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Abstract
In this paper we derive a formulation for Model Predictive Control (MPC) of linear time-
invariant systems based on H infinity loop-shaping. The design provides an optimized stability
margin for problems that require state estimation. Input and output weights are designed
in the frequency domain to satisfy steady-state and transient performance requirements, in
lieu of conventional MPC plant model augmentations. The H infinity loop-shaping synthesis
results in an observer-based state feedback structure. Using the linear state feedback law, an
inverse optimal control problem is solved to design the MPC cost function, and the H infinity
state estimator is used to initialize the prediction model at each time step. The MPC inherits
the closed-loop performance and stability margin of the loopshaped design when constraints
are inactive. We apply the methodology to a multi-zone heat pump system in simulation.
The design rejects constant unmeasured disturbances and tracks constant references with zero
steady-state error, has good transient performance, provides an excellent stability margin, and
enforces input and output constraints.
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H∞ Loop-Shaped Model Predictive Control
with Heat Pump Application

Scott A. Bortoff1∗, Paul Schwerdtner2, Claus Danielson1 and Stefano Di Cairano1

Abstract— In this paper we derive a formulation for Model
Predictive Control (MPC) of linear time-invariant systems
based on H∞ loop-shaping. The design provides an optimized
stability margin for problems that require state estimation.
Input and output weights are designed in the frequency domain
to satisfy steady-state and transient performance requirements,
in lieu of conventional MPC plant model augmentations. The
H∞ loop-shaping synthesis results in an observer-based state
feedback structure. Using the linear state feedback law, an
inverse optimal control problem is solved to design the MPC
cost function, and the H∞ state estimator is used to initialize
the prediction model at each time step. The MPC inherits
the closed-loop performance and stability margin of the loop-
shaped design when constraints are inactive. We apply the
methodology to a multi-zone heat pump system in simulation.
The design rejects constant unmeasured disturbances and
tracks constant references with zero steady-state error, has good
transient performance, provides an excellent stability margin,
and enforces input and output constraints.

I. INTRODUCTION

Model Predictive Control (MPC) is a feedback control
methodology in which an optimization problem is solved
in real-time to minimize a cost function, which represents
performance, subject to a set of constraints, including the
plant dynamics and limits on inputs, states and outputs. At
each sample time, an optimizer computes a sequence of
control inputs over a finite-time horizon that minimizes the
cost function subject to the constraints. The first element of
the control sequence is applied to the plant at that sample
time, and the process is repeated at subsequent sample times
in a recursive, receding horizon manner.

An MPC control law includes the following components:
1) A prediction model,

xp(k + 1) = Apxp(k) +Bpu(k) (1a)
z(k) = Epxp(k) (1b)
v(k) = Fpxp(k) +Gpu(k) , (1c)

where xp(k) is the generalized plant state, u(k) is the
control input, z(k) is the performance output and v(k)
is the constrained output vector, at time kT , where T
is the sample time. Here, generalized means that the
plant model has been augmented in order to achieve
performance specifications such as disturbance rejection
or reference tracking. The prediction model computes
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the response of the generalized plant, specifically z and
v, subject to a control input [u(k), . . . , u(k+N)] and to
an initial condition xp(k), over the finite-time horizon
of length N .

2) A cost function, typically quadratic,

J(u) = xTp (N)Pxp(N)+

N−1∑
k=1

zT (k)Qz(k)+uT (k)Ru(k) ,

(2)
where matrices P > 0, Q ≥ 0 and R > 0 are designed
to meet performance requirements.

3) Inequality constraints

vmin ≤ v(k) ≤ vmax , (3)

which are derived from performance requirements and
plant limitations.

4) An optimization algorithm that computes the cost-
minimizing control sequence subject to the constraints
at each time kT .

For many applications, such as the heat pump system we
consider in this paper, a state estimator must be used to
initialize the prediction model at each sample time, because
the full state is not available from direct measurement. If
the plant is subject to an unmeasured disturbance, then the
state estimator is typically constructed by some kind of plant
model augmentation, such as adding a constant offset vector
to the output and estimating it together with the plant state
to compensate for the effects of the unknown disturbance. It
is well-known that this type of plant augmentation and es-
timator design will result in closed-loop offset-free tracking
of the MPC, under minor assumptions [1], [2].

However, it is also well-known that using an estimated
state in a full state feedback control law such as Linear
Quadratic Gaussian (LQG), which is the basis of MPC be-
cause the cost (2) is quadratic and the estimator is a Kalman
filter, provides no guarantee of any stability margin [3]. This
fact has been generally ignored in the MPC literature, in
which the typical design methodology emphasizes perfor-
mance and constraint enforcement, but often overlooks robust
stability, especially in the design of the plant augmentations,
the state estimation gain, and the cost matrices Q and R.

This paper presents a design methodology that we call
Loop-Shaped Model Predictive Control (LSMPC), in which
the MPC design is based not on LQG but upon robust H∞
loop-shaping [4], [5]. This provides an optimized stability
margin, and provides a rigorous way to design the plant
augmentations to meet performance requirements for closed-
loop bandwidth, transient response, disturbance rejection and



reference tracking. The methodology results in values for the
state estimator gain, and for Q, R and P in (2). It consists
of the following steps.

1) Design input and output weights for the plant to meet
closed-loop performance specifications. This step re-
places conventional MPC plant augmentations.

2) Synthesize the H∞ loop-shaping compensator, which
has an observer-based state feedback structure like
LQG, but provides an optimized stability margin.1

3) Compute cost matrices Q ≥ 0, R > 0 and P > 0 by
solving an inverse-optimal control problem for the state
feedback from step (2).

4) Use the H∞ state estimator to initialize the prediction
model at each time step. Some additional augmentations
are necessary to enforce output constraints if any are
present in the problem.

The closed-loop LSMPC inherits the disturbance rejection,
reference tracking, transient response and stability margin
of the H∞ loop-shaped controller in the region where
constraints are inactive, which normally, for good control
designs, contains the target equilibria. The loop-shaped state
estimator gain is computed by the H∞ synthesis, and there-
fore does not require additional tuning. The key synthesis
steps involve computing solutions to decoupled Riccati equa-
tions or solving a Linear Matrix Inequality (LMI), which are
straightforward with available tools such as SeDuMi [6] and
YALMIP [7]. Of course, LSMPC can also enforce constraints
on inputs, states and outputs.

This paper extends several previously published results.
Rowe and Maciejowski [8] apply H∞ loop-shaping and
inverse optimality to compute the state estimator and MPC
cost. However, the authors do not consider output constraints,
and they augment models of the reference and disturbance
into the plant model, implying that the disturbance must be
measured or estimated. In this paper, all plant augmentations
are the result of H∞ loop-shaping, we consider input and
output constraints, and we consider unmeasured disturbances
without the need to incorporate a disturbance model into
the plant model. We remark that some conventional plant
augmentations, such as adding a constant offset vector to the
output and estimating its value in order to achieve offset-free
tracking, make the augmented plant uncontrollable, which
violates a sufficient condition for the H∞ loop-shaping
compensator. Maciejowski [9] and Di Cairano and Bemporad
[10] consider the problem of controller matching, or finding
a matching cost function, assuming an output feedback
controller or state feedback controller, respectively, is given
a priori. In this paper we design both the state feedback and
state estimator to meet performance requirements and also
to optimize a stability margin.

LSMPC may have some disadvantages. First, we have
observed that for some plants it may result in a numerically
ill-conditioned matrix P in (2), which can make the real-
time optimization problem ill-conditioned, although there

1Technically the resulting compensator possesses a slightly sub-optimal
stability margin.
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Fig. 1. Design steps for H∞ loop-shaping. 1) Compute the frequency
response of P . 2) Design weights W1 and W2 to shape |Ps(jω)| =
|W1(jω)P(jω)W2(jω)|. 3) Compute the robustifying compensator Ks.

are numerical methods that can be employed to address
or at least reduce this problem. And second, for some
problems, the prediction model can have a larger dimension
when compared to a conventional MPC design. This is
because, in our formulation, any constrained outputs require
an additional prediction model augmentation. However, in
the special cases that the MPC need not enforce output
constraints, or the problem does not require rejection of
an unmeasured disturbance, the prediction model does not
require this additional augmentation and could be of lower
dimension than a conventional MPC design.

Throughout this paper, we use the calligraphic font to
represent a linear system, e.g. P , and the italics roman font to
represent matrices, e.g., As. We employ the positive feedback
convention that is standard in theH∞ loop-shaping literature.
In Section II we present the design steps for a general
linear time-invariant system. In Section III we design the
LSMPC for a multi-zone heat pump system which requires
state estimation, is subject to an unmeasured disturbance, and
has constraints on inputs and outputs. We suggest several
extensions to the result in Section IV.

II. H∞ LOOP-SHAPED MPC

Consider the scaled plant with minimal realization

x(k + 1) = Ax(k) +Bu(k) +Bqq(k) (4a)
y(k) = Cx(k) (4b)
v(k) = Fx(k) +Gu(k), (4c)

where x(k) ∈ Rn, u(k) ∈ Rm is the control, q(k) ∈ Rd

is an unmeasured disturbance, y(k) ∈ Rp is the measured
output, v(k) ∈ Rl is the constrained output. We assume (4)
is strictly proper. If not, then the H∞ weights must be made
strictly proper for the H∞ synthesis.

To exemplify the design procedure, assume that the output
vector y ∈ Rp is divided into two disjoint sets: A set of
regulated outputs y1 ∈ Rp1 , where p1 ≤ m, and a set of
other measurements y2 ∈ Rp−p1 , so that y = [yT1 yT2 ]T . The
outputs y1 are those which we wish to control, and would be
incorporated into the performance output z in conventional



MPC, while the remainder of measurements are included in
the feedback but are not considered “performance” variables.

Assume a typical set of closed-loop requirements:
A) Output y1 must track constant reference r with zero

steady-state error, if possible;
B) A constant disturbance q must be rejected with zero

steady-state tracking error, if possible;
C) The closed-loop bandwidth must be ωb for the regulated

part of the system, if possible;
D) The closed-loop system must satisfy a set of transient

response specifications (e.g. rise time), if possible;
E) Hard constraints must be enforced on the control input

u; and
F) Constraints must be enforced on the outputs v.
In requirements A-D, by “if possible” we mean, whenever
the constraints allow that to be achieved.

Following [4], [13], [14], H∞ loop-shaping proceeds by
computing the frequency response for the system y = Pu
(and also the frequency response for the system y = Pqq),
translating the bandwidth and transient specifications into the
frequency domain, and designing an input weightW1 and an
output weight W2, in order shape the frequency response
of the compensated open-loop system Ps = W1PW2 to
have characteristics that will ensure the nominal closed-loop
system satisfies Requirements A-D. Ks is then computed by
solving two decoupled Riccati equations. The basic steps are
shown in Fig. 1.

It is common for W1 to include integral action to meet
Requirements A and B, and for W2 to be a diagonal
matrix of constants to account for scaling, although more
complex weights can be used for decoupling for example.
Less conventionally, integral action can instead be included
in W2, and W1 can be a diagonal matrix of constants. This
has some advantages for our MPC formulation. We describe
each approach briefly below, referring the reader unfamiliar
with the theory to the literature.

A. W1 Integral Action

Commonly, W1 is a diagonal system of Proportional-
Integral (PI) type compensators, which we express in
continuous-time Bode form as

W1i(s) = k1i
1 + s/ω1i

s
, (5)

for 1 ≤ i ≤ m. The integral action ensures requirements A
and B are satisfied, and the gain k1i and zero location ω1i are
tuned iteratively using the frequency response (singular val-
ues) of Ps to achieve the specified cross-over frequency and
a desirable cross-over phase in order to meet requirements
C and D. (The continuous-time Bode parameters k1i and
ω1i are the natural choice to achieve these specifications.)
Higher-order weights or off-diagonal terms are possible
but for simplicity of exposition, we assume (5) can meet
the requirements. W2 is typically a diagonal system with
constant gains k2i, 1 ≤ i ≤ p1 corresponding to y1. High-
pass filters

W2j(s) = k2j
s

1 + s/ω2j
, (6)
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Fig. 2. The shaped plant Ps =W1PW2 with integral action in the W2

weight.

for p1 + 1 ≤ j ≤ p may be used for y2. The zeros in (6)
block DC, ensuring that y1 tracks r with zero steady-state
error, but allowing the high frequency content in y2 to pass
into the controller. This can improve the performance of the
H∞ estimator.

B. W2 Integral Action

An alternative is to incorporate integral action on the regu-
lated outputs y1. In this approach,W1 is a diagonal system of
constants to compensate for any scaling issues, i.e., to allow
for more or less weight on particular actuators as needed.W2

is a diagonal system in which the weights corresponding to
y1 are PI-type compensators (5), and weights corresponding
to y2 are constants or low-pass filters. In this case, reference
r is injected at the output y1, so that the PI weights act on
(y1−r), as shown in Fig. 2. This architecture is less common
in the H∞ literature, but it simplifies our MPC design, as
will be explained below.

C. Comparison to Conventional Augmentations

Many conventional MPC augmentations, such as trans-
forming control inputs to incremental form or adding integral
action to output signals, are meant to meet steady-state
tracking requirements or enforce constraints on rates-of-
change. In practice these add integral action to inputs or
outputs, and tend to reduce phase margin. When augmenting
the plant with integrators, we should take the opportunity to
add compensating zeros that can be used to shape cross-over
in order to improve transient performance and robustness.
Using weights W1 and W2 to shape the frequency response
does exactly this. It is an effective way to achieve the
same steady-state effects while also addressing the medium-
frequency performance requirements explicitly.

D. Robustifying Compensator and Closed-Loop Properties

Once W1 and W2 are designed and discretized, then the
robustifying compensator Ks is computed for the shaped
plant Ps. This involves solving two decoupled Riccati equa-
tions, for which solutions exist under the mild conditions
that the plant P is stabilizable and detectable, and that the
weights and plant do not possess any common pole-zero
cancellations. Referring to Fig. 3, the algorithm, which is



us ys

�M�N

Ks

bPs +

�

Ps

M�1
sNs

-
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provided in the Appendix, computes the compensator Ks

that robustly stabilizes the family of perturbed shaped plants

P̂ = {(M+ ∆M )−1(N + ∆N ) : ‖∆N ∆M‖∞ < ε} (7)

for maximum ε > 0, which is the stability margin, where
Ps =M−1s Ns is a normalized left coprime factorization of
the shaped plant Ps [4], [13], [14].

E. H∞ Controller Realizations

The H∞ loop-shaping compensator Ks has an observer-
based state feedback structure [5], [14]. The controller can be
realized in different forms depending on how the reference
r enters the feedback loop. For the W1-integrator design in
Section II-A, a common realization is

x̂s(k + 1) = Asx̂s(k) +Bsus(k) (8a)
+Hs (ŷs(k)− ys(k))

ŷs(k) = Csx̂s(k) (8b)
us(k) = Ksx̂s(k) +K0r(k), (8c)

where the shaped plant Ps is realized as

xs(k + 1) = Asxs(k) +Bsus(k) +Bqsq(k) (9a)
ys(k) = Csxs(k) , (9b)

so that xs includes x from (4a) and states fromW1 andW2,
and B, Bq and C in (4a)-(4b) are suitably augmented to form
Bs, Bqs and Cs, respectively. In (8c), the m×m matrix

K0 = Ks(I −As −BsKs −HsCs)
−1Hs1W22

is chosen so that r = y1 for constant r in steady-state
(Requirement A), Hs = [Hs1 Hs2], where Hs1 corresponds
to y1 and Hs2 corresponds to y2, W2 = [W21 W22]T is
the steady-state gain of W2, and W21 corresponds to y1.
Equations (8a)-(8b) are the state estimator with Hs being
the robust estimator gain, and (8c) is the state feedback.

Alternatively, the W1-integrator design can be realized as

x̂s(k + 1) = Asx̂s(k) +Bsus(k) (10a)
+Hs (ŷs(k)− ys(k) + r(k))

ŷs(k) = Csx̂s(k) (10b)
us(k) = Ksx̂s(k) (10c)

where the reference r enters the controller at the input of
the estimator in (10a). In this realization, the compensator
has the property that for constant values of disturbance q
and reference r, the controller state x̂s converges to zero.
This is a consequence of the stability of the closed loop and
observability of the controller Ks.

For theW2-integrator design in Section II-B, the preferred
realization is

x̂s(k + 1) = Asx̂s(k) +Bsus(k)

+Hs (ŷs(k)− ys(k)) (11a)
ŷs(k) = Csx̂s(k) (11b)
us(k) = Ksx̂s(k), (11c)

where the shaped plant Ps is realized as

xs(k + 1) = Asxs(k) +Bsus(k)

+Brsr(k) +Bqsq(k) (12a)
ys(k) = Csxs(k) . (12b)

Note that the reference r is subtracted from y1 at the input
to the weight W2, as shown in Fig. 2, leading to the Brs

term in (12a). This ensures that the integral action in W2

will drive the tracking error y1−r to zero in the steady-state
for constant values of q and r.

F. MPC Realization

Our objective is to construct an MPC that implements the
loop-shaping controller Ks exactly when the constraints are
inactive. We begin with the cost function. The matrices Q, R,
and associated P in (2) are computed by solving an inverse-
optimal control problem, which can be stated as follows.
Given the shaped plant state-space model for any of the
controller realizations from Section II-E,

xs(k + 1) = Asxs(k) +Bsus(k) , (13)

and the stabilizing full state feedback

us(k) = Ksxs(k) , (14)

find a quadratic cost function

J(us) =

∞∑

k=1

xTs (k)Qsxs(k) + uTs (k)Rsus(k) , (15)

where Rs > 0 and Qs ≥ 0 such that (14) minimizes
(15) subject to (13). In other words, given As, Bs and Ks,
compute Qs ≥ 0 and Rs > 0 such that Ps and Ks satisfy
the associated Riccati equation

AT
s PsAs −AT

s PsBs(Rs +BT
s PsBs)B

T
s PsAs +Qs = Ps

(16)



where

Ks = −(BT
s PsBs +Rs)

−1BT
s PsAs. (17)

Solutions to this problem are published [15], [8], with one
solution being: Set Rs = I , and compute Qs by solving the
same Riccati equations that are used to compute Ks and
Hs in Ks. Then (16) is used to compute Ps. Unfortunately,
this approach can result in a numerically ill-conditioned Ps,
which will make the resulting MPC optimization problem ill-
conditioned, as reported by [12], for example. An alternative
approach is to solve an LMI for Qs ≥ 0, Rs > 0 and Ps > 0,
subject to (16) and (17), and numerically minimizing the
condition number of Ps. We will assume for the remainder
of this paper that a solution to the inverse problem can be
computed using either approach.

Then the basic idea in LSMPC is to use the state estimator
from Ks to initialize the states of the prediction model Ps.
However, there is a complication: The estimator states would
be biased by the unmeasured disturbance q. If we use the
shaped plant Ps as the prediction model, and initialize its
state with the H∞ estimator, then the constrained outputs v
will be biased, leading to errors in constraint enforcement.

We emphasize that it is not feasible to augment the original
plant state x with q and design the H∞ estimator for the aug-
mented plant in an attempt to integrate disturbance estimation
into the H∞ estimator, because such an augmented plant is
not stabilizable and one of the algebraic Riccati equations in
the H∞ loop-shaping design cannot be solved. Furthermore,
it is not feasible to add the term Bqsq̂, where q̂ is an estimate
of the unmeasured q, to either (8b), (10a) or (11a), with the
intention of removing the bias from the estimate x̂s, because
this will result in loss of tracking of r.

Instead, we construct an augmented prediction model that
includes the shaped plant Ps to predict the performance
output z, but is augmented with additional states to predict
the constrained output v without bias. Toward this end, we
construct a second estimator for q, which we denote the
disturbance estimator. One way to do this is to rewrite (4) to
include q as an additional state, assuming that it is constant
over the prediction horizon,

[
x(k + 1)
q(k + 1)

]
=

[
A Bq

0 I

] [
x(k)
q(k)

]
+

[
B
0

]
u(k)

(18a)

y(k) = [C 0]

[
x(k)
q(k)

]
. (18b)

Assuming (18) is detectable, we construct a Luenberger
Observer for (18), defining the process and measurement
weights as, for example,

Qq =

[
0 0
0 I

]
and Rq = δI, (19)

where δ > 0 is a tuning parameter, and solving the associated
discrete-time Riccati equation for the gain Gq , resulting in

the estimator[
x̂(k + 1)
q̂(k + 1)

]
=

[
A Bq

0 I

] [
x̂(k)
q̂(k)

]
+

[
B
0

]
u(k)

+Gq (y(k)− ŷ(k)) (20a)

ŷ(k) = [C 0]

[
x̂(k)
q̂(k)

]
. (20b)

Of course the disturbance estimator design specifics depend
on the particulars of an application, and other types of
estimators are certainly possible. Note that this design uses
the open-loop plant model P , and is therefore sensitive to
model uncertainty.

To form the prediction model, write the input weight W1

in state-space as

xw(k + 1) = Awxw(k) +Bwus(k) (21a)
u(k) = Cwxw(k) +Dwus(k). (21b)

For the W1-integrator design, (21a) includes the integral
states, while for theW2-integrator design, withW1 constant,
(21) has only the direct transmission term Dw, so the dimen-
sion of xw is zero. In either case we define the prediction
model state as

x̂p(k) = [x̂Ts (k) xTw(k) x̂T (k) q̂T (k)]T , (22)

the prediction model as

x̂p(k + 1) =

 As 0 0 0
0 Aw 0 0
0 BCw A Bq

0 0 0 I

 x̂p(k) +
 Bs

Bw

BDw

0

us(k)

(23a)

z(k) =
[
I 0 0 0

]
x̂p(k) (23b)

v(k) =
[
0 GCw F 0

]
x̂p(k) (23c)

and the cost function as

J(us) = xTs (N)Psxs(N) +

N−1∑
k=1

zT (k)Qsz(k) + us(k)Rsus(k).

(24)
At each sample time kT , the prediction model state (22) is
initialized with x̂s(k) computed by the H∞ estimator (10a)-
(10b) or (11a)-(11b), and with x̂(k) and q̂(k) computed by
the disturbance estimator (20), and with direct measurement
of xw(k) (or in W2-integrator design, it is not present).
Importantly, the performance variable z depends only on
the estimated state x̂s, because of the structure of E in
(23b). The disturbance estimate q̂ affects only the predicted
constrained output v and not the predicted performance
output z. This ensures that the MPC is identical to the H∞
loop-shaped controller, and inherits its robustness properties,
when constraints are inactive.

Proposition 1: Consider the family of perturbed plants (7)
and the model predictive control with prediction model (23),
cost (24), estimator (20), and H∞ estimator (10a)-(10b) or
(11a)-(11b). Let Xia be the set of states where the con-
straints (3) are strictly satisfied by the MPC input sequence
along the entire prediction horizon. For every equilibrium
x̂ep in the interior of Xia there exists a set S ⊆ Xia with
x̂ep in the interior of S such that S is invariant for the plant
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Fig. 4. Heat pump system from [16] showing the location of the
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in closed-loop with MPC, and the closed-loop is stable in
S with the same stability margin ε provided by H∞ loop-
shaped controller corresponding to either (10) or (11).
Proof (Sketch): The proof follows directly by the design
method based on inverse optimality, and hence it is only
sketched. Since the MPC cost function is designed by
inverse optimality, in Xia the MPC command is equal to the
command of the H∞ loop-shaped controller (10) or (11). Let
S ⊆ Xia be any invariant set of the closed-loop between the
plant (7) and the H∞ loop-shaped controller (10) or (11)
with x̂ep in the interior of S, so that starting from within
S, the closed-loop trajectory remains in S. Since S ⊆ Xia,
the MPC is equal to the H∞ loop-shaped controller in S,
so that S is invariant also for the closed-loop between the
plant (7) and the MPC. Finally, the existence of S with the
above properties follows from the closed-loop between the
plant (7) and the H∞ loop-shaped controller being stable,
which ensures the existence of a Lyapunov function, whose
sublevel sets are invariant and contain x̂ep in their interior.
Hence, S is any such sublevel set entirely contained in Xia.

The prediction model (23) can be simplified if the problem
includes constraints only on the input u(k), there are no
output constraints, and the W1-integrator design is used.
Then the disturbance estimator (20) is not needed, and (22)
includes only x̂s(k) and xw(k). In this case an unmeasured
disturbance, if present, will be properly rejected, and input
constraints properly enforced, because xw(k), which is mea-
sured, is not affected directly by q(k).

III. MULTI-ZONE HEAT PUMP CASE STUDY

Consider the heat pump shown in Fig. 4, consisting of one
outdoor unit and four indoor units. The outdoor unit contains
a receiver, an electronic expansion valve (EEV), denoted
EEV M, an evaporating heat exchange coil, a compressor and
an outdoor fan. The indoor units each contain a condensing
heat exchange coil, an EEV and an indoor fan. The six
controls for the system are the compressor frequency CF,
the commanded settings for each EEV i, 1 ≤ i ≤ 4,
and EEV M. The fan speeds for the indoor and outdoor
units are assumed constant. Each zone is subject to an
unmeasured heat disturbance Qi. The measurements are the
four room temperatures TRi, the eight condenser inlet and

outlet temperatures Tini and Touti, 1 ≤ i ≤ 4, the evaporator
temperature TE and the compressor discharge temperature
TD.

The heat pump is modeled as a scaled discrete-time linear
system P , given in state-space form as (4a)-(4c). The model
is computed by linearizing and reducing a detailed Modelica
system model described in [17]. In addition to stability, the
requirements for the closed-loop system are to
A) Track constant room temperature set-points with zero

steady-state error, if possible;
B) Reject constant, unmeasured heat load disturbances, if

possible;
C) Track a desired compressor discharge temperature TD

with zero steady-state error, if possible;
D) Achieve a closed-loop bandwidth ωb for room tempera-

ture set-point tracking;
E) Enforce hard constraints on all control inputs; and
F) Enforce constraints on outputs including (1) a minimum

subcooling temperature TSCi = Tini−Touti > TSCMin,
1 ≤ i ≤ 4; (2) a maximum TD < TDMax; (3) a
minimum discharge temperature super-heat TDSH =
TD − Tini > TDSHMin.

We use the W2-integrator design with 5 regulated outputs
y1: The four room temperatures TRi and the discharge
temperature error, which is the difference between TD and
a reference that is scheduled on CF, as described in [16]. PI
weights are used for each of these, and constant gains are
used in W1 and the y2 outputs in W2, as shown in Fig. 2.

Frequency responses are plotted in Fig. 5. We achieve a
desired cross-over frequency of approximately 0.01 rad/s,
giving a time constant of about 10 min, and good phase
(not shown) at cross-over, with relatively little tuning effort.
The stability margin achieved is ε = 0.4, which is excellent
for this plant. In the plot of |Ps(jω)| we see that there is one
singular value with a faster bandwidth, aligned strongly with
the compressor input and the discharge temperature output.
The weakest (lowest gain) direction is aligned in the direction
of differences in room temperatures, which is a consequence
of the heat pump architecture in which all the condensers
are at the same pressure, neglecting pipe losses.

We solve the inverse optimal control problem using the
method in [8]. The condition number of Ps is 108, which
is excessive but solvable on a desktop PC. We form the
prediction model, cost and constraints as described in the
Section II-F. There are hard constraints on the scaled inputs,
−1.5 < ui < 1.5 for 1 ≤ i ≤ 6, and soft constraints on TSCi

(−10◦C), TD (40◦C), and TDSH (10◦C). Simulation using
a linear model is performed for two different transients. For
these simulations, the LSMPC horizon is set to N = 20, the
sample period is T = 15 s, making the horizon 5 minutes
in length. ADMM or PQP [18] can be used to solve the
optimization problem in real-time.

For the first simulation shown in Fig. 6, the temperature
set-point in Room 1 is increased by 2◦C, and then the set-
points in Rooms 2, 3, 4 are also increased by 2◦C, and
finally a −1kW heat load step applied to all rooms. We
see that LSMPC can track room temperature references with
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Fig. 5. Frequency response of P (top), Ps (middle), and PsKs (bottom).

zero steady-state error when no constraints are active, reject
the heat load disturbance with zero steady-state error, and
enforce all constraints. Note the rise-time of the first transient
is larger, because that direction (different room temperatures)
is lower-gain than the second transient, where all room
temperatures are the same, as expected by the frequency
response analysis.

A second simulation scenario is is shown in Fig. 7. Here,
the temperature set-point in Room 1 is increased by 2◦C,
and then the set-point in Room 2 is increased by 3◦C, while
Rooms 3 and 4 set-points remain at 22◦C, and finally a
−1kW heat load step applied to all rooms. This is a more
aggressive case because it is in the low-gain direction of the
plant. Therefore, more constraints are activated. We see that
the system can track room temperatures with zero steady-
state error after the first transient, but the second causes more
constraints to be activated, and as a result there is a small
steady-state error in the room temperatures. After the heat
load transient, there is a larger steady-state error in the room
temperatures, but the system is still stable, and the steady-
state error is acceptable.

IV. CONCLUSIONS

An MPC formulation is presented based on H∞ loop-
shaping. This procedure optimizes a stability margin with
respect to normalized coprime factor plant uncertainty, and
provides a design methodology for the plant augmentations,
cost function, and state estimator. The method can be applied
to general MPC problems, but is most applicable to those
problems that require state estimation. We exemplify the

Fig. 6. Loop-shaped MPC simulation. At t = 10 min, the reference for
Room 1 is increased 2◦C, then at t = 90 min, references for Rooms 2,
3, 4 are increased 2◦C, and finally at t = 180 min, a heat load step of
−1 kW is applied to all four rooms. Input and output constraints are active
in transient, but not steady-state. References are tracked with zero steady-
state error, and the heat load disturbance is rejected.

method for a multi-zone heat pump. The MPC for this prob-
lem has a good stability margin, enforces input and output
constraints, tracks constant references and rejects constant
disturbances with zero steady-state error, and provides good
transient response. The tuning procedure is straightforward
with a minimal number of parameters.

There are a number of extensions possible. First, alterna-
tive architectures of the H∞ feedback loop, and the different
ways these can be realized as an MPC should be thoroughly
explored. For example, how should reference or disturbance
preview be incorporated? Second, improved numerical meth-
ods for solving the inverse optimal controller by LMI should
be developed. Third, it may be possible to analyze robustness
for the MPC considering active constraints, since the MPC
can be realized as a linear affine state feedback law for each
combination of active constraints [2], and the stability margin
of the feedback loop is the inverse of the H∞ gain from φ
to [uTs yTs ]T to in Fig. 3 for the linear system [14].
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Fig. 7. A more aggressive scenario. At t = 10 min, the reference for Room
1 is increased 2◦C, then at t = 90 min, reference for Room 2 is increased
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Input and output constraints are active in transient and steady-state, and the
rooms are unable to track with zero steady-state error, but constraints are
enforced, tracking errors are relatively small and the closed-loop remains
stable.
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APPENDIX

In this Appendix the equations for calculation of the H∞
loop-shaping controller and inverse optimal controller from
[8] are included for completeness. For the strictly proper
shaped plant

xs(k + 1) = Asxs(k) +Bsus(k) (25)
ys(k) = Csxs(k) (26)

compute solutions to the pair of Riccati equations

AT
s XsB

(
BT

s XsBs + I
)
BT

s XsAs −AT
s XsAs +Xs = CT

s Cs

(27)

AsZsC
T
s

(
CsZsC

T
s + I

)
CsZsA

T
s −AsZsA

T
s + Zs = BsB

T
s .

(28)

Stabilizing solutions to (27) and (28) exist if (As, Bs) is
stabilizable and (As, Cs) is detectable, which is ensured by
conventional loop-shaping techniques. Next compute

γmin =
√

1 + λmax(XsZs), (29)

where λmax is the maximum eigenvalue. Then, given a value
γrel > 1, which is the relative sub-optimality (typically
γrel = 1.1), compute γ = γrel · γmin. Then

Ws = (γ2 − 1)I − ZsXs (30)

Ks = −γ2BT
s XsW

−1
s

(
I + γ2BsB

T
s XsW

−1
s

)−1

As (31)

Hs = −AsZsC
T
s

(
I + CsZsC

T
s

)−1

(32)

Qs = γ2XsW
−1
s − γAT

s

(
I + γ2XsW

−1
s BsB

T
s

)−1

XsW
−1
s As

(33)
Rs = I. (34)

and ε = 1/γ.
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