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Modular Design for Constrained Control of Actuator-Plant Cascades

Stefano Di Cairano, Tobias Bäthge, Rolf Findeisen

Abstract— We consider layered control architectures where a
constraint-enforcing upper layer is cascaded with a lower layer
controlled actuator. As we aim for a design where each layer
requires as little knowledge as possible of the other, the upper
layer is based on a model that neglects the lower layer dynamics,
and includes instead additive uncertainty. The uncertainty set
is constructed and “declared” by the lower layer based only
on constraints on the command “declared” by the upper layer.
This results in a contract between upper layer and lower layer
guaranteeing a bound on the prediction error if the command
satisfies the declared constraints. The command and plant
constraints are robustly enforced by model predictive control
with a robust control invariant set. The stability properties are
analyzed, and a case study of vehicle steering control is shown.

I. INTRODUCTION

High performance mechatronic devices, such as satellites,

(semi)autonomous vehicles and robots for flexible manufac-

turing, require complex control architectures to achieve their

operating goals. Such architectures are composed of multiple

layers that operate with different time scales and abstractions,

i.e., models, of the plant. An example is an autonomous

vehicle control architecture, which may be composed of

three layers: (i) a path planner (PP) computes the vehicle

trajectory based on the road and other vehicles; (ii) a vehicle

controller (VC) tracks the trajectory by issuing commands,

e.g., steering angle, wheel torque, brake force; (iii) an

actuator controller (AC) layer regulates the actuators, e.g.,

steering and engine, to achieve the commands.

Structuring a control system into multiple independent

layers, i.e., modular layered control design, has practical

benefits. Components can be re-used, flexibility in mainte-

nance and upgrading increases, and obfuscation (“privacy”)

is provided, which allows for independent development of

sub-components. There are also technical benefits, such as

operating different layers at different rates, with different

plant abstractions, and different decision horizons: moving

from top to bottom layers, the abstraction becomes less

coarse and the control rate increases, while the decision

horizon shortens. Instead, a monolithic controller would need

to operate at the highest rate, with the finest abstraction, and

the longest horizon, which is often impractical.

The overall behavior of a multi-layer architecture is largely

dependent on how well the layers are integrated. Today,

verifying and validating the correct integration gives rise

to a fairly long and expensive trial-and-error procedure. An
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alternative is to design each layer to be robust to the effects of

the neighbors, while using minimal information from other

layers, to ensure fast integration and retaining of isolation

(modularity) and obfuscation (independent development).

We consider the modular design of an upper layer, the

plant controller, i.e., VC in the vehicle example, to be

integrated with with a lower layer, the controlled actuator,

i.e., AC in the example. The upper layer must enforce plant

constraints and certain stability properties with only minimal

information on the lower layer, during design time, i.e., of

its dynamics, and execution, i.e., of its state.

The design is based on deriving error sets for the dif-

ference between the plant response with actual and ideal,

i.e., instantaneous, lower layer dynamics. The upper layer

considers the plant subject to additive uncertainty bounded

in such sets. The sets depend on the commands issued by the

upper layer so that, by imposing control constraints, their size

can be modified. After selecting the command constraints

and determining as a consequence the corresponding error

sets, the upper layer can be designed as a model predictive

control (MPC) enforcing constraints on the command and

a robust control invariant (RCI) set [1], [2] for satisfying

constraints despite ignoring the lower layer.

In the proposed design, the upper layer needs to “declare”

only the command constraints, and the lower layer needs

to “declare” only the corresponding error sets. Any other

information, at design and during operation, remains private.

The relation between command constraints and error sets

provides an “assume-guarantee” condition, also called a

“contract” [3]–[6], where if the upper layer enforces the de-

clared command constraints, then the lower layer guarantees

that the deviation from the instantaneous response is within

the error set. The RCI set is also exploited to determine

whether the design contract is acceptable, or the upper layer

needs to modify the constraints thus modifying the error set.

Thus, our design is a hierarchical MPC architecture

achieved with minimal shared information between layers

without assuming a sharp time scale separation, which is

recognized to be an open problem [7, Sec. 5.2].

In what follows, Section II describes the models of plant

and actuator, and the control-oriented model, Section III

describes the control design, Section IV analyzes closed-

loop stability, Section V presents a case study related to the

vehicle example and Section VI discusses future work.

Notation: R, R0+, R+, are the sets of real, nonnegative

real, positive real numbers, and similarly for integer numbers

Z. We denote intervals by, e.g., Z[a,b) = {z ∈ Z : a ≤ z <
b}. X ⊕ Y , X ∼ Y , αX , α ∈ R+, are set sum, difference,

scaling, and A ◦X is the set image through the (linear) map
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Fig. 1. Schematics of the actual system

A. For matrices, inequalities indicate (semi)definiteness, and

λ̄(M), λ(M) are the largest and smallest eigenvalue, [M ]i,
[M ]j , [M ]ji are the ith row, the jth column, and the element

at ith row and jth column. For vectors, (x, y) = [x′ y′]′ is

the “stacking”, and inequalities and absolute value |x| are

intended componentwise.

For a vector, a signal, a system, ‖a‖p, ‖a(·)‖p, ‖G(t)‖p
denote the p-norm, respectively; subscripts are dropped when

clear from context/irrelevant. For a system/signal, ∗ is the

time convolution. For signal x(t), t ∈ R0+, the sampled

signal x(k), k ∈ Z0+, with sampling period Ts is x(k) =
x(kTs), xh|k is the value of x predicted h steps ahead

based on data at sample k, i.e., x(k + h), and x0|k = x(k).
Function α : R0+ → R0+ is of class K if it is continuous,

strictly increasing, α(0) = 0; if in addition limc→∞ α(c) =
∞, α is of class K∞.

II. SYSTEM DESCRIPTION AND CONTROL MODEL

We consider a system composed of plant and actuators,

see Fig. 1. The plant is described by

ẋp(t) =Apxp(t) +Bpup(t) (1a)

yp(t) =Cpxp(t) +Dpup(t), (1b)

where xp ∈ R
np , up ∈ R

mp , yp ∈ R
pp , are the plant

state, input, and constrained output vectors, respectively. The

plant (1) is subject to constraints

up ∈ Up, yp ∈ Yp, (2)

that should be satisfied by the upper layer controller, from

now on simply the controller.

The controller command is actuated as the input to the

plant by an actuator in closed-loop with a lower layer

controller, that together from now on are simply called the

actuator, and are described by

ẋa(t) =Aaxa(t) +Baua(t) (3a)

ya(t) =Caxa(t) +Daua(t) (3b)

where xa ∈ R
na , ua ∈ R

ma , are the actuator state and input

vectors, respectively, and the closed-loop actuator output is

the plant input, i.e., ya = up ∈ R
mp . We assume that (3) is

asymptotically stable and has unitary dc-gain.

From the controller perspective, the full system (1), (3) is,

ẋs(t) =Asxs(t) +Bsus(t) (4a)

ys(t) =Csxs(t) +Dsus(t) (4b)

where xs = (xp, xa), us = ua, ys = yp, and As =
[

Ap BpCa

0 Aa

]

, Bs =
[

BpDa

Ba

]

, Cs = [Cp DpCa ], Ds = DpDa.

We want to design a controller for (4) satisfying (2)

pointwise in time with period Ts and achieving stability, in

an appropriate sense, without detailed information on the

actuator state, xa, and dynamics (3). For designing such

controller we only use a discrete-time model of (1),

xm(k + 1) =Amxm(k) +Bmum(k) (5a)

ym(k) =Cmxm(k) +Dmum(k) (5b)

u(k) ∈ U , ym(k) ∈ Y, (5c)

where xm, um = u, ym, are the predicted state, input,

and constrained output vectors, with the same dimension

of the corresponding in (1), U ⊆ Up, Y ⊆ Yp are the

constraints enforced by the controller that imply the plant

constraints (2), the sampling period is Ts, Am = eApTs ,

Bm =
∫ Ts

0 eAp(Ts−τ)Bpdτ , Cm = Cp, Dm = Dp, and ua(t)
is obtained by a zero order hold on u(k). Thus, at sampling

instants and in the ideal case, i.e., with infinitely fast actuator

dynamics, xm = xp, ym = yp = y, um = up = u.

Ignoring the actuator dynamics (3) in the controller, i.e.,

using only the control-design model (5), leads in general to

constraint violations in the actual system (4). To guaran-

tee constraint satisfaction, we extend (5) by including the

additive uncertainty vectors wx, wu,

xm(k + 1) =Amxm(k) +Bmu(k) + wx(k) (6a)

ym(k) =Cmxm(k) +Dmu(k) +Dmwu(k) (6b)

u(k) + wu(k) ∈ U , y(k) ∈ Y. (6c)

Here, wx, wu represent the errors due to neglecting the

actuator dynamics. Sets bounding such errors are the only

information needed from the actuator for the controller

design based on (6). Since the actuator is driven by the

command signal, the bounds on wx, wu are related to it,

wi(k) ∈ W̃i({(u(h),∆u(h))}kh=0), i ∈ {x, u}. (7)

As shown in details in the next section, these bounds depend

on the command step change ∆u(k) = u(k)− u(k − 1).
By imposing command and command rate constraints,

from (7) we obtain time-invariant disturbance sets

u(k)∈U ,∆u(k)∈∆U , ∀k∈Z0+ =⇒ wi(k)∈Wi, ∀k ∈ Z0+

(8)

for i∈{x, u}. At design time, the controller specifies bounds

on the command and its change, and the actuator responds

with the corresponding error sets Wx, Wu. If the controller

enforces the bounds on the command and its step change,

the error due to ignoring the actuator dynamics is bounded

in the error sets by (8). Thus, (8) can be seen as a design

contract between controller and actuator, and is exploited to

ensure robustness against the ignored actuator dynamics.

III. MODULAR CONTROLLER DESIGN

Definition 1: A set S ⊆ R
n is robust control invariant

(RCI) for x(k + 1) = f(x(k), u(k), w(k)) with input u ∈
U ⊆ R

m and disturbance w ∈ W ⊆ R
d, iff for all x ∈ S



there exists u ∈ U such that f(x, u, w) ∈ S, for all w ∈ W .

If w = {0}, S is simply said control invariant (CI). �

For autonomous systems, i.e., u = 0, the sets in Defini-

tion 1 with/without disturbances are called robust positive

invariant (RPI) and positive invariant (PI), respectively. Fur-

thermore, given the RCI S ⊆ R
n, the robust admissible input

(RAI) set is Su(x) = {u ∈ U : f(x, u, w) ∈ S, ∀w ∈ W}.

A. Error Induced by Neglecting Linear Actuators

Next, we characterize the prediction error due to ignoring

the actuator dynamics, which justifies (7) and enables (8).

We consider Da = 0, for simplicity.

Let ε = |x+
m − x+

p | denote the prediction error vector

between (5) and (4) after one sampling period for an input

change ∆u starting from input u, and actuator state xa,

x+
m = eApTsxm +

∫ Ts

0

eAp(Ts−τ)Bp(u+∆u)dτ

x+
p = eApTsxp +

∫ Ts

0

eAp(Ts−τ)BpCa

(

eAaτxa

+

∫ τ

0

eAa(τ−σ)Ba(u+∆u)dσ

)

dτ.

Considering that at the sampling instants xm = xp, we can

decompose the error as ε = εs + εc, where the step input

error εs is simply the difference between the response of (1)

and (4) to step changes ∆u,

εs =

∣

∣

∣

∣

∫ Ts

0

eAp(Ts−τ)Bp

(

I − Ca·

∫ τ

0

eAa(τ−σ)Badσ

)

dτ∆u

∣

∣

∣

∣

≤ Ms|∆u|,

(10)

where Ms ∈ R
np×mp has nonnegative elements.

The cumulative input error εc is due to the difference

between the expected and actual input at each sampling

instant due to the non-ideal response of the actuator to the

sequence of previous commands and can be reformulated as,

εc =

∣

∣

∣

∣

∣

∫ Ts

0

eAp(Ts−τ)BpCae
Aaτδx(u)

a dτ

∣

∣

∣

∣

∣

, (11)

where δx
(u)
a = xa − xe

a(u) denotes the error between the

current actuator state and the equilibrium state associated

to u, xe
a(u), which is the expected state if the previous

command was perfectly reached. Note that (11) is the free

response of the full system (4) from (0, δx
(u)
a ).

Next we obtain a bound on δx
(u)
a . To this end, we consider

the discrete time representation of (3) with sampling period

Ts, and an incremental input formulation,

xa(k + 1) =Āaxa(k) + B̄ava(k) + B̄a∆u(k) (12a)

va(k + 1) =va(k) + ∆u(k) (12b)

ỹa(k) =xa(k)− (I − Āa)
−1B̄ava(k). (12c)

Here, the output vector ỹz ∈ R
na is the difference between

the current state and the steady state associated to the past

input va(k) = u(k − 1). Considering the ℓ∞ gain for each

input-output pair in (12), ℓ∞(i, j), and [υ]j = ‖[∆u(·)]j‖∞,

‖[δxa(·)]i‖∞ =

mp
∑

j=1

ℓ∞(i, j)‖[∆u(·)]j‖∞ = [Mδυ]i, (13)

where [Mδ]
j
i = ℓ∞(i, j). Combining (13) and (11), we

compute a matrix Mc ∈ R
np×mp

0+ such that

εc ≤ Mcυ. (14)

Similarly, we compute the maximum error on the input,

i.e., the difference between u and ua, by replacing (12c) with

ŷa(k) = Caxa(k)− Ca(I − Āa)
−1B̄ava(k)

and repeating the steps to obtain Mu ∈ R
mp×mp

0+ such that

εu ≤ Muυ. (15)

From (10), (14), (15), the error due to unmodeled actu-

ators depends on ∆u(·). If the actuator can only achieve

commands in Ua ⊂ U , there will be an additional error

εr(u) = |δxUa
(u)| = |B(u − ue

p(u))|, where ue
p(u) is

the steady state input achieved for u, which results in Wi,

i ∈ {x, u}, depending on u as in (7). In practice, the actuator

should declare Ua so that the controller enforces U ⊆ Ua∩Up.

B. Robust Constrained Control Design

Let U ⊆ Up ∩ Ua and ∆U be given. By the error

bounds (10), (14), (15), the sets

Wx ={x̃ : |x̃| ≤

mp
∑

j=1

([Mc]
j + [Ms]

j)max
∆U

|[∆u]j |}, (16a)

Wu ={ũ : |ũ| ≤

mp
∑

j=1

[Mu]
j max

∆U
|[∆u]j |}, (16b)

bound the uncertainty due to neglecting the actuator such

that, given xp(t), u(t) = u(t− Ts) + ∆u(t), ∆u(t) ∈ ∆U ,

the plant and actuator dynamics satisfy

xp(t+ Ts) ∈ (Amxp +Bmu)⊕Wx,

yp(t+ Ts) ∈ (Cmxp +Bmu)⊕Dm ◦Wu,

up(t+ Ts) ∈ u(t)⊕Wu.

To ensure constraint satisfaction, we construct an RCI to

be used in the controller. Since bounds (16) are constructed

based on ∆U , we re-formulate (6) in incremental form by

adding the command dynamics u(k) = u(k − 1) + ∆u(k),
with the previous command v(k) = u(k − 1) as state,

x(k + 1) = Ax(k) +B∆u(k) +Bwwx(k) (17a)

y(k) = Cx(k) +D∆u(k) +Dwu(k) (17b)

wx ∈ Wx, wu ∈ Wu, y ∈ Ȳ, v +∆u ∈ Ū , (17c)

where x = (xm, v), Bw is a vector of 0 and 1 that selects

the states affected by the uncertainty, and Ū = U ∼ Wu,

Ȳ = Y ∼ D ◦ Wu, to account for the error between the

commanded input u and the actual plant input up.

Based on (17) and starting from X0 = {x : ∃∆u ∈



∆U , v + ∆u ∈ Ū , Cx + D∆u ∈ Ȳ}, the maximal

RCI set C can be computed by iteratively constructing

backward reachable sets until reaching a fixed point [1],

which terminates with two possible outcomes. If C = ∅, no

full-dimensional RCI set exists. Otherwise, if C 6= ∅, for all

x(k) ∈ C, there exists ∆u(k) ∈ ∆U , such that y(k) ∈ Ȳ and

yp(kTs) ∈ Yp, u(k) ∈ Ū and up(kTs) ∈ Up, x(k + 1) ∈ C,

for all wx ∈ Wx, wu ∈ Wu.

From the RCI set C, we construct the RAI set C∆u(x). By

its definition, any command step change in the RAI satisfies

the constraints and maintains the state in the RCI, robustly.

Hence, we formulate the optimal control problem,

V(x(k)) = min
∆u(N)(k)

x′
N |kPxN |k +

N−1
∑

h=0

x′
h|kQxh|k

+∆u′
h|kR∆uh|k (18a)

s.t. xh+1|k = Axh|k +B∆uh|k (18b)

x0|k = x(k) (18c)

∆uh|k ∈ C∆u(xh|k) (18d)

xN |k ∈ XN (18e)

where ∆u(N)(k) = {∆u0|k, . . . ,∆uN−1|k}, XN ⊆ X ,

P,R > 0, Q ≥ 0. Let ∆u(N)∗(k) = {∆u∗
0|k, . . . ,∆u∗

N−1|k}
denote the optimal solution at step k, the MPC law is

u(k) = κMPC(x(k)) = v(k) + ∆u∗
0|k. (19)

Next, we show that the closed-loop system satisfies the

constraints. First, the following assumption ensures that the

entire RCI set C is the feasible region of (18) and that the

nominal MPC, where the full system and the prediction

model in (18b) are equal, i.e., the actuator dynamics are

infinitely fast, is asymptotically stable (AS) with the value

function V in (18a) being a Lyapunov function (LF).

Assumption 1: P in (18a) and XN in (18e) are such that

for all x ∈ XN , there exists ∆u such that

1) ∆u ∈ C∆u(x)
2) Ax+B∆u ∈ XN

3) x′Px − (Ax + B∆u)′P (Ax + B∆u) ≤ x′Qx +
∆u′R∆u

Furthermore, N ∈ R+ in (18) is such that

4) for every x0 ∈ C, there exists a ∆u(N) such that for

all h ∈ Z[0,N−1], ∆uh ∈ C∆u(xh) and xN ∈ XN . �

Remark 1: Assumption 1 can be satisfied by designing the

horizon, terminal cost and terminal set by the steps:

1) design terminal weight P > 0 and associated terminal

controller κN (x).
2) design XN ⊆ {x : C∆u(x) ∈ ∆U} to be positive

invariant for Ax+BκN (x).
3) Select N ∈ Z+ such that N -steps backward reachable

set of XN for x(k + 1) = Ax(k) + Bu(k) subject to

∆u(k) ∈ C∆u(x(k)) covers C.

This design process is similar to [8], for instance. �

Theorem 1: Consider system (4), the contract (8), and the

MPC (19) that solves (18). At time kTs, let x(k) ∈ C. Then,

for every ζTs ≥ kTs, (18) is feasible and (2) is satisfied.

Proof (Sketch): By invariance, if xh|k ∈ C, there exists

∆uh|k ∈ C∆u such that xh+1|k ∈ C, uh|k ∈ Ū , yh|k ∈ Ȳ for

every wi ∈ Wi, i ∈ {x, u}. By assumption, x0|k ∈ C, and

by construction Ū = U ∼ Wu, Ȳ = Y ∼ D ◦Wu, so that

x(k) ∈ C, wi(ζ) ∈ Wi, i ∈ {x, u}, ∀ζ ≥ k

=⇒ x(ζ) ∈ C, yp(ζTs) ∈ Yp, up(ζTs) ∈ Up, ∀ζ ≥ k.

since U ⊆ Up, Y ⊆ Yp. Furthermore, according to (8)

∆u(ζ) ∈ ∆U , ∀ζ ∈ Z0+ =⇒ wi(ζ) ∈ Wi, ∀ζ ∈ Z0+,

and hence

x(k) ∈ C, ∆u(ζ) ∈ ∆U , ∀ζ ≥ k =⇒

x(ζ) ∈ C, yp(ζTs) ∈ Yp, up(ζTs) ∈ Up, ∀ζ ≥ k.

By the constraints enforced in (18), where (18d) is always

feasible inside the RCI set, and (18e) is feasible from within

the RCI set by the choice of N , we have that ∆u(ζ) ∈
∆U , ∀ζ ≥ k, and hence

x(k)∈C =⇒ x(ζ)∈C, yp(ζTs)∈Yp, up(ζTs)∈Up, ∀ζ≥k.

Establishing (8) amounts to selecting ∆U so that C 6= ∅,

i.e., the design is feasible. The only actuator information

needed to compute C is the range Ua and the uncertainty

sets (16). To construct the latter ones, the actuator only

needs ∆U . This provides a modular design based on limited

information, which hides the implementation of each module

to the other and requires no actuator real-time information

(i.e., xa(t)) in the controller. Algorithm 1 sketches how to

iteratively construct (8) by exchanging such information.

Algorithm 1 Constraint negotiation

1: Actuator declares Ua.

2: Controller selects U ⊆ Up ∩ Ua, ∆U ⊂ R
m, bounded.

3: Controller chooses ∆U ⊆ ∆U .

4: Controller declares ∆U to actuator.

5: Actuator determines the sets Wx, Wu by (16)

6: Controller receives Wx, Wu, and constructs C.

7: If C 6= ∅ terminate. Otherwise, Controller selects ∆U ⊂
∆U and goes to Step 3.

The ∆U update at Step 7 of Algorithm 1 generates a

monotonically decreasing sequence of sets ∆U . Other meth-

ods may be applied, such as an increasing, or a “bisection-

like” sequence. The termination condition at Step 7 of

Algorithm 1, can also be evaluated on whether the obtained

C includes a range of desired states. For instance, a set of

equilibria Xe may be required to be feasible, i.e., Xe ⊂ C.

IV. INPUT TO STATE STABILITY PROPERTIES

We recall some definitions and results on regional stability

and LFs, see, e.g., [2, Appendix B].

Definition 2: Given x(k + 1) = f(x(k), w(k)), x ∈ R
n,

w ∈ W ⊆ R
d, and a RPI set S for f , 0 ∈ S, a function

V : R
n → R0+ such that there exists α(1), α(2), α(3) ∈



K∞ and γ ∈ K such that α(1)(‖x‖) ≤ V(x) ≤ α(2)(‖x‖),
V(f(x)) − V(x) ≤ −α(3)(‖x‖) + γ(‖w‖) for all x ∈ S,

w ∈ W is an ISS-LF for f in S with respect to w. �

In the disturbance-free case, w = 0, the ISS-LF definition is

equivalent to that of LF, since γ(0) = 0.

Result 1: Given x(k + 1) = f(x(k)), x ∈ R
n, and a PI

S for f , 0 ∈ S, if there exists a LF for f in S, the origin is

AS for f in S. Given x(k + 1) = f(x(k), w(k)), x ∈ R
n,

w ∈ W ⊆ R
d, and a RPI S for f , 0 ∈ S, if there exists an

ISS-LF for f in S, the origin is input-to-state-stable (ISS)

for f in S with respect to w. �

Next we analyze ISS properties when the full system (4) is

in closed-loop with the MPC (19), whose prediction model

is based on the plant (1) only, and ignores the actuator (3).

Due to space limitations, we list here the results without (or

with minimal sketches) of the proofs. We start with ISS with

respect to the maximum input step change, which relates the

closed-loop ultimate bound to the design contract (8), and

with respect to the actual commanded input step change.

Result 2: Let Assumption 1 hold. Then, the plant dy-

namics (1) in closed-loop with (19) and subject to actuator

dynamics (3) are ISS with respect to ς = max∆U ‖∆u‖. �

Result 2 follows from V being a LF when w = 0 and Lip-

schitz continuous, and from ‖wx(k)‖ ≤ cmax∆U ‖∆u(k)‖,

for some c ∈ R+, for all k ∈ Z+.

Result 3: Let Assumption 1 hold. Then, the plant dynam-

ics (1) in closed-loop with (19) and subject to the actuator

dynamics (3) are ISS with respect to ‖∆u(k)‖. �

Result 3 follows from the same arguments as Result 2

and ‖wx(k)‖ = ‖|M̃cδx
(u)
a (k)|+ |Ms∆u(k)|‖ for a suitable

matrix M̃c. Then, the system can be represented as the

cascade of two ISS systems, the plant and the actuator

dynamics, combined with a static map, which is ISS [9].

The last result shows that controller (19) can be designed

so that the full closed-loop system is AS.

Theorem 2: Let Assumption 1 hold and the equilibrium

for x be in the interior of XN . For a proper choice of a

η > 0, Q ≥ 0, R > 0 the closed-loop is locally AS in

an RPI around the equilibrium where the constraints of (18)

are inactive. Furthermore, for proper choices of Q, R and

max∆U ‖∆u‖, the closed-loop is AS in C. �

For proving Theorem 2 one needs to prove that: (i)
for any LF of the actuator dynamics Va and any η > 0,

Vs(ξ) = V(x) + ηVa(δxa), ξ = (x, xa) is a LF for the

disturbance-free full system; (ii) Vs(ξ) is a local ISS-LF

in the stated RPI, by showing that we can choose [10]

Va, η such that the decrease of Va dominates the increase

in V due to the non-ideal actuation dynamics; (iii) for a

choice of Q, R, in a neighborhood B of the equilibrium the

nominal decrease of V dominates the increase due to non-

ideal actuation dynamics in Vs; (iv) for additional conditions

on Q, R and/or max∆U ‖∆u‖, the ultimate bound due to ISS

from Result 3 is contained in B, resulting in convergence,

and, combined with the previous results, AS.

V. CASE STUDY: VEHICLE STEERING CONTROL

We demonstrate the proposed method in a case study of

lateral dynamics control of a vehicle equipped with an angle-

controlled steering actuator. The plant is the linearized single

track model [11] with constant the longitudinal velocity vx,

v̇y =− 2
(Cf + Cr)

mvx
vy −

(

2
Cf ℓf − Crℓr

mvx
+ vx

)

ϕ+ 2
Cf

m
δ

ϕ̇ =− 2
Cf ℓf − Crℓr

Izvx
vx − 2

Cf ℓ
2
f + Crℓ

2
r

Izvx
ϕ+ 2

ℓfCf

Iz
δ

where subscripts f , r denote front and rear, Ci, ℓi, i ∈ {f, r}
are the tire stiffnesses and the semi-axles lengths from center

of mass, m, Iz are the vehicle mass and inertia along the

vertical axis, vy is the lateral velocity, ϕ is the yaw rate, δ
is the (road wheel) steering angle. The tire slip angles are

αf = (vy + ℓfϕ)/vx, αr = (vy − ℓrϕ)/vx. (21)

The parameters are from a real SUV [12] on a wet road. The

actuator is an angle-controlled electric power steering, where

the closed-loop response from command to road wheel angle

is a 2nd order system with dc-gain 1, rise time about 0.35s

and 17.5% overshoot. The frequency separation between

plant and actuator is less than 1 order of magnitude.

We enforce constraints on the steering angle and lateral

velocity, and on tire slip angles that ensure the state to remain

in the region where the tire model linearization [11] is valid,

δmin ≤ δ ≤ δmax vymin ≤ vy ≤ vymax (22a)

αfmin ≤ αf ≤ αfmax αrmin ≤ αr ≤ αrmax. (22b)

We design the controller to track a yaw rate reference by

commanding the steering angle, u = δ, with sampling period

0.3s, where the prediction model is based only on the vehicle

dynamics (20) and ignores the actuator. To ensure robust

constraint enforcement despite lacking detailed knowledge

of the steering actuation we establish the design “contract”

between controller and actuator as in (8). To this end we

limit the steering command step change ‖∆δ‖ ≤ ∆umax

for different values of ∆umax = n · 0.1, n ∈ Z[1,5] and we

use the information provided by the actuator, namely Wx,

Wu, to construct the RCI constraint (18d) for each case.

Assumption 1 is enforced as per Remark 1 with N = 10.

The results for tracking a yaw rate reference signal in

closed loop with a simulation model including the continuous

time plant model (20) and the actuator model are shown in

Fig. 2–5. The bottom plot of Fig. 3 shows with the same

colors used for the corresponding trajectories in Fig. 2–5 the

different ∆umax limits. The constraints are always enforced

despite the reference being in some time intervals steady state

infeasible. On the other hand if MPC is designed for ensuring

nominal recursive feasibility, i.e., by a CI set, but without

robustifying against the modeling error due to ignoring the

actuator dynamics, the closed-loop simulation with only (20)

is successful, but if the simulation model also includes the

actuator dynamics the rear tire slip angle constraint (and

briefly the steering angle constraint, not shown here) is

violated when the yaw rate reference amplitude step is large,



see Figure 4 a little after 3s. This causes infeasibility of the

optimization problem and failure of the MPC law, resulting

in the reference no longer being tracked.
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Fig. 2. Simulation results: state trajectories for different values of ∆umax.
Reference (dash black) and constraints (dash red).
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Fig. 3. Simulation results: steering angle and command step change for
different values of ∆umax. Constraints (dash), including values of ∆umax.
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Fig. 4. Simulation results: constrained outputs, i.e., tire slip angles,
trajectories for different values of ∆umax. Constraints (dash red). Without
robustifying against the neglected actuator dynamics (gray, ∆umax = 0.3),
the rear slip angle constraints is violated (×-mark).

Note that when the reference is steady state feasible, the

controller achieves stable, offset free tracking. This is in

accordance with Theorem 2, for the chosen tuning of the

cost function weights Q, R for small values of R steady

state oscillations may appear. From Fig. 2 we see the trade-

off in reachable setpoint and response speed due to (8). Fig. 5

-0.6 -0.4 -0.2 0 0.2 0.4 0.6
-0.05

0

0.05
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∆
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Fig. 5. Section of C∆u for different values of ∆umax in the plane of
equilibrium yaw rate (ϕe) and ∆u.

shows section s of C∆u for different ∆umax highlighting the

trade-off between ∆U and the achievable setpoints.

VI. FUTURE WORK

We proposed a modular design for constrained control

in multi-layer architectures, where the layers are required

to declare only minimal information. The relation between

command change and error caused by ignoring the detailed

actuator dynamics is used to derive uncertainty sets for robust

invariant design. Then, MPC enforces the invariant and the

command step change constraints, guaranteeing constraint

satisfaction. In the future we will examine adjusting the

trade-off between achievable equilibria-step change bounds

by switching between different controllers, and we will

analyze the case of nonlinear actuator dynamics.
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