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Approximate Dynamic Programming For Linear Systems with State
and Input Constraints

Ankush Chakrabarty1,†, Rien Quirynen1, Claus Danielson1, Weinan Gao2

Abstract—Enforcing state and input constraints during rein-
forcement learning (RL) in continuous state spaces is an open but
crucial problem which remains a roadblock to using RL in safety-
critical applications. This paper leverages invariant sets to update
control policies within an approximate dynamic programming
(ADP) framework that guarantees constraint satisfaction for all
time and converges to the optimal policy (in a linear quadratic
regulator sense) asymptotically. An algorithm for implementing
the proposed constrained ADP approach in a data-driven manner
is provided. The potential of this formalism is demonstrated via
numerical examples.

Index Terms—Reinforcement learning; safe learning; data-
driven; linear quadratic regulator; policy iteration; invariant sets.

I. INTRODUCTION

Combining optimal control theory and reinforcement learn-
ing (RL) has yielded many excellent algorithms for generating
control policies that imbue the closed-loop system with a
desired level of performance in spite of unmodeled dynamics
or modeling uncertainties [1], [2]. Specifically, approximate
dynamic programming (ADP) (sometimes also referred to as
adaptive dynamic programming), a modern embodiment of
RL [3], [4] applied to continuous state and action spaces has
gained traction for its ability to provide tractable solutions
(in spite of the curse of dimensionality) to optimal control
problems via function approximation and iterative updates of
control policies and value functions [5], [6].

There are two main classes of ADP algorithms: policy
iteration and value iteration [7]. A policy iteration algorithm
for discrete-time linear systems was formulated in [8] that
leverages Q-functions proposed in [9], [10], enabling con-
trol policy design without a complete system description.
This methodology has been extended to continuous-time sys-
tems [11], H2 and H∞ formulations [12], [13], tracking [14],
output regulation [15], and game-theoretic settings [16], [17].
To reiterate, a particularly beneficial feature of this class
of iterative methods is that control policies generated by
policy iteration converge to the optimal control policy with
data obtained by exciting the system dynamics, in spite of
incomplete model knowledge [18], [19]. While optimality is
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important for certifying performance in a control system, often
times the more critical concern is safety. A key aspect of safe
control design is the ability of the system to respect both
state and input constraints. To the best of our knowledge, this
critical problem remains an open challenge in the context of
ADP (and RL at large) in continuous state and action spaces.

In this paper, we modify the classical policy iteration
algorithm to incorporate safety through constraint satisfaction.
The key idea is to compute control policies and associated
constraint admissible invariant sets that ensure the system
states and control inputs never violate design constraints. In the
spirit of ADP, these policies and invariant sets are computed
iteratively, and the sequence of policies are guaranteed to
converge asymptotically to the optimal constraint-satisfying
policy, provided that the system is sufficiently excited. The
use of invariant sets to incorporate safety in learning/adaptive
control algorithms via constraint handling has been done in
model-based control design, such as model predictive control
(MPC) [20]–[23], but its application to data-driven or model-
free RL methods is relatively unexplored. A recent paper [24]
is a noteworthy exception, although our method is distinct
from this work in that we do not compute a model of the
system using the data obtained during operation; that is, our
method is a direct data-driven approach, as defined in [25].

The main contributions of this paper are: (i) we extend
classical policy iteration in continuous state-action spaces to
enforce state and input constraints; (ii) we provide a data-
driven variant of this constrained policy iteration algorithm
with unknown state matrix; and, (iii) we provide new sufficient
conditions for safety (via constraint satisfaction), stability,
and convergence of the policies generated by our proposed
algorithm to the optimal constrained control policy.

II. NOTATION

We denote by R the set of real numbers, R+ as the set of
positive reals, and N as the set of natural numbers. For every
v ∈ Rn, we denote ‖v‖ =

√
v>v, where v> is the transpose

of v. The sup-norm is defined as ‖v‖∞ , supt∈R ‖v(t)‖. We
denote by σ(P ) and σ(P ) as the smallest and largest singular
value of a square, symmetric matrix P , respectively. The
symbol � (≺) indicates positive (negative) definiteness and
A � B implies A−B � 0 for A,B of appropriate dimensions.
Similarly, � (�) implies positive (negative) semi-definiteness.
The operator norm is denoted ‖P‖ and is defined as the
maximum singular value of P , vec(P ) denotes the column-
wise vectorization of P , and ⊗ denotes the Kronecker product.



We parameterize an ellipsoid EρP0
= {x : x>P0x ≤ ρ} using

a scalar ρ > 0 and a matrix P0 � 0.

III. MOTIVATION

In this section, we describe a general approximate dy-
namic programming formulation for solving the unconstrained
discrete-time LQR problem.

A. Problem Statement

We consider discrete-time linear systems of the form

xt+1 = Axt +But, (1)

where t ∈ R is the time index, x ∈ X ⊂ Rn is the state of the
system, u ∈ U ⊂ Rm is the control input, and xt0 is a known
initial state of the system. We assume the admissible state and
input constraints sets X and U are polytopic, and therefore,
can be represented as

X ′ =

{[
x
u

]
∈ Rn+m : c>i x+ d>i u ≤ 1

}
, (2)

for i = 1, . . . , r, where r is the total number of state and input
constraints and ci ∈ Rn and di ∈ Rm. The sets X ⊂ Rn and
U ⊂ Rm are known, compact, convex, and contain the origin
in their interiors. Note that with any fixed control policy K,
the constraint set described in (2) is equivalent to the set

X′ =
{
x ∈ Rn : (c>i + d>i K)x ≤ 1

}
, (3)

for i = 1, . . . , r.

Remark 1. The inequalities (2) define a polytopic admissible
state and input constraint set. Note that ci = 0 implies that
the ith constraint is an input constraint, and di = 0 implies
that it is a state constraint.

The system matrix A and input matrix B have appropriate
dimensions. We make the following assumption on our knowl-
edge of the system; these are standard assumptions in policy
iteration methods.

Assumption 1. The matrix A is unknown, the matrix B is
known, and the pair (A,B) is stabilizable. Furthermore, there
exists a known control gain K0 such that u = K0x is a
stabilizing control policy for the system (1).

While the knowledge of the input matrix B is not needed
in approaches like Q-learning [13], it is fairly standard for
policy improvement in policy iteration methods, even with
function approximators [2]. From a practical perspective, it
is not uncommon for a designer to have knowledge of input
channels and channel gains that represent the elements of the
B matrix.

Our objective is to design an optimal control policy K∞
such that the state-feedback controller u = K∞x stabilizes the
partially known system (1) while minimizing a cost functional

V :=

∞∑
t=0

x>t Qxt + u>t Rut (4)

where Q � 0 and R � 0 are user-defined symmetric
matrices, with the pair (A,Q1/2) being observable. The main
contribution of this paper is to derive controller gains that
stabilize the system (1) while strictly enforcing state and input
constraints.

B. Overview of optimal control for discrete-time LQR

Let the value function be defined as

Vt(xt, ut) :=

∞∑
k=t

x>k Qxk + u>k Ruk.

Clearly, Vt satisfies the recurrence relation

Vt(xt, ut) = x>t Qxt + u>t Rut + Vt+1(xt+1, ut+1). (5)

We know from optimal control theory that the optimization
problem

V∞(xt) := min
u
Vt(xt, ut) (6)

is solved in order to obtain the optimal control action

u∞ := arg min
u
Vt(xt, ut) (7)

for each time instant t ≥ t0. For discrete-time linear time-
invariant systems of the form (1), we know that the value
function Vt is quadratic in the state [2]. Therefore, solving (6)
is equivalent to finding a symmetric matrix P∞ � 0 that
satisfies the equation

A>P∞A− P∞ +Q

−A>P∞B
(
R+B>P∞B

)−1
B>P∞A = 0. (8)

Upon solving for P∞, the optimal unconstrained discrete-time
LQR policy generated by solving (7) is given by

K∞ = −(R+B>P∞B)−1B>P∞A. (9)

Since by assumption, the model A is unknown, one cannot
directly compute P∞ from (8) or K∞ from (9). Instead, we
resort to ADP, an iterative method for ‘learning’ the optimal
control policy (9) by using on-line data without knowing a full
model of the system (1). A popular embodiment of ADP is
policy iteration, wherein an initial stabilizing control policy
K0 is iteratively improved using operational data, that is,
without full model information. The sequence of control
policies converges asymptotically to the optimal control policy
K∞ defined in (9). The key steps of policy iteration without
constraints are described next.

C. Unconstrained policy iteration

Let Kt be the t-th policy iterate, where t ∈ N. Policy
iteration has two key steps: policy evaluation and policy
improvement. We begin by describing the steps in model-based
policy iteration and subsequently demonstrate how to perform
the same steps in a data-driven manner.

1) Model-based policy evaluation: In the policy evaluation
step, the value function parameter Pt+1 � 0 is estimated with
the control gain Kt using the relation

(A+BKt)
>Pt+1(A+BKt)−Pt+1+Q+K>t RKt = 0. (10)
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Note that (10) can be derived from (5) when Vt = x>t Ptxt
and replacing ut = Ktxt and xt+1 = (A+BKt)xt.

2) Model-based policy improvement: Upon updating the
value function via (10), one needs to update the corresponding
control policy. This is done by computing the new controller
gain via

Kt+1 = −
(
R+B>Pt+1B

)−1
B>Pt+1A. (11)

This equation is reminiscent of the optimal control policy
equation (9); in fact, the unique stationary point of the system
of equations (10)–(11) is at Pt = P∞ and Kt = K∞ as
demonstrated in [6].

This model-based implementation can be performed in a
data-driven manner, described next.

3) Data-driven policy evaluation: We assume that policy
iteration is performed a discrete-time instances ti where

T = {ti}∞i=1 (12)

denotes the set of all policy iteration times. The mini-
mum number of data-points obtain between policy iterations
[ti, ti+1] is given by

N = inf
i∈N
{ti+1 − ti|ti, ti+1 ∈ T }, (13)

that is, N denotes the minimum number of data points
contained within any learning cycle. In a model based im-
plementation, T = N.

At each learning time instant ti ∈ T , one can rewrite (10)
as

x>t P
+xt = x>t Qxt + u>t Rut + x>t+1P

+xt+1, (14)

for every t ∈ {ti + 1, ti + 2, . . . , ti+1}, with P+ representing
the updated value function matrix. Assuming that the state and
input data is available to us, and that Q and R are known, we
can rewrite (14) as

∆xxvec(P+) =


x>ti+1Qxti+1 + u>ti+1Ruti+1

x>ti+2Qxti+2 + u>ti+2Ruti+2

...

x>ti+1
Qxti+1 + u>ti+1

Ruti+1

 , (15)

where

∆xx =

 xti ⊗ xti − xti+1 ⊗ xti+1

...
xti+1 ⊗ xti+1 − xti+1+1 ⊗ xti+1+1

 . (16)

Under well-known persistence of excitation conditions [2],
one can solve (15) as a (regularized) least squares problem
subject to the constraint that P+ � 0 to obtain P+ without
knowing A or B. For the time instants t ∈ T when the
learning occurs, the new value function matrix Pt+1 is set to
P+ obtained by solving (15). For other time instants between
learning time instants, that is t /∈ T , the value function matrix
obtained in the previous learning cycle is utilized, that is,
Pt+1 := Pt.

4) Data-driven policy improvement: Since the control pol-
icy is restricted to be linear in this paper, finding an optimal
policy is tantamount to finding the minimizer Kt+1 of the
optimization problem

min
K

ti+1∑
t=ti+1

(
x>t K

>RKxt + x>t Qxt (17)

+x>t (A+BK)>Pt+1(A+BK)xt
)
,

where ti, ti+1 ∈ T . This is a quadratic optimization problem
in K because {xt}, Q, R, and Pt+1 are all known quantities
in the window {ti + 1, ti + 2, . . . , ti+1}. Note that Kt+1

can be updated recursively within each learning window
ti ≤ t ≤ ti+1 using Pt+1 for these time instants. Since (17) is
a quadratic problem, using Newton-type iterative solvers are
expected to yield quick convergence; in this case, in one step.

IV. CONSTRAINED ADP

In this section, we elucidate upon how to use invariant
sets to generate new control policies that are both stabilizing
and constraint satisfying. We also propose an algorithm for
implementing a constrained ADP in a data-driven manner.

We begin with the following definition.

Definition 1 (CAIS). A non-empty set E within the admissible
state space X is a constraint admissible invariant set (CAIS)
for the closed-loop system (1) under a control law u = Kx
if, for every initial condition xt0 ∈ E , all subsequent states
xt ∈ E and inputs Kxt ∈ U for all t ≥ t0.

According to Assumption 1, the ADP iteration is initial-
ized with a stabilizing linear controller K0. This stabilizing
controller renders a subset of the state-space invariant while
satisfying state and input constraints. In particular, there exists
an ellipsoidal region

EρP0
= {x : x>P0x ≤ ρ},

such that EρP0
⊂ X and K0EρP0

⊂ U. We assume that the value
function matrix P0 defining the initial CAIS ellipsoid EρP0

is
known. This is encapsulated formally herein.

Assumption 2 (Constrained ADP). There exists a symmetric
positive definite matrix P0 such that EρP0

⊂ X is a CAIS for
the closed-loop system (1) under the initial control policy u =
K0x, and K0x ∈ U for all x ∈ EρP0

.

A. Model-based constrained policy iteration

1) Model-based constrained policy evaluation: Let

Jt(P ) := (A+BKt)
>P (A+BKt)− P +Q+K>t RKt.

In order to implement constrained model-based policy evalu-
ation (that is, obtain Pt+1 from Kt and Pt), we need to solve
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the following semi-definite programming problem:

Pt+1, ρt+1 = arg min
P,ρ>0

‖Jt(P )‖ (18a)

s.t.

(A+BKt)
>P (A+BKt)− λP � 0 (18b)

x>t Pxt ≤ ρ (18c)

(c>k + d>kKt)
>ρ (c>k + d>kKt) � P (18d)

α1I � P � α2I (18e)

for some α1, α2 > 0 and λ < (α1/α2)
2/N . Here, k ∈

{1, . . . , r}. Note that ensuring this problem is convex involves
fixing the scalars α1 and α2, and pre-computing λ.

The rationale behind (18) can be explained as follows.
Since (18e) ensures that P � 0, this constraint, along with the
objective (18a), is equivalent to (10), which is identical to the
unconstrained policy evaluation step. Therefore, constraint sat-
isfaction is made possible by equipping the constraints (18b)–
(18d) and ρ > 0.

The inequality (18b) ensures that the value function is
contractive, and therefore, non-increasing for every t ≥ t0.
To see this, we multiply (18b) by x> and x from the left and
right, respectively, which yields

x>t+1Pxt+1 − x>t Pxt ≤ −(1− λ) x>t Pxt < 0,

for any t, since 0 < λ < 1. This is a key ingredient to ensure
that the updated control policies will provide stability certifi-
cates for the closed-loop system. The two inequalities (18c)
and (18d) enforce that the state and input constraints with
the current policy are satisfied in spite of the value function
update, given the current state xt. The condition (18e) ensures
that the value function matrix P is positive definite, and the
positive scalar ρ allows the selection of sub- and super-level
sets of the Lyapunov function.

2) Model-based constrained policy improvement: Unlike
unconstrained policy iteration, adding state and input con-
straints could result in nonlinear optimal control policies.
In this paper, we restrict ourselves to design linear control
policies of the form u = Kx, and hence, our optimal policy
improvement step is analogous to the unconstrained case (11),
that is,

K?
t+1 = −

(
R+B>Pt+1B

)−1
B>Pt+1A. (19)

Remark 2. In spite of parameterizing via linear control
policies, our controller is actually nonlinear since Kt depends
on Pt which depends on the states through (18).

We adopt a backtracking strategy in order to update the
current constrained policy Kt to a new constrained policy
Kt+1 that is as close as possible to the unconstrained policy
K?
t+1 in (19) that enforces state and input constraints.
A simplified version of this backtracking strategy is outlined

in Algorithm 1.
A particular benefit of our proposed method is that it enables

both expansion, contraction, and rotation of the constraint ad-
missible invariant sets. This is important in reference tracking
for instance where a more aggressive controller is required

Algorithm 1 Constrained Policy Improvement: Backtracking
Input: Desired policy K?

t+1 and current constrained policy Kt.
1: Kt+1 ← K?

t+1, α← 1.
2: while (c>i + d>i Kt+1)>ρ (c>i + d>i Kt+1) � Pt+1 do
3: α← βα, where 0 < β < 1.
4: Kt+1 ← Kt + α (K?

t+1 −Kt).

when the state is near the boundary of the state constraints.
This could also be useful for applying this approach to
nonlinear systems where (A,B) is a local linear approximation
of the globally nonlinear dynamics. Our approach allows the
ellipsoidal invariant sets to adapt its size and shape based
on the local vector field. For example, suppose EP∞ denote
the CAIS that is associated with the constrained optimal
control policy K∞ and optimal value function defined by P∞.
Also suppose that we have an initial admissible policy K0

whose associated CAIS EρP0
is contained within EP∞ . Then

our proposed method will generate a sequence of EPt such
that these invariant sets will expand, contract, and rotate as
necessary until the sequence of invariant sets {EPt

} converges
to the optimal EP∞ .

B. Data-driven constrained policy iteration

In order to obtain a data-driven implementation of the
constrained ADP method, one needs to gather a sequence
of state-input data points {x̄t, ūt, x̄t+1} and control policies
{K̄t} which will be used to update the value function matrix
and control policies at the learning time instants defined by T
in (12). Given the discrete-time system dynamics in (1), the
relation between these data points is given by

x̄t+1 = Ax̄t +Būt = Ax̄t +B
(
K̄tx̄t + νt

)
, (20)

where νt represents a known exploration noise signal that en-
sures the system (20) is persistently excited; see [2]. To arrive
at a more compact notation, let us define x̃t+1 := x̄t+1−Bνt
and ũt := K̄t x̄t such that

x̃t+1 = Ax̄t +Bũt = (A+BK̄t)x̄t. (21)

1) Data-driven constrained policy evaluation: Consider the
i-th learning cycle, occuring at the time instant ti ∈ T . Let

J̄t(P ) := x̃>t+1Px̃t+1 − x̄>t Px̄t + x̄tQx̄t + ũ>t R ũt.

The data-driven analogue of the constrained policy evaluation
step discussed in the previous section is given by the following
semi-definite program (SDP) with α1 and α2 fixed:

P̄t+1, ρt+1 := arg min
ρ>0,P

1

2

ti+1−1∑
t=0

(
J̄t(P )

)2 − λρρ (22a)

s.t.

x̃>t+1P x̃t+1 − λx̄>t P x̄t ≤ 0 (22b)

x>ti+1
Pxti+1 ≤ ρ (22c)

(c>k + d>k K̄t)
>ρ (c>k + d>k K̄t) � P (22d)

α1I � P � α2I (22e)
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for t ∈ {ti + 1, ti + 2, . . . , ti+1} and k ∈ {1, . . . , r}. Note
that the final four inequalities in (22) are exactly the set
of inequalities presented in (18) with the model information
replaced by state and input data. Also, replacing x̃t+1 in (22b)
with (A + BK̄t)x̄t using equality (21) shows that it is
equivalent to the inequality (18b).

2) Data-driven constrained policy improvement: Once a
value function is found whose sub-level set is constraint
admissible, the corresponding policy Kt+1 is to be computed.
If A and B are known, this step would be easy: indeed, one
could utilize Eq. (19) to this end. However, since only B is
known (by assumption), we resort to a data-driven iterative
update methodology for generating the new policy.

Given the current policy Kt, we gather another batch of
measurements {x̄t, ūt, K̄t, x̄t+1}t=ti+1,...,ti+1

where a new
policy K̄t is the optimizer of the least squares problem

min
K

1

2

ti+1∑
t=ti+1

x̄>t
(
K>RK + (A+BK)>P̄t+1(A+BK)

)
x̄t.

(23)

The problem (23) can be solved in a data-driven manner
efficiently using a real-time recursive least squares (RLS)
implementation [26]

Ht+1 = Ht + x̄tx̄
>
t ⊗ (R+B>P̄t+1B), (24a)

gt+1 = x̄t ⊗ (RK̄tx̄t +B>P̄t+1x̃t+1), (24b)

vec(K̄t+1) = vec(K̄t)− βtH−1t+1 gt+1, (24c)

for t = ti + 1, . . . , ti+1 − 1. Note that (24) is solved without
knowledge of A using the updates. Also, the starting value
for the Hessian matrix is chosen as the identity matrix ρ I and
ρ > 0 to ensure non-singularity. The step size βt is typically
equal to one, even though a smaller step βt ≤ 1 can be chosen,
e.g., based on the backtracking procedure in order to impose
the affine state and input constraints in (22d) for each updated
control policy K̄t+1. The Hessian matrix in (24) can be reset
to H = q I � 0 whenever a new value function is obtained
from solving the SDP in (22). Note that (24a) corresponds
to a rank-m matrix update, where m denotes the number
of control inputs. Therefore, its matrix inverse H−1t+1 can be
updated efficiently using the Sherman-Morrison formula, for
example, in the form of m rank-one updates.

3) Algorithm Implementation: Pseudocode: The general
procedure corresponds to the sequence of high-level steps:

(i) We require an initial stabilizing policy K̄0 and a corre-
sponding constraint admissible invariant set (CAIS) EρP0

;
see Assumptions 1 and 2.

(ii) Obtain a sequence of at least ti + 1 data points
{x̄t, ūt, K̄t, x̄t+1} while the system is persistently ex-
cited and compute a new ellipsoidal set defined by the
matrix P̄t+1 by solving the least squares SDP in (22).

(iii) At each time step, perform the policy improvement step
to compute K̄t+1 based on the real-time recursive least
squares method as described in (24), in combination with
the backtracking procedure as in Algorithm 1 to enforce

state and input constraints.
(iv) If the policy improvement has converged based on the

condition ‖gt‖ ≤ ε, return to step (ii).

V. CONSTRAINT SATISFACTION, STABILITY, AND
ALGORITHM CONVERGENCE

We present theoretical guarantees for our proposed con-
strained policy iteration. For the data-driven case, we adhere to
the standard assumption that the system is persistently excited.
The following theorem demonstrates constraint enforcement
and stability guarantees of the closed-loop system.

Theorem 1. Suppose Assumptions 1 and 2 hold. Then the
system (1) in closed-loop with the time-varying controller ut =
Ktxt has the following properties:

(i) The constraints xt ∈ X and ut ∈ U are satisfied for all
t ∈ N.

(ii) The closed-loop system is asymptotically stable.

Previous stability results for approximate dynamic program-
ming rely on the tacit assumption that the learning converges
after a finite number of batch iterations (typically one). In
other words, the adaptive controller only works because it
stops adapting. In contrast, for constraint satisfaction, the
controller may need to continually adapt since the set of active
constraints will change as the state evolves. This necessitates
the development of a more involved set of conditions to
ensure that feedback control loop and the learning loop do
not destabilize each other.

Theorem 2. Suppose Assumptions 1 and 2 hold. Let α1 ≤
σ(P∞), α2 ≥ σ(P∞), and

λ ≥ σ
(
I − P−1/2∞ (Q+K>∞RK∞)P−1/2∞

)
.

Under the iteration (18) and (19), the value Pt and policy Kt

converge to the LQR cost-to-go P∞ and controller gain K∞.
That is,

lim
t→∞

Pt = P∞ and lim
t→∞

Kt = K∞. (25)

VI. NUMERICAL EXAMPLE

A. Linear system with two states, one control input

We randomly generate controllable systems of the form (1)
to test the proposed algorithm. A particular realization of these
randomly generated systems, A =

[
1.1387 0.0491
−0.8680 0.9679

]
, B =[−0.5507

0.0758

]
is investigated to illustrate constraint satisfaction

and stability of the algorithm. Of course, A is unknown
(and unstable), B is known, and it is verified that (A,B) is
a controllable pair. The admissible state space is given by
X = {x ∈ R2 : ‖x‖∞ ≤ 1}, and the operational cost is pa-
rameterized by Q = I2 and R = 0.5. For learning, the window
length is fixed at N = 8 samples (T = {8, 16, 24, . . .}), and
the regularization parameter for policy updating is given by
ρK = 10−4. Persistence excitation is ensured by generating
uniformly distributed noise bounded within [−0.02, 0.02]. An
initial policy is generated that satisfies state constraints using
the randomly chosen cost matrices that are distinct from Q
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[A]
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Fig. 1. Results of constrained ADP for 2-state dynamic system: [A] Sequence
of invariant sets learned on-line. Each set is labeled with the time iteration t
when it was learned. [B] State evolution (x1: blue, x2: red) with constraints
(black, dashed). [C] Control input (blue) evolution with constraints (black,
dashed). [D, E] Convergence of learned LQR policy to the true LQR policy.

and R, and an initial condition is generated randomly on the
boundary of the initial domain of attraction. Therefore, the
initial state is ensured to be within X but sufficiently far from
the origin to require non-trivial control for stabilization.

The results of the constrained policy iteration algorithm are
illustrated in Fig. 1. In Fig. 1[A], a sequence of ellipsoids
generated by our proposed algorithm is presented. Note that
the ellipsoids generated in subsequent learning cycles after
the first (the orange elongated ellipsoid) are not mere sub-
or super-level sets of the initial ellipsoid; instead, the policy
iterator allows for contractions and expansions on both x1 and
x2 axes until the true policy is learned. As evident from sub-
plots [B] and [C], state constraints are not violated throughout
the learning procedure. The subplots [D, E] demonstrate the
convergence of a sub-optimal initial control policy at t = 0 to
the true and optimal LQR policy at around t = 24, after three
learning cycles.

VII. CONCLUDING REMARKS

In this paper, we provide a methodology for implement-
ing constraint satisfying policy iteration for continuous-time,
continuous-state systems via invariant sets. Benefits of our
approach include computational tractability, and safety guar-
antees through constraint satisfaction. In future work, we will
extend this framework to more general dynamical systems.
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