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Abstract
Gaussian processes in combination with sequential Monte-Carlo methods have emerged as
promising tools for offline nonlinear system identification. However, sometimes the dynamical
system evolves in such a way that online learning is preferable. This paper addresses the online
joint state estimation and learning problem for nonlinear dynamical systems. We leverage
a recently developed reduced-rank formulation of Gaussian-process state-space models (GP-
SSMs), and develop a recursive formulation for updating the sufficient statistics associated
with the GP-SSM by exploiting marginalization and conjugate priors. The results indicate
that our method efficiently learns the system jointly with estimating the state, and that the
approach for certain scenarios gives similar performance as more computation-heavy offline
approaches.
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Recursive Bayesian Inference and Learning
of Gaussian-Process State-Space Models

Karl Berntorp

Abstract— Gaussian processes in combination with sequential
Monte-Carlo methods have emerged as promising tools for
offline nonlinear system identification. However, sometimes the
dynamical system evolves in such a way that online learning
is preferable. This paper addresses the online joint state esti-
mation and learning problem for nonlinear dynamical systems.
We leverage a recently developed reduced-rank formulation of
Gaussian-process state-space models (GP-SSMs), and develop
a recursive formulation for updating the sufficient statistics
associated with the GP-SSM by exploiting marginalization
and conjugate priors. The results indicate that our method
efficiently learns the system jointly with estimating the state,
and that the approach for certain scenarios gives similar
performance as more computation-heavy offline approaches.

I. INTRODUCTION

The objective in system identification [1] is to learn
models of dynamical systems from measurements. Recently,
Gaussian processes (GPs, [2]) have emerged as a useful tool
for learning of nonlinear systems on the form [3]–[8]

xk+1 = f(xk,uk) +wk, (1a)
yk = h(xk,uk) + ek, (1b)

where xk ∈ Rnx is the state to be estimated, yk ∈ Rny

is the measurement, uk ∈ Rnu is the known input, wk,
ek, are the process and measurement noise, respectively, and
f , h are the functions to be learned from data. Modeling
the state-transition f and observation function h as GPs,
leading to GP state-space models (GP-SSMs) [9]–[11], has
shown to be an efficient modeling approach to learn systems
from uncertain data, in combination with particle filtering
(PF, [12], [13]). Uncertain data can arise both due to limited
amount of data or due to limited excitation of the system in
regions of the state space. Using GP-SSMs, this uncertainty
can be reflected in the learning process while avoiding the
common issue of overfitting to data [7].

In this paper, we develop a PF [14] based approach for
jointly estimating online the state trajectory and learning
the state-transition function of the GP-SSM. We leverage a
recently developed reduced-rank model formulation [6], [7],
[15], [16] of the GP-SSM, in which connections between GPs
and a basis-function expansion of f is made by introducing
priors on the basis-function coefficients. We extend the work
in [6], which treated offline batch learning in a particle
Markov chain Monte-Carlo (PMCMC) setting, to the online
setting, by tailoring a PF to GP-SSMs in combination with
marginalization. Marginalization is crucial in our approach

Mitsubishi Electric Research Laboratories (MERL), 02139 Cambridge,
MA, USA. Email: karl.o.berntorp@ieee.org

and is together with the reduced-rank formulation the key
enabler of simultaneous state inference and system learning
in a fully Bayesian setting. A bottleneck usually prohibiting
the use of GP-SSM based methods is the poor scaling with
the training data. In [6], it was shown that the reduced-rank
approximation reduces the computational load significantly.
In this paper several illustrative examples indicate that the
reduced-rank formulation, with a proper implementation of
the PF and suitable approximations, indeed can be used to do
online joint Bayesian inference and learning. The reduced-
rank formulation of the GP-SSM converges asymptotically
[16], and after a burn-in period, the PMCMC implementation
in [6] provides samples from the true posterior associated
with the reduced-rank SSM for any number of particles
N ≥ 2. However, this strong property does not carry over to
our online PF approach, similar to standard PFs.

GPs in system identification have by now a variety of
use cases. For instance, in impulse response estimation [17],
nonlinear ordinary differential equations [18], and force mod-
eling [19]. There is an increasingly rich literature on filtering
and smoothing in GP-SSMs (e.g., [20], [21]). When it comes
to learning in GP-SSMs, the main difficulty is to infer the
nonlinear function f from the latent state xk, which can only
be observed from the measurements y0:k = {y0, . . . ,yk}.
Expectation maximization (EM) based procedures can be
found in [3], [7], [22]. Various approaches based on PMCMC
methods [12], [13] have been developed in [4], [6], [7].
When using PMCMC for learning, a PF conditioned on one
of the state trajectories is iterated intertwined with updates
of the sufficient statistics, using the whole available data
set. Most of the learning methods for GP-SSMs are batch
approaches, which means that they are not suitable for direct
implementation in an online setting.

Our work extends [6] to the online case, providing a
recursive implementation. In particular, we focus on discrete-
time GP-SSMs on the form

xk+1 = f(xk) +wk, (2a)
yk = h(xk) + ek, (2b)

where f is assumed to be a realization from a GP prior over
Rnx , f(xk) ∼ GP(0,Kθ(xk,x

′
k)) for a given covariance

function Kθ(x,x
′) subject to (assumed known) hyperpa-

rameters θ. The process noise is Gaussian distributed with
unknown covariance Q according to wk ∼ N (0,Q). In
the proposed method, each particle retains its own estimate
of the unknowns f and Q. We assume the observation
function h to be known and the Gaussian measurement noise



ek ∼ N (0,R) to have known covariance R. However, the
case of an unknown observation model follows analogously
to the case of unknown f , as does the case of nonzero
inputs uk similar to (1). There are also practical reasons for
assuming a known observation model. First, introducing too
many unknowns might have implications on observability of
the system. Second, h usually corresponds to a sensor model
that typically is known. We target a fully Bayesian solution
to the joint state inference and learning problem, where the
objective is to approximate the posterior distributions of xk,
f , and Q at each time step k,

p(xk|y0:k), (3a)
p(f ,Q|y0:k). (3b)

The outline of the paper is as follows. Sec. II provides
background material on reduced-rank GP-SSMs and PFs
necessary to understand our approach, which is explained in
Sec. III. Sec. IV evaluates the proposed method using two
numerical examples. Finally, Sec. V concludes the paper.

II. REDUCED-RANK GP-SSMS AND PARTICLE
FILTERING

In this section, we briefly review background material on
GP-SSMs and PFs that are necessary for understanding the
proposed learning method described in Sec. III.

A. Reduced-Rank GP-SSMs

We rely on GPs for encoding the prior information of
f for learning of the state-space model. The covariance
function K(x,x′) describes the prior assumptions on the
function and is known a priori. Following the notation in
[16], isotropic covariance functions (i.e., those only depend
on the Euclidean norm ‖x − x′‖) can be approximated in
terms of Laplace operators,

Kθ(x,x
′) ≈

m∑
j1,...,jnx=1

Sθ(λj1,...,jnx )φj1,...,jnx (x)φj1,...,jnx (x′), (4)

where, for simplicity, we assume m basis functions for each
state dimension. In (4), Sθ is the spectral density of Kθ and

λj1,...,jnx =

nx∑
n=1

(
πjn
2Ln

)2

, (5a)

φj1,...,jnx =

nx∏
n=1

1√
Ln

sin

(
πjn(xn + Ln)

2Ln

)
, (5b)

are the Laplace operator eigenvalues and eigenfunctions,
respectively, on the interval [−Ln, Ln] ∈ R for each n =
1, . . . , nx. For brevity, we will in the rest of the paper
denote j1, . . . , jnx

with j. Note that according to (4), (5),
only the spectral density depends on the hyperparameters θ.
Furthermore, (4) can be interpreted as an optimal parametric
expansion with respect to the covariance function in the GP
prior [6]. As a special case when nx = 1, (5) becomes
λj = (πj/(2L))2 and φj(x) = 1

√
L sin (πj(x+ L)/(2L)).

From the approximation (4) using Laplace operators, [16]
provides a relation between basis function expansions of a
function f and GPs based on the Karhunen-Loeve expansion;
with the basis functions chosen as (5b), then

f(x) ∼ GP(0, κ(x,x′))⇔ f(x) ≈
∑
j

γjφj(x), (6)

with
γj ∼ N (0,Sθ(λj)). (7)

For a state-space model xk+1 = f(xk) + wk, (6) implies
the reduced-rank GP-SSM

xk+1 =

 γ
1
1 · · · γm1
...

...
γ1
nx
· · · γmnx


︸ ︷︷ ︸

A

φ
1(xk)

...
φm(xk)


︸ ︷︷ ︸

ϕ(xk)

+wk, (8)

where γjn are the weights to be learned and m is the total
number of basis functions (i.e., mnx in (4)). In Sec. III, (8) in
combination with PF forms the basis for learning A and Q
jointly with estimating the state x. For later use, we express
the prior on the coefficients γj in (7) at time step k = 0 as
a Matrix-normal (MN ) distribution over A [23],

A ∼MN (M ,Q,V ) (9)

with mean M = 0, right covariance Q, and left precision
V with diagonal elements S−1

θ (λj). We put an inverse-
Wishart (IW) prior on Q according to Q ∼ IW(ν0,Λ0),
where ν0 > nx − 1 is the degrees of freedom and Λ0 is
a positive definite matrix. Assuming the covariance prior to
be IW distributed is common in covariance estimation due
to its properties [7], [24]–[26]. Since there exists different
parametrizations of the MN and IW distributions, we
provide the details in the Appendix.

B. Particle Filtering

Sequential Monte-Carlo (SMC) methods, such as PFs,
constitute a class of techniques that estimate the posterior
distribution in SSMs, and SMCs have recently emerged as a
useful tool in learning of SSMs (e.g., [27]). PFs approximate
the posterior density p(x0:k|y0:k) by a set of N weighted
state trajectories as

p(x0:k|y0:k) ≈
N∑
i=1

qikδxi
0:k

(x0:k), (10)

where qik is the importance weight of the ith state trajectory
xi0:k and δ(·) is the Dirac delta mass. The PF recursively
estimates (10) by repeated application of Bayes’ rule as

p(x0:k|y0:k) ∝ p(yk|x0:k,y0:k−1)p(xk|x0:k−1,y0:k−1)

· p(x0:k−1|y0:k−1). (11)

Since it is hard to obtain samples from (10) directly, sampling
is done from a tractable, user-designed proposal distribution
π, as

xk ∼ π(xk|x0:k−1,y0:k). (12)



Inserting (10) into (11) and accounting for the proposal,
importance weight qik is obtained as

qik ∝ qik−1

p(yk|xi0:k,y0:k−1)p(xik|xi0:k−1,y0:k−1)

π(xik|xi0:k−1,y0:k)
. (13)

In this work we choose the proposal as the predictive density,
π(xk|x0:k−1,y0:k) = p(xk|x0:k−1,y0:k−1), which leads to
the simplified weight update

qik ∝ qik−1p(yk|xik). (14)

The PF algorithm iterates between prediction and weight
update, combined with a resampling step that removes par-
ticles with low weights and replaces them with more likely
particles.

III. RECURSIVE BAYESIAN INFERENCE AND LEARNING

The joint state inference and learning problem using
the reduced-rank formulation (8) amounts to estimating the
posterior distributions of x0:k, Q, and A. To this end, we
utilize the factorization

p(A,Q,x0:k|y0:k) = p(A,Q|x0:k,y0:k)p(x0:k|y0:k),
(15)

where

p(A,Q|x0:k,y0:k) = p(A|Q,x0:k,y0:k)p(Q|x0:k,y0:k).
(16)

From (16), we can approximate (3b) by marginalization.
To estimate (15), we will first describe how to compute
(16). This is followed by a procedure for computing the
prediction density p(xk|x0:k−1,y0:k−1), needed to generate
the particles {xik}Ni=1. Computing the prediction density
is complicated by that it is dependent on the unknown
coefficients A and covariance Q.

A. Recursive Bayesian Learning in GP-SSMs

For the learning of A and Q, we use Bayes’ rule on (16),

p(A,Q|x0:k,y0:k) ∝ p(xk,yk|A,Q,x0:k−1,y0:k−1)

p(A,Q|x0:k−1,y0:k−1). (17)

The observation function (2b) is known and independent of
A and Q. Hence, from the Markov property of (8),

p(xk,yk|A,Q,x0:k−1,y0:k−1) =

p(xk|xk−1,A,Q)p(yk|xk), (18)

which is the product of two Gaussian distributions. To get a
computationally tractable solution of (17), we use conjugate
priors. Given a likelihood, a conjugate prior is the prior
distribution such that the prior and posterior are in the same
family of distributions. From (9), the joint prior p(A,Q) at
time step k = 0 isMNIW distributed with the hierarchical
structure

MNIW(A,Q|0,V ,Λ0, ν0) =

MN (A|0,Q,V )IW(Q|ν0,Λ0). (19)

For the Gaussian joint likelihood (18), the joint prior (19) is
a conjugate prior [7], [23], [28]. Hence, for any k = 1, 2, . . . ,
the posterior (17) isMNIW distributed when conditioning
on x0:k and y0:k.

For a set of measurements y0:T , by introducing

ΦT =

T−1∑
k=1

xk+1x
T
k+1, (20a)

ΨT =

T−1∑
k=1

xk+1ϕ(xk)T, (20b)

ΣT =

T−1∑
k=1

ϕ(xk)ϕ(xk)T, (20c)

the posterior distribution of A and Q when using a batch
of measurements in a PMCMC implementation for learning
[6], [7], becomes

p(Q|x0:T ,y0:T ) = IW(Q|ν̄, Λ̄), (21a)

p(A|Q,x0:T ,y0:T ) =MN (A|M̄ ,Q, Σ̄−1), (21b)

where
M̄ = Ψ̄Σ̄−1, Σ̄ = ΣT + V , Ψ̄ = ΨT +MV ,

Λ̄ = Λ0 + Φ̄− M̄Ψ̄T, Φ̄ = ΦT +MVMT,
(22)

and ν̄ = T + ν0. Since we assume a zero-mean prior on the
coefficients in (9) at time step k = 0, in (22), M = 0.

To get recursive update equations suitable for online
learning, we note that from (20),

Φk+1 = Φk + xk+1x
T
k+1, (23a)

Ψk+1 = Ψk + xk+1ϕ(xk)T, (23b)

Σk+1 = Σk +ϕ(xk)ϕ(xk)T. (23c)

By inserting (23) into (22), we can write the conditional
densities in (16) as

p(A|Q,x0:k,y0:k) =MN (A|M̄k|k,Q, Σ̄
−1
k|k), (24a)

p(Q|x0:k,y0:k) = IW(Q|ν̄k|k, Λ̄k|k). (24b)

With the initialization

M̄0 = 0, Σ̄0 = V , Ψ̄0 = 0, Φ̄0 = 0, (25)

it can be shown that the sufficient statistics in (24) can be
recursively updated as

M̄k|k = Ψ̄k|kΣ̄
−1
k|k, (26a)

ν̄k|k = ν̄k|k−1 + 1, (26b)

Λ̄k|k = Λ0 + Φ̄k|k − M̄k|kΨ̄
T
k|k, (26c)

Σ̄k|k = Σ̄k|k−1 +ϕ(xk−1)ϕ(xk−1)T, (26d)

Φ̄k|k = Ψ̄k|k−1M̄
T
k|k−1 + xkx

T
k , (26e)

Ψ̄k|k = Ψ̄k|k−1 + xkϕ(xk−1)T, (26f)

with the statistics of the predictive distributions given by the
time-update step

Φ̄k|k−1 = λΦ̄k−1|k−1, (27a)
Ψ̄k|k−1 = λΨ̄k−1|k−1, (27b)
ν̄k|k−1 = λν̄k−1|k−1. (27c)



The scalar real-valued number λ ∈ [0, 1] provides expo-
nential forgetting in the data that allows the algorithm to
adapt to (slowly time-varying) changes in A and Q over
time, and also mitigates path degeneracy [24]. To find the
posterior distribution of A and Q, we marginalize out the
state trajectory as

p(A,Q|y0:k) =

∫
p(A,Q|x0:k,y0:k)p(x0:k|y0:k) dx0:k

≈
N∑
i=1

qikp(A
i,Qi|xi0:k,y0:k). (28)

The unknown function and covariance can be extracted from
(28). For instance, an estimate f̂k of f is

f̂k =

N∑
i=1

qikA
iϕ(xik). (29)

B. Recursive Bayesian State Inference in GP-SSMs

To estimate the state trajectory, we need an expression
for the predictive (proposal) density p(xk|xi0:k−1,y0:k−1)
in (12). Using the lemma on transformation of variables in
probability density functions,

p(xk|xi0:k−1,y0:k−1) ∝ p(A,Q|Sik−1), (30)

where Sik = {M̄ i
k|k, ν̄

i
k|k, Λ̄

i
k|k, Σ̄

i
k|k, Φ̄

i
k|k, Ψ̄

i
k|k}. By inte-

grating out the unknown parameters,

p(xk|xi0:k−1,y0:k−1) =

∫
p(xk|A,Q,xik−1,y0:k−1)

p(A,Q|xi0:k−1,y0:k−1)dAdQ. (31)

Hence, the predictive distribution (31) is a Student-t density,
which from (30) can be written as

p(xk|xi0:k−1,y0:k−1) =

St(M̄ i
k|k−1ϕ(xik−1), Λ̄i

k|k−1, ν̄
i
k|k−1 − nx + 1). (32)

The samples {xik}Ni=1 generated from (32) are used to
compute the weights (14) and to update the statistics (26).

Note that in the proposed method, each particle i retains
its own estimate of the unknown parameters Ai and Qi,
associated statistics, as well as the state xik and weight qik.
Algorithm 1 summarizes the proposed method.

IV. NUMERICAL EVALUATION

We evaluate against two different benchmark examples
and compare with two offline PMCMC methods. The first
one is the fully Bayesian batch method in [6] which our
method extends to the online case. The second one is the
regularized maximum likelihood method proposed in [7].
Both methods use a particle Gibbs Markov kernel for finding
the state smoothing distribution within an MCMC procedure
based on the whole sequence of measurements. In both
examples, we use a squared exponential covariance function
[2] κ(r) = sf exp (−r2/(2l2)) with spectral density

S(s) = sf
√

2πl2 exp

(
−π

2l2s2

2

)
. (33)

Algorithm 1 Pseudo-code of proposed algorithm
Initialize: Set {xi0}Ni=1 ∼ p0(x0), {qi−1}Ni=1 = 1/N ,
{Si0}Ni=1 = {0, ν0,Λ0,V ,0,0}

1: for k = 0, 1, . . . do
2: for i ∈ {1, . . . , N} do
3: Update weight q̄ik using (14):

q̄ik = qik−1p(yk|xik)

4: Update relevant statistics using (26).
5: end for
6: Normalize weights as qik = q̄ik/(

∑N
i=1 q̄

i
k).

7: Compute Neff = 1/(
∑N
i=1(qik)2)

8: if Neff ≤ Nthr then
9: Resample particles and copy the corresponding

statistics. Set {qik}Ni=1 = 1/N .
10: end if
11: Compute state estimate x̂k =

N∑
i=1

qikx
i
k.

12: Compute function estimate using (29).
13: for i ∈ {1, . . . , N} do
14: Predict relevant statistics using (27).
15: Sample xik+1 from (32).
16: end for
17: end for

A. Example 1

We first consider the system [6]

xk+1 = tanh(2xk) + wk, wk ∼ N (0, 0.1), (34a)
yk = xk + ek, ek ∼ N (0, 0.1), (34b)

where the objective is to learn f and Q. We initialize our
algorithm with ν0 = 10, Λ0 = 1, (i.e., with prior Q ∼
IW(10, 1)) and use sf = 50, l = 1 in (33). Furthermore,
we set L = 4 in (5), use N = 20 particles, and m = 16 basis
functions. The posterior estimate of the method in [6] and the
maximum likelihood estimate of the method in [7] for T =
500 data points and K = 500 MCMC iterations are shown in
Fig. 1. Fig. 2 displays the results from our method for k = 5,
k = 50, and k = 500 time steps, respectively. Our method
converges as the number of data points increases, and when
comparing Fig. 1 with Fig. 2 for k = 500, the performance
is rather similar in terms of the posterior mean where most
of the data are gathered (see lowest plot in Fig. 1).

B. Example 2

In this example we consider the following model,

xk+1 = 10sinc
(xk

7

)
+ wk, wk ∼ N (0, 1), (35a)

yk = xk + ek, ek ∼ N (0, 1), (35b)

where the objective is to learn f when the noise variance is
known. We use L = 30 and m = 40 basis functions, with
sf = 50 and l = 3, and the number of particles is N = 50.
Fig. 3 displays the results for k = 5, 20, 40. For k = 5, the
estimator has not gathered enough information for it to make
a sensible estimate of the dynamical model. However, already
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Fig. 1. The posterior estimates of the method in [6] (upper) and the
regularized maximum likelihood method in [7] (middle) for T = 500
data points and 500 MCMC iterations for Example 1. The true function
is in dashed red, the estimate in black, and for the Bayesian learning,
the distribution is shown in gray. The bars in the lowest plot show the
distribution of data in the state space.

for k = 20 the estimate looks reasonable and for k = 40,
the main characteristics are correctly identified in the regions
where data has been gathered. When comparing to the offline
PMCMC methods in Fig. 4, the respective function estimates
are very similar.

V. CONCLUSION

We developed a novel approach for real-time joint state
estimation and system identification. The method is fully
Bayesian and is based on a combination of particle filter-
ing and Gaussian-process state-space models. The method
relies on conjugate priors and the marginalization concept.
In combination with a recently proposed truncated basis-
expansion formulation, this gives an online algorithm where
each particle retains its own estimate of the unknown state-
transition function and process-noise covariance. The method
is applicable to general nonlinear systems, and a comparison
with state-of-the-art offline learning approaches indicates that
the method can, at least for certain problems, give similar
performance but in real-time. It is future work to include
estimation of the involved hyperparameters, as it can be
nontrivial to tune these.
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APPENDIX

The MNIW distribution is the conjugate prior
for SSMs linear in its parameters A ∈ Rnx×m

and Q ∈ Rnx×nx . The MNIW distribution can
be described by MNIW(A,Q|M ,V , ν,Λ) =
MN (A|M ,Q,V )IW(Q|ν,Λ), where each part is

MN (A|M ,Q,V ) =
|V |nx/2

(2π)nxm|Q|m/2

× exp

(
−1

2
tr
(
(A−M)TU−1(A−M)V

))
, (36)

where |·| is the determinant, tr(·) is the trace operator, and

IW(U |ν,Λ) =
|Λ|ν/2|U |−(nx+ν+1)/2

2νnx/2Γnx(ν/2)

× exp

(
−1

2
tr(U−1Λ)

)
, (37)

where ν is the degrees of freedom, Λ ∈ Rnx×nx is a positive
definite scale matrix, and Γnx

(·) is the multivariate gamma
function.
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