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Abstract
This paper presents the design and realization of a linear Model Predictive Controller (MPC)
and state estimator for a multi-zone heat pump in the Modelica modeling language, in order
to validate closed-loop performance prior to experimental testing. The vapor compression
system uses a variable speed compressor and a set of expansion valves for control, and it is
required to regulate zone temperatures to set-points without offset. Constraints are imposed
on all control inputs and also the values of both measured and unmeasured system outputs.
Because experimental testing is both expensive and time-consuming, we have developed a tool
chain for software-in-the-loop validation that uses a Modelica model for the plant, integrated
with a software representation of the MPC that is realized in a combination of Modelica and
C that is suitable for real-time use. We show the results of closedloop tests of the controller
with a nonlinear system model, which provide a partial validation of the controller and tool
chain.
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Abstract— This paper presents the design and realization
of a linear Model Predictive Controller (MPC) and state
estimator for a multi-zone heat pump in the Modelica modeling
language, in order to validate closed-loop performance prior
to experimental testing. The vapor compression system uses
a variable speed compressor and a set of expansion valves
for control, and it is required to regulate zone temperatures
to set-points without offset. Constraints are imposed on all
control inputs and also the values of both measured and
unmeasured system outputs. Because experimental testing is
both expensive and time-consuming, we have developed a tool
chain for software-in-the-loop validation that uses a Modelica
model for the plant, integrated with a software representation
of the MPC that is realized in a combination of Modelica and C
that is suitable for real-time use. We show the results of closed-
loop tests of the controller with a nonlinear system model, which
provide a partial validation of the controller and tool chain.

I. INTRODUCTION

Heating, ventilation, and air conditioning (HVAC) systems
are widely used in industrial, commercial, and residential
buildings to improve the comfort and health of occupants by
regulating indoor temperatures and maintaining the flow of
fresh air. However, the resulting energy consumption can be
quite high [1]. Consequently, there is broad interest in devel-
oping new methods of control that improve energy efficiency
of HVAC systems, and Model Predictive Control (MPC) is
an attractive approach. In MPC, the control action is selected
by repeatedly solving a finite-time optimal control problem
over a receding horizon. Since MPC is an optimization-
based control technique, it can be used to improve energy
efficiency in HVAC systems [2] while enforcing constraints
to ensure safe operation. Moreover, MPC allows for potential
changes to the cost and constraints throughout the product
development process, making it both rigorous and flexible
compared with alternative methods of control.

This paper considers equipment-level control of the multi-
zone heat pump shown in Fig. 1, consisting of a single
outdoor unit and multiple indoor units. A heat pump is a
thermodynamic system that draws heat from colder outdoor
air and delivers it to warmer indoor zones via vapor com-
pression and phase change. Much of the reported work on
MPC for HVAC is for hydronic systems, in which water is
heated or cooled at a central location and pumped to a set of
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zonal heat exchangers (fan coils). These systems are weakly
coupled dynamically, so that distributed and decentralized
control algorithms are effective e.g., [1], [3]-[9]. On the other
hand, the dynamics of Variable Refrigerant Flow (VRF) heat
pumps are more nonlinear and more tightly coupled. The sys-
tem’s actuators manipulate the refrigerant pressure and flow
rate, which affect its its temperature and phase throughout
the system, so that the generation and distribution of heat
cannot be easily decoupled and controlled by a cascade of
decentralized feedback loops. Despite this nonlinearity and
high degree of coupling, we show that a suitably designed
linear MPC is effective at meeting the control objectives
of reference tracking, disturbance rejection and constraint
enforcement. Moreover, the computational demands of the
MPC are within the capability of the embedded processors
typically found in production systems.

The effects of the nonlinearities inherent in the vapor-
compression cycle suggest the importance of validating the
closed-loop performance of the linear MPC using a full non-
linear model over a broad range of operating conditions and
transients. We demonstrate the performance of our controller
in simulation on a nonlinear physics-based model of a four-
zone vapor compression system described in the Modelica
modeling language [10] and implemented in Dymola [11].
Modelica is an object-oriented, equation-based programming
language used to model complex physical systems, and in
particular HVAC systems [12]. Complex system models are
built-up in Modelica from the interconnection of lower-level
component models. The language can also represent complex
control systems, including continuous-time, discrete-time,
and discrete-state components and subsystems, and it is
therefore useful as a platform for rigorous representation of
the complete controller, and for software-in-the-loop simu-
lations as a validation step prior to experimental testing. In
this paper, we implement an MPC controller in the Modelica
language, couple to the full nonlinear model, and conduct a
set of validation experiments.

This paper is structured as follows: Section II first de-
scribes the system and the control objective. Section III de-
scribes the controller design, estimator design, and Modelica
implementation of the controller. Section V shows the results
of closed-loop simulations in Dymola. Finally, Section VI
presents a set of conclusions.

II. PROBLEM STATEMENT

This paper considers the multi-zone Vapor Compression
System (VCS) [13] diagrammed in Fig. 1, operating in



heating mode. It is comprised of multiple indoor units, each
of which is located in a separate thermal zone, and a single
outdoor unit. Each indoor unit contains a heat exchanger
which allows the transfer of heat from high temperature
refrigerant to the thermal zone. Typically, the refrigerant
enters the heat exchanger as a two-phase mixture of gas and
liquid. The flow of refrigerant through the heat exchanger
is throttled by an expansion valve, the orifice size of which
is a control input (LEVi). Each indoor unit also contains a
fan which facilitates the transfer of heat from the refrigerant
to the thermal zone. As these fan speeds (IUFi) are set
by the user, they are treated as a measured disturbance on
the system. Each thermal zone also includes an unmeasured
heat load disturbance (Qi). The inlet and outlet refrigerant
temperatures of the heat exchanger are measured, as well
as the temperature of the air in the thermal zone (Ti). The
objective of the control system is to regulate the temperature
of each thermal zone to a set-point selected by the user.

The heat supplied to the indoor units is drawn from the
environment by the outdoor unit. The amount of heat trans-
ferred to the refrigerant in the outdoor unit heat exchanger
can be controlled by the speed of the outdoor unit fan (OUF),
and is also affected by the ambient temperature (TA), which
is a measured disturbance. The pressure and temperature
of the refrigerant are increased by the compressor, whose
frequency (CF) is a control input. A valve situated in the
outdoor unit (LEVM) also affects the flow rate of refrigerant
through the system.

Fig. 1: System diagram

Neglecting the small pressure drop in the supply lines,
the pressure, and therefore the condensing temperature, of
the refrigerant in each indoor unit is identical. In order to
reject asymmetric heat load disturbances, or achieve different
zone temperature set points, the heat flux from each indoor
heat exchanger needs to be different. This is achieved by
modulating the amount of refrigerant subcooling (TSubi),
or the difference between the condensing temperature and
the temperature of the liquid exiting the heat exchanger, that
occurs in each indoor heat exchanger, with more subcooling
resulting in a lower amount of heat flux, and less subcooling
resulting in more heat flux [14]. For energy efficiency and
acoustic reasons, it is desirable to constrain TSubi to be
positive. Unfortunately, it is not always possible to directly
measure TSubi, so it will be considered as an unmeasured,
constrained output.

We define three sets of inputs (controlled, measured dis-
turbances, and unmeasured disturbances) and three sets of
outputs (measured outputs, tracked outputs, and constrained

TABLE I: System inputs and outputs.

Input/Output Description
ym ∈ Rnm Measured outputs (Temperature sensors)
yr ∈ Rnr Tracked outputs (Ti)
yc ∈ Rnc Constrained outputs (TSubi)
u ∈ Rnu Control actions (CF, OUF, LEVM, LEVi)

dm ∈ Rndm Measured disturbances (TA, IUFi)
du ∈ Rndu Unmeasured disturbances (Qi)

outputs) shown in Table I. The measured outputs ym are
the temperatures measured by the sensors, which include
the mixed-air temperature of the zones. The tracked outputs
yr (thermal zone temperatures) are therefore a subset of
the measured outputs ym. The constrained outputs yc are
the subcooling temperatures in each indoor unit, which are
unmeasured. The control inputs u are subject to upper and
lower limits u and u, respectively.

There are four control objectives:

1) Offset-free reference tracking: zero steady-state error
between zone temperatures Ti and constant reference
set-points ri, 1 ≤ i ≤ nr.

2) Disturbance rejection: zero steady-state error in zone
temperature error for constant values of disturbance
Qi, 1 ≤ i ≤ nr.

3) Input constraint enforcement: u < u < u.
4) Output constraint enforcement: yc > 0, i.e. TSubi > 0.

In addition, the controller must execute in real-time on the
system’s embedded microcontroller.

III. CONTROLLER DESIGN

The proposed controller is a linear MPC that receives
an estimate of the system’s state from an observer. In this
section we describe the prediction model, controller and
estimator design, and their implementation in Modelica.

A. Prediction model

The controller is based on a discrete linear time invariant
state space model linearized around a nominal operating
point and sampled at 60s.

The linear model is obtained from the nonlinear Modelica
heat pump model using a built-in Dymola linearization
function. The resulting model is reduced from an initial 450
state model to a 30 state model and then scaled in order to
improve its numerical conditioning. We obtain the following
model for a four indoor-unit heat pump system

x+ = Ax+Buu+Bdmdm +Bdudu (1a)
ym = Cmx+Dmuu+Dmdmdm +Dmdudu (1b)
yr = Crx+Druu+Drdmdm +Drdudu (1c)
yc = Ccx+Dcuu+Dcdmdm +Dcdudu (1d)

where x ∈ Rnx , nx = 30, nu = 7, ndm = 7, ndu = 4,
nm = 15, nr = 4 and nc = 4 (See Table I).



B. Estimator design

Since the state of (1) is not measured, we include an
estimator for the following model,

x+ = Ax+Buu+Bdmdm (2a)
ym = Cmx+Dmuu+Dmdmdm + v (2b)

where we have included the disturbance offset of the mea-
sured outputs v ∈ Rnm .

The output offsets v account for the effects of the unmea-
sured disturbances du on the system and model mismatch
due to the nonlinearity of the actual heat pump system.

At each sample time, the estimated system state x̂ and
estimated measured output offset v̂ are obtained from the
following augmented dynamics,[

x̂+

v̂+

]
=

[
A− LxCm −Lx

−LvCm I − Lv

] [
x̂
v̂

]
+

[
Bu − LxDmu Bdm − LxBdmDmdm Lx

−LvDmu −LvDmdm Lv

] u
dm
ym

 (3)

Defining A0 =

[
A 0
0 I

]
and C0 =

[
Cm I

]
, we obtain

Lx and Lv by solving the discrete time steady-state Riccati
equation (6) using covariance matrices W and V ,

W =

[
µ1I 0
0 µ2I

]
V = µ3I (4)[

Lx

Lv

]
=
(
(V + C0PC

ᵀ
T )−1C0PA

ᵀ
0

)ᵀ
(5)

P = A0SA
ᵀ
0 −A0SC

ᵀ
0 (V + C0SC

ᵀ
0 )−1C0SA

ᵀ
0 +W (6)

where we define three design parameters, µ1, µ2 and µ3.
Due to the nonlinear behavior of the system, µ2 was chosen
to be two orders of magnitude higher than µ1 and µ3. This
increased the convergence rate of v̂.

C. MPC formulation
At each sample time the control input is obtained by

solving the following constrained finite-time optimal control
problem,

J∗ = min
u,s,
us,xs

N−1∑
k=0

[
xk − xs
uk − us

]ᵀ [
Q S
Sᵀ R

] [
xk − xs
uk − us

]
+

N−1∑
k=0

||∆u||2Rd

+

N∑
k=1

||sk||2ρI + ||xN − xs||2P + ||us − ud||2R0
(7)

s.t. xs = Axs + Buus + Bdmdm (7a)
r = Crxs + Druus + Drdmdm + v̂r (7b)
xk+1 = Axk + Buuk + Bdmdm (7c)
u ≤ uk ≤ u (7d)
Ccxk + Dcuuk + Dcdmdm ≥ y + sk (7e)

sk ≥ 0 (7f)
x0 = x̂ , (7g)

with xk ∈ Rnx being the predicted state at sample time k;
uk ∈ Rnu the control action at sample time k; xs and us
the steady-state targets; sk ∈ Rnc the slack variables for the

output constraints; ud is the desired input, which is chosen
based on economic considerations; and v̂r ∈ Rnr are the
elements of v̂ that correspond to the tracked outputs. Notice
that the estimated system state x̂ (3) is used as the initial
state of the finite optimal control problem (7g).

The inclusion of v̂r in (7b) provides offset free refer-
ence tracking [15]. The inequality constraint (7e) enforces
the subcooling constraints, where uN+1 ≡ us. The slack
variables sk are included in order to ensure feasibility of the
optimization problem1 . The lower bound for the subcooling
constraints (y) is set to a value greater than 0 to account for
the estimation error.

Cost function matrices Q ∈ Rnx×nx , S ∈ Rnx×nu and
R ∈ Rnu×nu are chosen so that

N∑
k=1

[
xk − xs
uk − us

]ᵀ [
Q S
Sᵀ R

] [
xk − xs
uk − us

]
≡

N∑
k=1

||yk − r||2Qy
+

N∑
k=1

||uk − us||2Ru
(8)

by taking Q = Cᵀ
rQyCr, R = Dᵀ

ruQyDru + Ru, and S =
Cᵀ

rQyDru, with Qy ∈ Rnr×nr and Ru ∈ Rnu×nu being
positive definite diagonal matrices.

The optimal control problem (7) is transformed into a QP
problem in the form,

min
z

1

2
zᵀQz + q(dm)ᵀz

s.t. Az = b(x̂, dm, r)

z ≤ z ≤ z

(9)

where vectors q and b depend on the estimated state,
disturbances and references, and matrices A, Q and vectors
z, z are constant.

IV. MODELICA IMPLEMENTATION

The MPC and estimator are implemented in the Model-
ica modeling language to simulate the closed-loop system
in software-in-the-Loop (SIL) tests. Our objective is to
use identical software for both SIL testing and the subse-
quent laboratory experiments. Toward this end, the Modelica
HVAC system model is first linearized at a representative
equilibrium operating condition in Dymola, and loaded into
Matlab for the design step. We then compute a reduced-
order model using Hankel norm truncation and singular
perturbation, and discretize the result with a sample period
of 60s, giving a 30th order discrete-time model.

The MPC and estimator designs are done in Matlab
using the reduced-order system model, resulting in numerical
values for the estimator matrices (2) and for the optimization
problem (9). This data is saved as C language header files.
The estimator is realized as a linear system in the Modelica
language, which inputs values for the estimator matrices
from the header files. We use the ADMM-based solver with
optimal step-size selection in [16] to solve the (9). Due to the

1Depending on the algorithm used to solve (7), an exact penalty function
could also formulated on sk .



low complexity of the code, the QP solver is coded in C for
general QPs in the form (9), while the values and parameters
for the specific parametric QP of our MPC (7) are encoded
in the header files produced by Matlab.

At execution time, the solver only receives as input the
current estimates of the state, disturbances, and references,
to form the vectors q and b in (9), hence limiting the I/O
bandwidth requirements. Furthermore, the solver is coded not
to require any dynamic memory allocation, as it is necessary
for several real-time embedded systems, and to be compiled
in different platforms by adding a simple platform-specific
wrapper, e.g., a mex interface, a DLL wrapper, or a static
library wrapper. In Modelica, this compilation process results
in a DLL that solves (9), given the input data dm, x̂ and r.
Dymola links this DLL when compiling the Modelica code to
produce the simulation executable. Importantly, the process
of redesign in Matlab, which produces new header files and
recompiles the controller model, takes minutes. Moreover,
the same DLL can be used in laboratory experiments, so we
do not have to rewrite or recompile most of the controller
code when moving from SIL to laboratory experiment.

A block diagram of the Modelica realization is shown in
Fig. 2. One important consideration is how to initialize the
MPC. The model is first run open-loop to an approximate
equilibrium condition, after which the the estimator is initial-
ized by a bumpless transfer, and any transients are allowed to
settle. All inputs are then put in closed-loop simultaneously,
and the QP solution is used recursively. A state machine
(not shown) is used to move the system through this start-up
sequence, and is identical the laboratory experimental setup.

Fig. 2: Controller Model in Modelica

Fig. 3 shows a schematic of the connection between the
controller model and the system model HVAC. We represent
different simulation scenarios of interest in the first block,
as a representation of tests for specific requirements. The
discrete-time control action is passed through a first-order
low-pass filter with a time constant of 1s before being applied
to the system to avoid so-called events in the simulation.
This increases simulation speed because the Dymola solver
(DASSL) does not need to reinitialize at every simulation
step.

Fig. 3: Setup of models in Modelica for closed-loop tests

V. SIMULATION RESULTS

This section presents Modelica simulations of our con-
troller in closed-loop with a nonlinear model of the heat
pump system. We demonstrate the ability of our controller to
track references, reject disturbances, and enforce constraints.

A. Reference Tracking

In this subsection we present simulation results that
demonstrate our controller’s ability to track references (Con-
trol Objective 1).

Figures 4-6 show the simulation results of tracking a 1
degree change in the desired temperature of thermal zone
i = 1 at t = 120min. Fig. 4 shows the temperature of the
four thermal zones and their reference temperature set points
(in dashed lines). Fig. 5 shows the sub-cooling temperatures
(yc) in solid line and their estimated values, i.e. ŷc = Ccx̂+
Dcuu + Dcdmdm, in dashed lines. Fig. 6 shows the values
of the control actions.

Fig. 4: Reference tracking. Tracked outputs yr

Fig. 5: Reference tracking. Constrained outputs yc



Fig. 6: Reference tracking. Control inputs u

The reference is tracked with no offset, despite mismatch
between the linear model used for control design and the
nonlinear physics-based model used as the simulated plant.
The coupling between zones is evident in Fig. 4. A 1
degree increase in indoor unit i = 1 caused a transient
increase of approximately 0.2 degrees in the other zones.
Moreover, notice the evolution of the control actions, where
increasing the temperature of thermal zone i = 1 is not
accomplished by simply opening the valve that increases
the refrigerant flow rate to the indoor unit (LEV1). Instead,
the compressor frequency is increased which increases the
pressure and therefore temperature of the refrigerant flowing
to each indoor unit. The valve position LEVi of indoor units
i = 2, 3, 4 were partially closed to prevent their temperatures
from rising. This example highlights the importance of using
a multivariable MPC to coordinate the control actions.

Finally, note the sudden shift in the thermal zone temper-
atures at around t = 140min. This shift is unexplained by
the control actions, which remain smooth. Instead, it is the
result of phase changes occurring in some of the indoor units,
which causes considerable changes in the system’s dynamics.
This highlights the strong non-linear behavior of the system.
Careful tuning of the estimator and controller is needed
in order to overcome the effects of these nonlinearities.
Another effect of these nonlinearities are the temperature
oscillations, which can be seen in Fig. 4 for thermal-zones
i = 2, 3, 4. These oscillations became unstable for reference
steps similar to the one shown here if the controller is not
properly tuned, and are a result of the mismatch between the
linear and nonlinear models, since the system is damped in
open-loop tests.

B. Disturbance rejection

In this section we present simulation results that demon-
strate disturbances rejection (Control Objective 2).

Figures 7- and 8 show the closed-loop simulation results
where the first zone is subject to a −50W disturbance at t =
120min. Figures 7 and 8 show the same signals as 4 and 5.

As can be observed in Fig. 7, the disturbance is rejected,
achieving offset-free control. Heat-load rejection is slow for
two reasons. First, the controller (7) was tuned Rd � 0
to produce slow closed-loop dynamics to avoid exciting

Fig. 7: Disturbance rejection. Tracked outputs yr

Fig. 8: Disturbance rejection. Constrained outputs yc

unmodeled nonlinear dynamics. Second, the heat loads Qi

are not measured, but rather their effects on the system
are indirectly estimated by the output offsets v in the state
estimator (2b). Since the thermal zones have slow dynamics,
the output offsets v converge slowly to changes in the heat
loads Q resulting in slow disturbance rejection.

C. Constraint enforcement

In this section we describe results that demonstrate con-
straint enforcement (Control Objectives 3 and 4).

Enforcing output constraints is difficult since the subcool-
ing temperatures are unmeasured. Notice in Fig. 5, that the
real subcooling temperature significantly differs from the
estimated one. This motivates the padding of the subcooling
constraints to yc ≥ 1.5. The value y = 1.5 was chosen by
performing multiple tests to find a value of the constraint-
padding y that provided a reasonable satisfaction of the
constraints in closed loop tests while not reducing the range
of operation of the controller to an unreasonable extent.
Using padded constraints, it can be seen in Fig. 5 that the
controller enforces subcooling constraints. However, in spite
of the fact that the MPC is trying to maintain the subcooling
temperature constant at 1.5 degrees in indoor-unit i = 1,
the real subcooling temperature continues to decrease until
it reaches its saturation value. It is notable that the controller
continues to function properly, though observability is lost
when the subcooling temperature saturates.

In Fig. 8, the controller’s subcooling constraint for indoor



unit i = 1 is active from t = 150min to t = 170min
(approximately), in spite of the fact that the real subcooling
of indoor unit 1 is around 3 degrees. Once again, the
real subcooling temperatures significantly differ from the
estimated ones. Immediately before time t = 150min, the
estimated subcooling temperature of indoor unit i = 1
goes below its lower bound y = 1.5. This motivates the
need for soft constraints in the subcooling temperatures (7e),
since hard constraints would have resulted in an infeasible
optimization problem (7) in this case.

D. Computation time

Fig. 9 shows the computation time taken by the ADMM
algorithm to compute the control action at each sample time
for the results shown in figures 4 to 6. The simulations
where performed using a Windows 10 (64bit) PC equipped
with an Intel i7-6800K microprocessor. Fig. 9 shows that the
simulation times were well below the sample rate ∆t = 60s
of the controller. This suggests that real-time execution of
the controller on an embedded microcontroller is feasible.

Fig. 9: Computation time of ADMM algorithm

The computation time results shown in Fig. 9 have a
minimum value of 29.97ms, a maximum value of 33.23ms,
and average of 30.35ms and a standard deviation of 0.457ms.

VI. CONCLUSIONS

This paper presented a linear MPC controller for a heat
pump. We demonstrated via simulation that our controller
achieves offset-free reference tracking and the rejection of
unmeasured heat load disturbances. Furthermore, we showed
that our controller successfully enforces constraints on the
unmeasured subcooling in each indoor unit by properly
padding of the constraints. The use of centralized MPC was
necessary due to the strong coupling and complex nonlinear
dynamics of the HVAC system. Linear MPC was used so
that our controller can be implemented in real-time on the
system’s microcomputer.

The implementation of the controller in Modelica provides
a good framework to design, tune, test and validate the
MPC controller, as testing different controller formulations
experimentally is very time consuming due to the long time
constants of the experimental system and the need to stabilize
it around an equilibrium point before engaging the controller.

The constraints on yc prove to be difficult to satisfy
since they are not measured. The effect of the prediction
error on the satisfaction of the subcooling constraints is
mitigated with the use of padded lower bound constrains,
i.e., constraints in which the lower bound is set higher
than the desired one. Even though observability is lost if
the subcooling constraints are not satisfied, the controller
provides good results when this is the case.

ACKNOWLEDGMENT

The author would like to thank MINERCO and FEDER
funds for financing project DPI2016-76493-C3-1-R, and
MCIU and FSE for financing the FPI-2017 grant, which
was not in force during the time in which the work for this
paper was performed, and for which there was no explicit or
implied collaboration between MERL and the grant granters.

REFERENCES

[1] F. Belic, Z. Hocenski, and D. Sliskovic, “HVAC control methods - a
review,” in 2015 19th Int. Conf. System Theory, Control and Comp.,
Oct 2015, pp. 679–686.

[2] E. F. Camacho and C. B. Alba, Model predictive control. Springer
Science & Business Media, 2013.

[3] A. Mirakhorli and B. Dong, “Occupancy behavior based model
predictive control for building indoor climate — A critical review,”
Energy and Buildings, vol. 129, pp. 499 – 513, 2016.

[4] A. Afram and F. Janabi-Sharifi, “Theory and applications of HVAC
control systems – A review of model predictive control (MPC),”
Building and Environment, vol. 72, pp. 343 – 355, 2014.

[5] R. Kwadzogah, M. Zhou, and S. Li, “Model predictive control for
HVAC systems - A review,” in IEEE Int. Conf. Automation Science
and Eng., Aug 2013, pp. 442–447.

[6] Y. Ma, F. Borrelli, B. Hencey, B. Coffey, S. Bengea, and P. Haves,
“Model predictive control for the operation of building cooling sys-
tems,” IEEE Trans. Control Sys. Tech., vol. 20, no. 3, 2012.

[7] Y. Ma, G. Anderson, and F. Borrelli, “A distributed predictive control
approach to building temperature regulation,” in Proceedings of the
2011 American Control Conference, June 2011, pp. 2089–2094.

[8] H. Scherer, M. Pasamontes, J. Guzmán, J. Álvarez, E. Camponogara,
and J. Normey-Rico, “Efficient building energy management using
distributed model predictive control,” Journal of Process Control,
vol. 24, no. 6, pp. 740 – 749, 2014.
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