = 1, . . . , 8.
The thrusters provide thrust in a line coincident with their
position and the center of mass of the satellite, but are
able to gimbal away from this nominal direction. The target
and chaser configurations lie in the special Euclidean group
SE(3) = SO(3) × R3, that is, the set of all rotations and
translations of a rigid body.

C. Rotational Dynamics

The target and chaser’s attitude are given by Poisson’s
equation,

Ṙt/e = Rt/eω
t
t/e
×
,

Ṙc/e = Rc/eω
c
c/e
×,

(1)
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Fig. 1. Target and chaser with non-center-of-mass feature points
Fc⇀
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ftk

tk

Fk

Fig. 2. Thruster configuration

where ω{t,c}{t,c}/e ∈ R3 are the angular velocities of the target
and chaser frames F{t,c} with respect to the inertial frame Fe

resolved in the respective target and chaser frames F{t,c}, ω×

is the cross-product matrix of ω, and R{t,c}/e ∈ SO(3) are
the rotation dyadics that transforms the inertial frame Fe into
the target and chaser frames F{t,c}. Therefore, R{t,c}/e are
the proper orthogonal matrices (that is, the rotation matrices)
that transform the components of vectors resolved in the
target and chaser frames into the components of the same
vector resolved in the inertial frame.

The dynamics of the target and chaser are given by Euler’s
equation

ω̇t
t/e = Jt

−1(Jtω
t
t/e × ω

t
t/e + τ tp),

ω̇c
c/e = Jc

−1(Jcω
c
c/e × ω

c
c/e + τ cp + τ cc ),

(2)

where Jt, Jc ∈ R3×3 are the moment of inertia matrices
of the target and chaser respectively, τ{t,c}p ∈ R3 represent
the perturbation torques applied to the target and chaser, and
τ cc ∈ R3 are the control torques applied to the chaser from
the thrusters, all resolved in their respective frames.

Since the objective of the chaser is to match the attitude
of the target, let the relative attitude-error rotation matrix
between the chaser and target be given by Rc/t = R>t/eRc/e,
which satisfies the differential equation

Ṙc/t = Rc/tω
t
c/t
×, (3)

where the angular velocity error ωt
c/t is defined as

ωt
c/t

4
=

⇀
ωc/t

∣∣∣
t
=

⇀
ωc/e

∣∣∣
t
− ⇀
ω t/e

∣∣∣
t
= Rc/tω

c
c/e − ω

t
t/e.

Taking the derivative of ωt
c/t with respect to Ft, substi-

tuting in the target and chaser dynamics ω̇c
c/e, ω̇t

t/e given in



(2), and resolving into the target frame Ft yields,

ω̇t
c/t = Rc/tω̇

c
c/e − ω̇

t
t/e + ωt

c/t × ω
t
c/e,

= Rc/tJc
−1(Jcω

c
c/e × ω

c
c/e + τ cp + τ cc )

−Jt−1(Jtωt
t/e × ω

t
t/e + τ tp)

+ωt
c/t × (Rc/tω

c
c/e),

(4)

which, along with (3), completes the relative attitude kine-
matics and dynamics model.

A scalar measure of Rc/t is given by the relative eigenaxis
attitude error [18]

θc/t = cos−1(
1

2

[
tr(Rc/t)− 1

]
). (5)

D. Translational Dynamics
The translational equations of motion for the target and

chaser relative to the inertial frame Fe are given by

r̈et/e = −µ
ret/e
|re

t/e
|3 +

fp
mt
,

r̈ec/e = −µ
rec/e
|re

c/e
|3 +

fp
mc

+Rc/e
fc
mc
,

(6)

where re{t,c}/e ∈ R3 are the position vectors of the target and
chaser center of mass relative to the center of their central
body, µ is the gravitational constant of the central body, fp ∈
R3 is the vector sum of orbital perturbations, m{t,c} ∈ R are
the target and chaser masses, and fc ∈ R3 is the controllable
force vector applied to the chaser in Fc.

Consider body-fixed non-center-of-mass points pt on the
target and pc on the chaser, representing a surface rock
and end effector, respectively. Following [6], the relative
distance between the chaser and target feature points as seen
in Figure 1 is given by

⇀
r pc/pt =

⇀
r c/t +

⇀
r pc/c −

⇀
r pt/t, (7)

where
⇀
r c/t =

⇀
r c/e −

⇀
r t/e ∈ R3 is the relative distance

between the center’s of mass of the target and chaser rigid
bodies,

⇀
r pc/c ∈ R3,

⇀
r pt/t ∈ R3, are the positions of the

feature points on the chaser and target, respectively. Taking
the derivative with respect to the target frame Ft yields

t·
⇀
r pc/pt =

t·
⇀
r c/t +

c·
⇀
r pc/c +

⇀
ωc/t ×

⇀
r pc/c −

t·
⇀
r pt/t .

(8)

Since the positions of the surface rock and end effector are
fixed in their respective body-fixed target and chaser frames,

it follows that
c·
⇀
r pc/c =

t·
⇀
r pt/t = 0. Taking the derivative of

(8) with respect to the target frame Ft and resolving into Ft

yields,

ρ̈tc/t
4
=

t··
⇀
r pc/pt

∣∣∣∣∣
t

= r̈tc/t + ω̇t
c/t × (Rc/tr

t
pc/c)

+ωt
c/t × (ωt

c/t × (Rc/tr
t
pc/c)),

(9)

where r̈tc/t is given by [19, Chapter 4.1, equation(4.10)]

r̈tc/t = R>t/e(r̈
e
c/e − r̈

e
t/e)

−2ωt
t/e × (R>t/e(ṙ

e
c/e − ṙ

e
t/e))

−ω̇t
t/e × (R>t/e(r

e
c/e − r

e
t/e))

+ωt
t/e × (ωt

t/e × (R>t/e(r
e
c/e − r

e
t/e))).

(10)

Equation (9) is the relative translational dynamics model
between the chaser and target feature points pc, pt. Since
the feature points are not located at the centers of mass of
their respective bodies, their rotational motion about their
own center of mass projected onto the translational space,
kinematically couples (9) with the relative attitude kinematics
(3) and dynamics (4) model via Rc/t and ωt

c/t.

E. Thrusters

In addition to kinematic coupling, the spacecraft relative
motion model in this work exhibits dynamic coupling via the
thruster configuration. Recall Figure 2. Each thruster has a
position

⇀
r tk/c. The nominal thrust direction lies along this

vector. Each thruster frame Fk has its ̂ unit vector defined
such that ̂ =

⇀
r tk/c/|

⇀
r tk/c|. Each force ftk is applied at

the point tk. The total force due to the thrusters applied on
chaser resolved in Fc is given by

fc =

8∑
k=1

Rk/cftk , (11)

where Rk/c ∈ SO(3) is the rotation matrix that resolves the
forces from thruster frame Fk to the the chaser frame Fc.
The torque produced by these thrusters relative to chaser’s
center of mass resolved in Fc is given by

τc =

8∑
k=1

rtk
×Rk/cftk . (12)

The gimbal angle of the thruster is a quantity that can be
evaluated once the controller has found the control input ftk .
The gimbal angles comprise two angles, α1 and α3, which
are depicted in Fig. 3. The angles are defined such that ftk
can be described by two principal rotations, yielding

ftk = −Rı̂(α1)Rk̂(α3) ̂|Fk
‖ftk‖ . (13)

The negative sign in (13) is due to convention that the
thrust is in the −̂ direction. The controller will compute the
thrust components resolved in Fk, rather than a magnitude
and two angles, because formulating the problem in terms
of magnitude and angles will add sharp nonlinearities that
would make the optimization more difficult.

k̂

Fk
̂

ı̂

−α3

−α1

ftk

Fig. 3. Thruster configuration with gimbal angles and polyhedral pointing
constraint. In this figure, the force ftk does not satisfy the positioning
constraint as it is outside the blue region.



III. NMPC POLICY

The main objective of this paper is to formulate a nonlinear
model predictive control (NMPC) policy that simultaneously
controls the translational and rotational dynamics of the
chaser spacecraft feature point relative to the target feature
point. Control algorithms for such maneuvers must conform
to various objectives and constraints that include

1) Attitude of the chaser to track the attitude of the target
2) Relative distance between chaser and target non-center-

of-mass points to be regulated
3) Non-center-of-mass point on the chaser to approach

within a Line of Sight (LOS) cone from the non-center-
of-mass point on the target

4) Thruster direction and magnitude limits to enforce phys-
ical limitations imposed by the propulsion system

Next we define the main components needed to formulate
the NMPC policy.

A. Prediction Model

To design the control algorithm for the above mentioned
spacecraft maneuver, the NMPC policy is obtained by con-
solidating the following model, state, input constraints.

In order to achieve offset-free steady state against model-
ing error or disturbances, we include integral action on the
error of the non-center-of-mass feature point on the chaser
with respect to the target,

ξ̇ = ρtc/t. (14)

Then, the prediction model for the NMPC policy is formu-
lated as

ẋ = f(x, u) (15)

where the state is x = [R>
c/t ω

t
c/t

> ρtc/t
> ρ̇tc/t

> ξ> ]
> ∈

SO(3) × R3 × R3 × R3 × R3 = X , the input is u =
fps ∈ R24 = U , the vector f>ps = [ft1

> ...ft8
> ] contains

the thrust vectors of all thrusters, and f : X × U → X is
obtained from the attitude error kinematics equation (3), the
attitude error dynamics equation (4), equation (9) describing
the acceleration of the feature point, using (11), (12) to define
the chaser forces and torques from the thrust vectors in fps,
and the integral action (14).

B. Constraints

The constraints enforced by the NMPC policy include
thrust force constraints due to the physical limitations of the
propulsion system, and line-of-sight approach constraints.

Thrust constraints are due to the propulsion system being
composed of 8 thrusters located at the corners of two of
the spacecraft faces where each thruster is doubly gimbaled.
Then, with a slightly conservative approximation, we can
satisfy the physical limitations of the propulsion system by
enforcing that the forces remain in the polyhedron described
by n ∈ R planes, represented by the linear constraints

Akftk ≤ bk, (16)

where bk ∈ Rn and each of the n rows of Ak describes the
normal vector of one of the n planes. In this work, n = 4
and is depicted in Fig. 3. The total amount of thrust that

can be produced by each thruster, i.e., the thrust magnitude
constraint, is a euclidean norm constraint

‖ftk‖ ≤ fmax. (17)

The line-of-sight (LOS) constraint imposes that the non-
center-of-mass feature point on the chaser must remain in a
line of sight region of the target. This is implemented similar
to the thrust constraint by enforcing ρtc/t ∈ R3 to remain in
the polyhedron described by nlc hyperplanes,

Aρtc/t ≤ b. (18)
For the sake of notation we compactly represent con-

straints (16), (17), (18), by the short notation

g(x, u) ≤ 0, g(x, u) =

 Akftk − bk
‖ftk‖ − fmax

Aρtc/t − b

 . (19)

Constraints (16), (18), could be formulated using nonlinear
functions, which avoids the need for some slightly conserva-
tive approximations we exploit here. On the other hand, as
noted before, these additional nonlinearities cause the MPC
problem to become significantly more complicated and hence
for now we prefer the linear, slightly more conservative,
formulations (16), (18).

C. Cost Function

The cost function, composed of a stage cost integrated
along the prediction horizon, and of a terminal cost expressed
on the state at the end of the horizon, encodes the control
objectives. In this paper, the chaser objective is for the feature
point to reach and stay at the target, thus attaining zero
position and attitude error, with translational and angular ve-
locities matching the target. Furthermore, in order to reduce
the weight or increase the payload, the use of propellant
should be minimized, which we formulate as minimizing
the forces and the torques to be produced by the propulsion
system. Thus, the stage cost is formulated as

F (x, u) := QRtr(D −DRt
c/t) + ωt

c/t
>Qωω

t
c/t

+ρtc/t
>Qρρ

t
c/t + ξ>Qξξ + τ>c Wττc

+fps
>Wf fps

(20)

where QR = Q>R > 0, Qω = Qω
> > 0, Qρ = Qρ

> > 0,
Qξ = Qξ

> > 0 are matrix weights for the states, D ∈ R3×3

is a diagonal positive definite matrix, Wτ =Wτ
> > 0, Wf =

Wf
> > 0 are matrix weights for the control inputs, and we

remind that the chaser torques τc generated by the thrusters
are function of the thrusters forces in fps through (12).

The terminal cost given by

E(x) := [ρtc/t
> ρ̇tc/t

>]>P [ρtc/t ρ̇
t
c/t], (21)

where P = P> > 0 is a matrix weight, is mainly used here
to speed up the convergence of the feature point to the target
position.

D. Optimal Control Problem and NMPC Policy

The NMPC policy is based on solving in a receding hori-
zon fashion the optimal control problem formulated based on



the dynamics (15), constraints (19), and cost function with
stage cost (20) and terminal cost (21),

min
u(·|t)

E(x(T |t)) +
∫ T

0

F (x(τ |t), u(τ |t))) dτ

s.t. ẋ(τ |t) = f(x(τ |t), u(τ |t))

x(0|t) = x(t)

g(x(τ |t), u(τ |t)) ≤ 0

(22)

In order to solve (22) numerically, we restrict the input to
be a piecewise constant function by defining N intervals,
[ti, ti+1], i ∈ {0, 1, 2 . . . , N − 1}, t0 = 0, tN = τ ,
ti+1 − ti = Ts = T

N , and imposing u(τ |t) = u(ti|t), for
all τ ∈ [ti, ti+1]. Then, we use collocation methods with
two collocation points in each of the intervals.

As a result, the MPC policy

u(t) = κmpc(x(t)), (23)

is obtained by computing the optimal solution u∗(·|t) of (22)
every Ts seconds and applying u(t + τ) = u∗(τ |t), for all
τ ∈ [0, Ts). It shall be noted that with a proper choice of
T and N , the MPC policy (23), which includes integral
action due to (14), provides local stability of the closed-
loop system in a region containing the goal configuration in
its interior [20]. By applying specific techniques to design
the terminal cost E(x), possibly together with a terminal
constraint h(x(T |t) ≤ 0, one could achieve global stability in
the set of states from which the optimal control problem (22)
is feasible, which will also be an invariant set. We will
investigate this in the future, e.g., based on the results in [12],
[21], [22].

IV. SIMULATION RESULTS

To demonstrate the effectiveness of the NMPC policy,
consider a maneuver between the chaser and the target in
circular orbits about the Earth . The target’s orbital altitude is
300 km. A 1.5m×4m×1.5m chaser with mass mc = 4000kg
and inertia Jc = diag(6.0833, 1.5, 6.0833) × 103 kg m2 is
initially

rtc/t(0) =
[
.001016052 116.430912621 0.020321028

]>
m

away from the target and has initial relative velocity

ṙtc/t(0) =
[
0.020321028 0 −0.000117733, 1.349

]>
m/s.

The non-center-of-mass feature points on the target and
chaser are located at rtpt/t=

[
1.1404 3.3462 5.8907

]>
m,

and rcpc/c =
[
0 0 −1.75

]>
m. The target and chaser

have initial orientations Rt/e(0) = diag(1, 1, 1), Rc/e(0) =
diag(−1,−1, 1) and angular velocities ωt

t/e(0) = 0.0046 ×[
1 1 1

]>
rad/s, ωc

c/e(0) =
[
0 0 0

]>
rad/s. Hence, the

relative distance and velocity between the non-center-of-
mass feature points on target and chaser are given by

ρtc/t(0) =
[
−1.1394 113.0847 −7.6204

]>
m,

ρ̇tc/t(0) =
[
0.0081 0.0039 1.3490

]>
m/s.

Fig. 4. Chaser and Target in target frame Ft. Animation available online
at https://youtu.be/gj01qlexmdk

Fig. 5. Chaser and Target in Inertial frame Fe. Simulation results are scaled
for visibility. Animation available online at https://youtu.be/92jYMyRBB0c

MPCTools [23], which provides an MPC oriented interface
to CasADi [24] for Matlab, is used. CasADi in-turn utilizes
IPOPT [25], a library for large-scale nonlinear optimization
(see [24] for more details on CasADi). The optimal control
problem (22) is solved with N = 8 intervals and a total time
T = 480 s.

The LOS constraint (18) is softened via slack variables
to handle initial condition infeasibility where the chaser
is not aligned at t = 0. Since the slack variables are
penalized, the NMPC policy drives the chaser feature point
to the interior of the LOS polyhedron. The LOS polyhedron
angle is π/4 rad. The thruster gimbal limit constraints are
defined by a polyhedron with angle π/4 rad and the thrust
magnitude constraint ‖ftk‖ ≤ fmax, where fmax = 20N The
weighting matrices are QR = 70, Qω = 5I3, Qρ = 0.01 I6,
Qξ = 10−6 I3, Wτ = 9× 1013 I3, Wf = I24.

The chaser maneuver in the target frame Fe is shown
in Figure 4, and is available as an animation online at
https://youtu.be/gj01qlexmdk. The same maneuver as seen in
the inertial frame Fe is shown in Figure 5, and is available
at https://youtu.be/92jYMyRBB0c. As seen in Figure 5, the
chaser matches the angular velocity of the target as a first
step before approaching the target.

The relative eigenaxis attitude and angular velocity errors
between the chaser and target along with the relative position
and velocity between the non-center-of-mass feature points
are shown in Figure 6. Notice that for this specific maneuver,



the relative error convergence of the rotational dynamics
is faster than the translational dynamics. The relative error
convergence rate can be tuned as desired by altering the
choice of weight matrices in the optimal control problem
(22).
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Fig. 6. Relative eigenaxis attitude error, angular velocities between chaser
and target, and non-center-of-mass feature point relative distance, velocity.
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Fig. 7. Resultant forces and torques applied on the chaser, and magnitude
and direction of each thruster satisfying constraints.

The resultant forces and torques acting on the center of
mass of the chaser (resolved in the chaser frame) are shown
in Figure 7. Since the target is tumbling, there are small
non-zero forces and torques acting on the center of mass of
the chaser to maintain the desired relative non-center-of-mass
position and orientation at steady-state as shown in Figure 7.
Integral action enables an offset-free steady-state despite the
non-zero forces and torques, although in the future the stage
cost (20) may be reformulated with weights on the input
rate, rather than on the input magnitude. In addition, each
individual thruster force ftk , k = 1, 2, . . . , 8 remains in
a π/4 rad polyhedron with a maximum thrust magnitude
fmax = 20 N satisfying the thruster gimbal constraints.

V. CONCLUSIONS

The main contribution of this paper was the develop-
ment of a nonlinear model predictive control policy for the
6-DOF kinematically and dynamically coupled rotational-
translational spacecraft relative motion model. The proposed
NMPC policy is able to satisfy line-of-sight approach con-
straints, and thruster gimbal limit and magnitude constraints,
while successfully completing the rendezvous maneuver
from chaser to target, bringing relative attitude and relative
feature point translational errors to zero.

For realistic implementation, some aspects still require
consideration. For example, spacecraft thrusters are often
“on-off" type thrusters. This quantization of thrust would
change the way the thrust constraints are implemented, and
change the nature of the optimization problem. Additionally,
obstacle avoidance, soft-docking, and exhaust plume con-
straints will be addressed in future work.
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