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Abstract
This paper addresses learning of the tire-friction curve for road vehicles, using a batch of
wheel-speed and inertial measurements. We formulate a Bayesian approach based on recent
advances in particle filtering and Markov chain Monte-Carlo methods. The unknown function
mapping the wheel slip to tire friction is modeled as a Gaussian process (GP) that is included
in a dynamic vehicle model relating the GP to the vehicle state. The approach is nonpara-
metric and learns the probability density function of the tire friction, from which explicit
estimates can be extracted. One benefit of the method is that it is not subject to overfitting
issues. We illustrate the efficacy of the method for a set of simulated step-steer maneuvers.
The results show that the method can accurately identify the nonlinear tire-friction curves,
even for a limited amount of data.
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Bayesian Tire-Friction Learning by Gaussian-Process State-Space Models

Karl Berntorp

Abstract— This paper addresses learning of the tire-friction
curve for road vehicles, using a batch of wheel-speed and
inertial measurements. We formulate a Bayesian approach
based on recent advances in particle filtering and Markov
chain Monte-Carlo methods. The unknown function mapping
the wheel slip to tire friction is modeled as a Gaussian process
(GP) that is included in a dynamic vehicle model relating the
GP to the vehicle state. The approach is nonparametric and
learns the probability density function of the tire friction, from
which explicit estimates can be extracted. One benefit of the
method is that it is not subject to overfitting issues. We illustrate
the efficacy of the method for a set of simulated step-steer
maneuvers. The results show that the method can accurately
identify the nonlinear tire-friction curves, even for a limited
amount of data.

I. INTRODUCTION

Advanced driver-assistance systems (ADAS) mainly ac-
tuate the vehicle through the tire–road contact. Knowledge
of the tire–road relation is therefore of high importance
in ADAS. The interaction between tire and road is highly
nonlinear, and the parameters describing the nonlinear rela-
tion vary heavily between different surfaces and depend on
several factors [1]. It is common to model the tire friction
as a static function of the slip, and several different tire
models are reported in [1]–[3]. Fig. 1 shows the typical tire-
friction curves generated by the Pacejka (Magic formula)
tire model [2]. The parametrizations used vary across the
different models reported in literature, but the main charac-
teristics are similar. Unfortunately, the vehicle states involved
in the tire-friction estimation are not directly measured in
production vehicles. Methods for identifying the parameters
of the Brush model based on nonlinear optimization can
be found in [1], [4]. The method in [5] uses an unscented
Kalman filter (UKF) that augments the vehicle state and
models the Pacejka parameters as random walk processes.
The work [6] employs recursive least-squares for estimating
the cornering stiffness (the linear slope of the friction curve),
and [7] performs estimation of the Pacejka tire parameters
by generating artificial data associated with different tire
parameters and solving for the best fit to measured data.
In [8], the Brush tire model and a nonlinear observer is
used to estimate the peak friction coefficient under different
excitation levels.

In this paper, we develop a fully Bayesian approach
for identifying the tire-friction function assuming sensors
available in production cars. We model the unknown function
describing the tire friction as a Gaussian process [9], which
combined with particle filtering (PF) [10] and Markov chain
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Fig. 1. Examples of lateral tire friction µy as a function of slip angle α
for surfaces corresponding to asphalt, loose snow, and ice.

Monte-Carlo (MCMC) methods [11] results in a method for
estimating the posterior density function (PDF) of the tire
friction, given the measurement data. From the PDF, function
estimates can be extracted, for instance, as the mean of the
PDF. Since the method is nonparametric, it is not subject to
specific modeling constraints that various tire models impose.
Still, the method is insensitive to overfitting to the data.

Gaussian processes (GPs) [9] are effective tools for non-
parametric modeling of static nonlinear functions and has re-
cently been extended to dynamical system behavior [12]. We
leverage the recently developed framework in [13], where GP
state-space models (GP-SSM) are used in a particle MCMC
setting to learn general nonlinear SSMs. A straightforward
application of the approach in [13] to our friction-curve
identification is impractical, since the partial knowledge of
the vehicle dynamics is not fully utilized. We therefore
decompose the vehicle dynamics into an unknown part and
a known part, where the unknown tire friction characteristics
is modeled as a GP. By leveraging this decomposition, we
formulate a method that can efficiently learn the input-output
mapping between slip and tire friction.

Notation: With p(x0:t|y0:t), we mean the posterior den-
sity function of the state trajectory x0:t from time in-
dex 0 to time index t given the measurement sequence
y0:t := {y0, . . . ,yt}. We define ft := f(xt) for a function
f . For a vector x, x ∼ N (µ,Σ) indicates that x is Gaussian
distributed with mean µ and covariance Σ and xn denotes
the nth component of x. Matrices are indicated in capital
bold font as X , and the element on row i and column j
is denoted with Xij . The notation f ∼ GP(0,κθ,f (x,x′))
means that the function f(x) is a realization from a GP
prior with a given covariance function κθ,f (x,x′) subject
to hyperparameters θ, and IW(ν,Λ) is the inverse-Wishart
distribution with degree of freedom ν and scale matrix Λ.
Similarly,MN (M ,Q,V ) is the Matrix-Normal distribution
with mean M , right covariance Q, and left precision V .
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Fig. 2. A schematic of the single-track model and related notation.

II. MODELING AND PROBLEM FORMULATION

We use a single-track chassis model that includes the lat-
eral velocity vY , yaw rate ψ̇, and, optionally, the longitudinal
velocity vX as states, x = [vX vY ψ̇]T ∈ Rd. The single-
track model, shown in Fig. 2, lumps together the left and
right wheel on each axle, and roll and pitch dynamics are
neglected. The model is standard. For the equations, see [14].

The tire friction components µxi , µyi , i ∈ {f, r} are
modeled as static functions of the slip quantities,

µxi = fxi (λi(x), αi(x)), (1a)
µyi = fyi (αi(x), λi(x)), (1b)

where λ is the slip ratio and α is the slip angle. These are
defined as in [2],

αi = − arctan

(
vy,i
vx,i

)
, (2)

λi =
Rwωi − vx,i

vx,i
, i ∈ {f, r}, (3)

where Rw is the known wheel radius, ωi is the known
wheel angular velocity for wheel i, and vx,i and vy,i are
the longitudinal and lateral wheel velocities for wheel i with
respect to an inertial system, expressed in the coordinate
system of the wheel. The wheel velocities can be com-
puted from a transformation of the longitudinal and lateral
vehicle velocities. For brevity, we define the two vectors
α = [αf αr]

T, λ = [λf λr]
T and the total slip vector as

s = [αT λT]T. The wheel dynamics are

Ti − Iwω̇i − F zµxiRw = 0 , i ∈ {f, r}. (4)

Here, Ti is the driving/braking torque for wheel i and Iw is
the wheel inertia.

We compactly write (1) as

µ =
[
fxf fxr fyf fyr

]T
, (5)

and model the friction vector as realizations from a Gaussian
process prior

µ(s) ∼ GP(0,κθ,µ(s, s′)), (6)

where the covariance function κθ,µ(s, s′) is chosen in ad-
vance. In this work the hyperparameters θ are determined a
priori but can also be included in the learning process [15].
For completeness we include both longitudinal components
in (5). However, in general this will lead to poor observability

of the longitudinal components without further assumptions,
such as front/rear wheel drive or additional sensing.

A. Estimation Model

After discretization with sampling period Ts and using
u = [δ ωi]

T as the known input vector, the vehicle model
can be written as

xt+1 = a(xt,ut) +G(xt,ut)µ(st), (7)

where a and G are the (known) parts of the vehicle model,
and µ is the unknown function. Learning of µ amounts to
estimating the distribution p(µ|y0:T ) given the measurement
history y0:T .

Our sensor configuration is based on a setup commonly
available in production cars, namely the longitudinal and
lateral accelerations, aXm, aYm, and the yaw rate ψ̇m, forming
the measurement vector y = [aXm aYm ψ̇m]T. The yaw-rate
measurement is directly related to the yaw rate, whereas
aX and aY can be extracted from the single-track model.
We model the measurement noise et as zero-mean Gaussian
distributed noise with covariance Rt according to et ∼
N (0,Rt). The measurement model can be written as

yt = h(xt,ut) +D(xt,ut)µ(st) + et. (8)

Similar to (7), the measurement model (8) is decomposed
into known parts of the dynamics, h and D, and an unknown
part, µ. The measurement covariance R is assumed known a
priori. This is reasonable, since the measurement noise can
oftentimes be determined from prior experiments and data
sheets.

The estimation model consisting of (7) and (8) is a GP-
SSM where the tire friction is a GP. The reason for modeling
the tire friction as a GP is its ability to model the inherent
uncertainty stemming from the measurement data, not only
the uncertainty from the stochastic noise term et, which
affects the estimation quality, but also that the measurement
data may contain few measurements in certain regions of the
state space.

Remark 1: Automotive-grade inertial sensors usually have
bias that affects the measurement quality. Since the proposed
method uses batches of measurement data, we assume that
the bias has already been removed (e.g., using [16]). If not,
it can be directly incorporated into the framework (c.f. [17]).

B. Problem Formulation

We want to estimate the nonlinear function µ describing
the tire friction. We approach this problem as follows. Given
the system model (7), (8), and a Gaussian process prior (6) on
the tire friction, we want to infer the posterior distributions
of µ(s) given a set of measurement data y0:T ,

p(µ|y0:T ). (9)

Since the tire friction estimate will depend on the vehicle
state, we solve for (9) by approximating the joint posterior



p(µ,x0:T |y0:T ) and perform the marginalization step

p(µ|y0:T ) =

∫
p(µ,x0:T |y0:T ) dx0:T

=

∫
p(µ|x0:T ,y0:T )p(x0:T |y0:T ) dx0:T (10)

to recover (9).

III. REDUCED-RANK GP-SSMS AND PARTICLE
FILTERING

We rely on GP priors for learning the function describing
the tire friction, where the covariance function κ(x,x′)
describes the prior assumptions. A bottleneck in some of the
GP-SSM methods proposed in literature is the computational
load. In this paper we use the computationally efficient
reduced-rank GP-SSM framework presented in [13], [18].
For a thorough derivation and convergence proofs, see [18].

Following the notation in [18], isotropic covariance func-
tions (i.e., they only depend on the Euclidean norm ‖x−x′‖)
can be approximated in terms of Laplace operators on the
following form:

κθ(x,x
′) ≈

m∑
j1,...,jd=1

Sθ(λj1,...,jd)φj1,...,jd(x)φj1,...,jd(x′),

(11)
where we for simplicity have assumed m basis functions for
each state dimension. In (11), Sθ is the spectral density of
κθ and

λj1,...,jd =

d∑
n=1

(
πjn
2Ln

)2

, (12a)

φj1,...,jd =

d∏
n=1

1√
Ln

sin

(
πjn(xn + Ln)

2Ln

)
, (12b)

are the Laplace operator eigenvalues and eigenfunctions,
respectively. For brevity, we will in the rest of the paper
denote j1, . . . , jd with j.

From the approximation (11) using Laplace operators, [18]
provides a relation between basis function expansions of a
function f and GPs based on the Karhunen-Loeve expansion.
With the basis functions chosen as (12b),

f(x) ∼ GP(0, κ(x,x′))⇔ f(x) ≈
∑
j

γjφj(x), (13)

with
γj ∼ N (0, S(λj). (14)

For a state-space model xt+1 = f(xt) + wt, (13) implies
the reduced-rank GP-SSM

xt+1 =

γ
1
1 · · · γm1
...

...
γ1d · · · γmd


φ

1(xt)
...

φm(xt)

+wt, (15)

where γjn are the weights to be learned, m is the total number
of basis functions (i.e., md in (11)), and wt is zero-mean
Gaussian distributed noise with covariance Q. In Sec. IV,
(15) in combination with PF forms the basis for learning the
tire friction.

A. Sequential Monte Carlo and Particle Filtering

Sequential Monte-Carlo (SMC) methods, such as PFs,
constitute a class of techniques that estimate the posterior
distribution in SSMs, and SMCs have recently emerged as a
useful tool in learning of SSMs (e.g., [19]). PFs approximate
the posterior density p(xt|y0:t) by a set of N weighted state
trajectories as

p(xt|y0:t) ≈
N∑
i=1

qitδxi
t
(xt), (16)

where qit is the importance weight of the ith particle xit and
δ(·) is the Dirac delta mass. The PF recursively estimates
(16) by repeated application of Bayes’ rule, where the states
are sampled according to a proposal density π(xt|xt−1,yt)),
which in the simplest case is the dynamical model. This
yields the state trajectory samples at each time step as

xit ∼ p(xt|xit−1), i ∈ {1, . . . , N}. (17)

The importance weights are updated using the likelihood as

qit ∝ qit−1p(yt|xit). (18)

The PF algorithm iterates between (17) and (18), combined
with a resampling step that removes particles with low
weights and replaces them with more likely particles.

When using SMC for learning (e.g., parameters), the PF
is used to repeatedly sample state trajectories x0:T within an
MCMC procedure, combined with updating the parameters
to fit the trajectory x0:T from the previous iteration followed
by sampling the parameters to be used in the next iteration
of the PF. The idea is that as the number of iterations k
grow large, the sampled state trajectories and parameters are
indeed samples from the correct distribution.

We adapt a conditional PF with ancestor sampling (CPF-
AS) [11] to generate the state trajectories needed to learn the
function µ describing the tire friction. CPF-AS generates the
state trajectories by a procedure similar to the standard PF,
except for that the PF is conditioned on one prespecified
reference trajectory x′0:T , which is retained throughout the
procedure. When used within an MCMC procedure [20], it
can be shown that after a burn-in period, the state trajectories
generated by CPF-AS are samples drawn from the smoothing
distribution p(x0:T |y0:T ) for any finite N > 1 [11], [21], that
is, the second distribution on the right-hand side of (10).

IV. LEARNING THE TIRE FRICTION BY GP-SSMS

The objective is to infer the posterior distribution (9) of
the unknown function µ. In the presentation of our method,
for brevity we will focus on the lateral dynamics, that is, we
learn the lateral tire friction of front and rear wheels. Note
that the extension to the longitudinal dynamics is analogous.

A. Adapting the Model for Learning

The Bayesian learning method we leverage assumes dy-
namical systems on the form xt+1 = ft+wt, where the full
state-transition function ft is to be learned. Hence, we need



to adapt the vehicle model (7). Specifically, by manipulation
of (7), it is possible to show that

µyr(st) =
G11,t

G12,tG22,t −G12,tG23,t
x̄2,t+1

− G21,t

G11,tG22,t −G12,tG21,t
x̄1,t+1, (19)

where x̄t+1 = xt+1 − at. Similarly,

µyf (st) =

(
1

G11,t
+

G12,tG21,t

G11,tG22,t −G12,tG23,t

)
x̄1,t+1

− G12,t

G11,tG22,t −G12,tG21,t
x̄2,t+1. (20)

We introduce the shorthand notation ζt = [ζ1,t ζ2,t]
T for the

right-hand sides of (19), (20), which results in the system

ζt+1 = µ(st) +wt, (21)

where wt ∼ N (0,Q) is zero mean Gaussian distributed
noise with, possibly unknown, covariance matrix Q, which
accounts for modeling errors.

Using the basis function expansion approach (13), we
formulate a reduced-rank GP-SSM of (21) similar to (15),
which results in

ζt+1 =

γ
1
1 · · · γm1
...

...
γ1d · · · γmd


︸ ︷︷ ︸

A

φ
1(st)

...
φm(st)


︸ ︷︷ ︸

ϕ(st)

+wt. (22)

B. Tire Friction Learning with GP-SSM

With the reduced-rank GP-SSM (22) in combination with
the measurement model (8), we are now ready to formulate
our learning approach. With the GP-SSM, the problem of
estimating the distribution (9) now amounts to infer the
distribution of A and Q, that is, to estimate the distribution

p(A,Q|y0:T ), (23)

where the components in A are Gaussian distributed accord-
ing to (14). To estimate the covariance matrix Q, we impose
the additional assumption that the prior of Q is inverse-
Wishart (IW) distributed according to

Q ∼ IW(`Q,ΛQ). (24)

The IW distribution is a distribution over (real) positive
definite matrices, and has the degrees of freedom `Q and
positive definite scale matrix ΛQ as hyperparameters. Letting
an unknown covariance matrix have the IW distribution as
prior distribution is common due to its properties and has
been done in automotive applications before (e.g., [14], [22]).

The components of the system matrixA in (23), defined in
(22), are Gaussian distributed (see (14)). Hence,A is Matrix-
Normal (MN ) distributed according to

A ∼MN (0,Q,V ). (25)

With A MN distributed and Q IW distributed, the joint
prior p(A,Q) is MNIW distributed according to [23]

p(A,Q) =MNIW(A,Q|0,V , `Q,ΛQ), (26)

where V has the inverse spectral density of the covariance
function as diagonal entries [13],

V = diag(
[
S−1(λ1) · · · S−1(λm)

]
), (27)

and where diag(·) is the diagonal matrix.
To estimate (23), we need the two densities

p(A,Q|x0:T ,y0:T ) and p(x0:T |y0:T ) similar to the
right-hand side in (10).

1) Estimating the State Posterior: The state posterior
p(x0:T |y0:T ) will depend on the tire friction estimate through
(7), which implies

p(x0:T |y0:T ) =

∫
p(x0:T |A,Q,y0:T ) dA,dQ. (28)

Hence, we need to sample from p(x0:T |A,Q,y0:T ). We use
CPF-AS, outlined in Algorithm 1, which produces samples
that are asymptotically consistent with (28) when encapsu-
lated into an MCMC procedure [11].

Algorithm 1 CPF-AS
Input: x0:T (k), u0:T−1, N , model {a,G,µ,Q,D,R}.
Output Trajectory x0:T (k + 1).

1: Sample xi
1 ∼ p(x1), ∀i ∈ {1, . . . , N − 1}.

2: Set xN
1 = x1(l).

3: for t← 1 to T do
4: Compute sit from (2) ∀i ∈ {1, . . . , N}.
5: Set qit ∝ N (yt|hi

t +D
i
tµ(s

i
t),R), ∀i ∈ {1, . . . , N}.

6: Sample ait with P(ait = j) ∝ qjt , ∀i ∈ {1, . . . , N}.
7: Sample xi

t+1 ∼ N (a
ai
t

t +G
ai
t

t µ(s
ai
t

t ),Q),
∀i ∈ {1, . . . , N}.

8: Set xN
t+1 = xt+1(k).

9: Sample aNt P(aNt = j) ∝ qjtN (xN
t+1|aj

t +G
j
tµ(s

j
t),Q).

10: Set xi
1:t+1 = {xai

t
1:t,x

i
t+1}, ∀i ∈ {1, . . . , N}.

11: end for
12: Draw J with P(i = J) ∝ qiT .
13: Set x0:T (k + 1) = xJ

0:T .

2) Learning the Tire Friction: To learn the posterior (23),
that is, to learn the PDF of the function describing the
tire friction and process-noise covariance that accounts for
modeling errors, we use Bayes’ rule,

p(A,Q|x0:T ,y0:T ) ∝ p(x0:T ,y0:T |A,Q)p(A,Q). (29)

The likelihood p(x0:T ,y0:T |A,Q) can be written as

p(x0:T ,y0:T |A,Q) =

p(x0)

T−1∏
t=0

p(xt+1|xt,A,Q)︸ ︷︷ ︸
p(x0:T |A,Q)

T∏
t=0

p(yt|xt,A,Q)︸ ︷︷ ︸
p(y0:T |x0:T ,A,Q)

. (30)

Conditioned on A and Q, the vehicle model (7) and
measurement model (8) are both Gaussian distributed,
which implies that the two terms p(x0:T |A,Q) and
p(y0:T |x0:T ,A,Q) in (30) are Gaussian distributed. Hence,



the density p(x0:T ,y0:T |A,Q) is Gaussian distributed since
it is a product of Gaussian distributions. Therefore, we can
utilize the concept of conjugate priors. If a prior distribution
belongs to the same family as the posterior distribution, the
prior is conjugate to the likelihood. For Gaussian distributed
data, anMNIW distribution defines a conjugate prior [24].
This is convenient since it allows closed-form expressions for
the update of A and Q [13]. Let us define

Φ =

T∑
t=0

ζtζ
T
t , (31a)

Ψ =

T∑
t=0

ζtϕ(st)
T, (31b)

Σ =

T∑
t=0

ϕ(st)ϕ(st)
T. (31c)

Then it follows that the joint posterior is

p(A,Q|x0:T ,y0:T ) = p(A|Q,x0:T ,y0:T )p(Q|x0:T ,y0:T ),
(32)

where

p(Q|x0:T ,y0:T ) =

IW(Q|T + `Q,ΛQ + Φ−Ψ(Σ + V )−1ΨT), (33)

p(A|Q,x0:T ,y0:T ) =

MN (A|Ψ(Σ + V )−1,Q, (Σ + V )−1). (34)

Using Algorithm 1 combined with (33) and (34) for
sampling the process-noise covariance Q and weight matrix
A in the basis function expansion (13), the complete learning
algorithm can be summarized as in Algorithm 2. Algorithm 2
generates the weight matrix A at each iteration k, which
converges after a transient period. Denote the number of
samples in the transient phase (burn-in period) with Kbi.
Then K − Kbi − 1 samples generated by Algorithm 2 at
Line 9 are samples from the distribution p(A|Q,x0:T ,y0:T ),
which implies that µ = A(k+ 1)ϕ is a sample from (9). To
recover (9), we can write

p(µ|y0:T ) ≈ 1

K −Kbi − 1

K−1∑
k=Kbi

δ(µ−A(k + 1)ϕ(s0:T )),

(35)
and a function estimate can be determined as the posterior
mean,

µ̂(st) =
1

K −Kbi − 1

K−1∑
k=Kbi

A(k + 1)︸ ︷︷ ︸
Â

ϕ(st), (36)

V. SIMULATION RESULTS

We evaluate Algorithm 2 on synthetic data, by simulating
step-steer maneuvers at constant forward velocity using a

Algorithm 2 Proposed method for tire-friction learning
Input: y0:T , u0:T−1, priors (26), (27).
Output K MCMC samples from p(A,Q,x0:T |y0:T )

1: Sample initial guess x0:T (0), Q(0), A(0).
2: for k ← 0 to K − 1 do
3: Sample x0:T (k+1) given Q(k), A(k) using Algorithm 1.
4: Compute s0:T using (2).
5: Compute ϕ(s0:T ) in (22) using (12b).
6: Compute ζ0:T using (19)–(21).
7: Compute Φ, Ψ, Σ using (31).
8: Sample Q(k + 1) given A(k), x0:T (k + 1) using (33).
9: Sample A(k+1) given x0:T (k+1), Q(k+1) using (34).

10: Set µ = A(k + 1)ϕ.
11: end for

nonlinear single-track model with the Pacejka tire model [2],

F y
f = µyf sin(Cy

f arctan(By
f (1− E

y
f )αf + Ey

f arctan(By
fαf ))),

F y
r = µyr sin(Cy

r arctan(By
r (1− Ey

r )αr + Ey
r arctan(By

rαr))).
(37)

The aggressiveness of the step-steer maneuver is such that
the slip angles reach the saturated region. The vehicle chassis
model uses parameters corresponding to a mid-size SUV and
the tire parameters are taken from [25].

We use 10 basis functions each for the front and rear tire,
which gives m = 100 basis functions in total. The simulation
lasts for 500 time steps, corresponding to a data set lasting
for 100 s with a sampling time of Ts = 200 ms. The number
of samples in Algorithm 2 is set to K = 10000 and the burn-
in period is set to Kbi = K/2. The number of particles in
the underlying PF is N = 50.

Fig. 3 shows the estimated lateral tire-friction curve of
the front tire and Fig. 4 shows the equivalent of the rear
tire. The excitation range of the underlying slip angles of
the data is indicated by the bars in the lower plot. We stress
that the underlying data are not used for learning. Where
there is enough excitation, the proposed method can correctly
learn the shape of the tire curve, while the estimate in the
unobserved parts of the state space has large uncertainty,
as expected. However, due to the zero-mean prior of the
function coefficients in (14), the estimates do not suffer from
overfitting issues outside of the available data range. It is
highly likely that using more data improves the estimates
further and will decrease the uncertainty.

VI. CONCLUSION

We have presented a novel method for learning the nonlin-
ear function describing the dependence between wheel slip
and tire friction. The method is fully Bayesian and is based
on recent developments in particle MCMC and GP-SSMs. A
key feature is that the method only uses inertial and wheel-
speed sensors, which are typically installed in production
vehicles. This makes the method useful for learning in exist-
ing vehicle setups. The evaluation was done using synthetic
data, using sensor noise values typical for automotive-grade
sensors. The results indicate that the proposed method can
indeed learn the nonlinear tire-friction curve in a Bayesian
framework. The nonparametric nature of the method makes
it flexible.
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Fig. 3. Bayesian learning of the tire friction of the front tire (upper plot)
with inertial sensing, and the distribution of the underlying data (lower
plot). The black line is the posterior mean (36) of p(µ|y0:T ) generated
from Algorithm 2, and the 2σ lines are indicated by the shadowed areas.
The red dashed curve is the true friction curve, and the green vertical dashed
lines indicate the range of the underlying data (c.f. lower plot). The bars
in the lower plot show the distribution of the slip angle of the front wheel
computed from the underlying data points. Note that this data is not available
for learning.
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Fig. 4. Bayesian learning of the tire friction of the rear tire (upper plot)
with inertial sensing, and the distribution of the underlying data (lower plot).
Same notation as in Fig. 3.
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