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Abstract
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applications in automotive, aerospace and hybrid systems are practical examples of how such
discrete-valued variables arise. We utilize the sequential nature and the problem structure
of MI-MPC in order to provide a branch-and-bound algorithm that can exploit not only the
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propagating information from branch-and-bound trees and solution paths at previous time
steps. We illustrate the computational performance of the proposed algorithm and compare
against current state-of-the-art solvers for a standard hybrid MPC case study, based on a
preliminary implementation in MATLAB and C code.
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Abstract— Mixed-integer model predictive control (MI-MPC)
requires the solution of a mixed-integer quadratic pro-
gram (MIQP) at each sampling instant under strict timing
constraints, where part of the state and control variables
can only assume a discrete set of values. Several applications
in automotive, aerospace and hybrid systems are practical
examples of how such discrete-valued variables arise. We utilize
the sequential nature and the problem structure of MI-MPC
in order to provide a branch-and-bound algorithm that can
exploit not only the block-sparse optimal control structure of
the problem but that can also be warm started by propagating
information from branch-and-bound trees and solution paths
at previous time steps. We illustrate the computational perfor-
mance of the proposed algorithm and compare against current
state-of-the-art solvers for a standard hybrid MPC case study,
based on a preliminary implementation in MATLAB and C code.

I. INTRODUCTION

Optimization based control and estimation techniques,
such as model predictive control (MPC) and moving horizon
estimation (MHE), allow a model-based design framework
in which the system dynamics and constraints can directly
be taken into account [1]. This framework can be further
extended to hybrid systems [2], providing a powerful tech-
nique to model a large range of problems, e.g., including dy-
namical systems with mode switchings or quantized control,
problems with logic rules or obstacle avoidance constraints.
However, the resulting optimization problems are highly non-
convex because they contain variables that only take integer
values. When using a quadratic objective in combination with
linear system dynamics and linear inequality constraints, the
resulting optimal control problem (OCP) can be formulated
as a mixed-integer quadratic program (MIQP).

We aim to solve MIQP problems of the following form:

min
X,U

1

2

N−1∑
i=0

x>i Qixi + u>i Riui + x>NPxN (1a)

s.t. x0 − x̂0 = 0, (1b)
Aixi +Biui + ai = xi+1, i ∈ {0, . . . , N − 1}, (1c)
lci ≤ Cixi +Diui ≤ uci , i ∈ {0, . . . , N − 1}, (1d)
Fiui ∈ {0, 1}, i ∈ {0, . . . , N − 1}, (1e)
lcN ≤ CNxN ≤ ucN , (1f)

where the optimization variables are the state X =
[x>0 , . . . , x

>
N ]> and control trajectory U = [u>0 , . . . , u

>
N−1]>.

The set of constraints (1e) are binary equality constraints,
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since the left-hand side needs to be equal to either 0
or 1. For simplicity of notation, we further consider only
binary control variables instead of more general integer
constraints for an affine function of both state and control
variables. MPC for several classes of hybrid systems can be
straightforwardly formulated as in (1). Notable examples are
mixed logical systems [2], where auxiliary continuous and
discrete variables can be added to the input vector. Moreover,
in combination with the binary constraints (1e), the affine
inequalities (1d) can model various complicated but practical
restrictions on the feasible region, such as obstacle avoidance
and disjoint polyhedral constraints for states and inputs.

A hybrid MPC controller aims to solve the MIQP (1) at
every sampling time instant. This is a difficult task, given
that mixed-integer programming is NP-hard in general, and
several methods for solving such a sequence of MIQPs have
been explored in the literature. These approaches can be
divided into heuristic techniques, which seek to efficiently
find sub-optimal solutions to the problem, and optimization
algorithms which attempt to solve the MIQPs to optimality.
Examples of the former include rounding and pumping
schemes [3], approximate optimization algorithms [4], and
approximate dynamic programming [5]. The downside of
fast heuristic approaches is often the lack of guarantees for
finding an optimal or even an integer-feasible solution.

As for solving these problems to optimality, most of the
optimization algorithms for MIQPs are based on the classical
branch-and-bound (B&B) technique [6]. For the purpose of
mixed-integer MPC, the standard B&B strategy has been
combined with various methods for solving the relaxed
convex QPs. For example, a B&B algorithm for mixed-
integer MPC (MI-MPC) has been proposed in combination
with a dual active-set solver in [7], with an interior point
algorithm in [8], dual projected gradient methods in [4], a
nonnegative least squares solver in [9], and the alternating
direction method of multipliers (ADMM) in [10].

Another important research topic focuses on general pre-
processing and modeling techniques to reduce the size and
strengthen the mixed-integer problem formulations [11].
These presolve techniques are vital to the good performance
of current state-of-the-art mixed-integer solvers [12], such
that these methods can often solve seemingly intractable
problems in practice. The branch-and-bound method itself
has been extensively studied with several improvements
in branching and variable selection techniques [13], [14].
Finally, the branch-and-bound strategy has been generalized
further, e.g., using cutting planes to tighten the convex
problem relaxations, resulting in branch-and-cut or branch-



and-price variants of the algorithm [6], [11]. Unlike state-
of-the-art mixed-integer solvers, e.g., GUROBI [15] and
MOSEK [16], our aim is to propose a tailored algorithm
and its solver implementation for fast embedded MI-MPC
applications, i.e., running on microprocessors with consider-
ably less computational resources and available memory. The
optimization algorithm should be relatively simple to code
with a moderate use of resources, while the software imple-
mentation is preferably compact and library independent.

In this paper, our first contribution is to propose a branch-
and-bound based MPC algorithm, which exploits the features
of a recently proposed structure-exploiting primal active-set
solver called PRESAS [17]. The latter algorithm is tailored
to efficiently solve QPs with a block-sparse optimal control
structure. Our second contribution is to bring various mixed-
integer programming techniques, such as bound strength-
ening, domain propagation, and advanced branching rules,
to the context of MI-MPC. In particular, we present an
algorithm that exploits the sequential nature of MPC, in
order to warm-start the branch-and-bound search tree and to
re-use information gathered at previous time steps. Finally,
the computational performance of the proposed algorithm,
for a preliminary implementation in MATLAB and C code,
is illustrated and compared against current state-of-the-art
solvers for a standard hybrid MPC case study.

II. MIXED-INTEGER QUADRATIC
PROGRAMMING

We first introduce some of the basic concepts in mixed-
integer programming based on branch-and-bound methods,
such as convex relaxations and branching strategies.

A. Convex Quadratic Program Relaxations

A standard approach to solve the MIQP (1) is to create
convex relaxations of this problem and then solve the relax-
ations in order to approach the solution to the original MIQP.
A straightforward idea is to obtain convex QP relaxations
by dropping the binary equality constraints (1e) and instead
enforcing the affine inequality constraints 0 ≤ Fiui ≤ 1.
Other convex relaxations for MIQPs have been studied in the
literature such as moment or SDP relaxations that are often
tighter than QP relaxations [18], but they can be relatively
expensive to solve for larger problems.

For the purpose of this paper, we will focus our attention
on QP relaxations where we allow the binary variables to take
on real values. The main reason for choosing this relaxation
is that we utilize a tailored structure exploiting active-set
solver, called PRESAS [17], proposed recently for efficiently
solving the convex QP relaxations. The latter solver has been
shown to be competitive with state-of-the-art QP solvers
for embedded MPC, and it benefits strongly from warm-
starting, which can be exploited when solving the sequence
of QPs within the branch-and-bound strategy. Note that the
relaxations need to be convex, i.e., the weight matrices Qi,
Ri and P need to be positive (semi-) definite in (1a) such
that each solution to a QP relaxation is globally optimal.
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𝑃4 ∩ 𝑃5 = 𝜙

𝑃2 ∪ 𝑃3 = 𝑃1
𝑃2 ∩ 𝑃3 = 𝜙

Fig. 1: Illustration of the branch-and-bound method as a
binary search tree. A selected node can be either branched,
resulting in two partitions for each bound value in (1e), or
pruned based on feasibility or the current upper bound.

B. Branch-and-Bound Algorithm

The main idea of the branch-and-bound (B&B) algorithm
is to sequentially create partitions of the original problem
and then attempt to solve those partitions. While solving
each partition may still be challenging, it is fairly efficient to
obtain local lower bounds on the optimal objective value, by
solving relaxations of the mixed-integer program or by using
duality. If we happen to obtain an integer-feasible solution
while solving a relaxation, we can then use it to obtain a
global upper bound for the solution to the original problem.
This may help to avoid solving or branching certain partitions
that were already created, i.e., these partitions or nodes can
be pruned. The general algorithmic idea of partitioning is
better illustrated as a binary search tree, see Figure 1.

A key step in this approach is how to create the partitions,
i.e., which node to choose and which binary variable to select
for branching. Since we solve a QP relaxation at every node
of the tree, it is natural to branch on one of the binary
variables with fractional values in the optimal solution of the
QP relaxation. Therefore, if a variable, e.g., ui,k ∈ {0, 1}
has a fractional value in a given QP relaxation, then we
create two partitions where we respectively add the equality
constraint ui,k = 0 and ui,k = 1. Another key step is how
to choose the order in which the created subproblems are
solved. These two steps have been extensively explored in
the literature and various heuristics are implemented in state-
of-the-art tools [13]. We provide next a brief description of
strategies that we implemented in our B&B solver.

C. Tree Search: Node Selection Strategies

A common implementation of the branch-and-bound
method is based on a depth-first node selection strategy,
which can be readily implemented using a last-in-first-
out (LIFO) buffer. The next node to be solved is selected
as one of the children of the current node and this process
is repeated until a node is pruned, i.e., the node is either
infeasible, optimal or dominated by the upper bound, which
is followed by a backtracking procedure. Instead, a best-
first strategy selects the node with the lowest local lower
bound so far. In what follows, we will employ a combination
of the depth-first and best-first node selection approach.
This idea is motivated by aiming to find an integer-feasible



solution quickly at the start of the branch-and-bound proce-
dure (depth-first) to allow for early pruning, followed by a
more greedy search for better feasible solutions (best-first).

D. Reliability Branching for Variable Selection
The idea of reliability branching is to combine two pow-

erful concepts for variable selection: strong branching and
pseudo-costs [13]. Strong branching relies on temporarily
branching, both up (to higher integer) and down (to lower
integer), for every binary variable that has a fractional value
in the solution of a QP relaxation in a given node, before
committing to the variable that provides the highest value for
a particular score function. The increase in objective values
∆+

i,k, ∆−i,k are computed when branching the binary variable
ui,k, respectively, up and down. Given these quantities, a
simple scoring function score(·, ·) is computed for each
binary variable. For instance, based on the product [14]:

Si,k = score(∆−i,k,∆
+
i,k) = max(∆+

i,k, ε) · max(∆−i,k, ε),
(2)

given a small positive value ε > 0. This branching rule has
been empirically shown to provide smaller search trees in
practice [13]. The downside is that this procedure is relatively
expensive since several QP relaxations are solved in order to
select one variable to branch on.

The idea of pseudo-costs aims at approximating the in-
crease of the objective function to decide which variable to
branch on, without having to solve additional QP relaxations.
This can be done by keeping statistic information for each
binary variable, i.e., the pseudo-costs that represent the
average increase in the objective value per unit change in that
particular binary variable when branching. Every time that a
given variable is chosen to be branched on, and the resulting
relaxation is feasible, then we update each corresponding
pseudo-cost with the observed increase in the objective,
divided by the distance of the real to the binary value, in
the form of a cumulative average. Therefore, each variable
has two pseudo-costs, φ−i,k when the variable was branched
“down” and φ+

i,k when it was branched “up”. Given the
solution to a QP relaxation, one can then use the pseudo-
costs to select the binary variable with the highest score value
to be branched on next:

Si,k = score(ūi,k φ
−
i,k, (1− ūi,k)φ+

i,k), (3)

given a fractional value ūi,k in the QP relaxation.
This way, we select variables based on their past be-

havior throughout the branch-and-bound tree. However, at
the beginning of the algorithm, the pseudo-costs are not
yet initialized, which is when branching decisions typically
impact the tree size the most. Reliability branching uses
strong branching to initialize the pseudo-costs until a certain
condition of reliability is satisfied, e.g., one switches to
using pseudo-costs only once that particular variable has
been branched on a specified number ηrel of times [13].
The resulting branching rule is summarized in Algorithm 1.
Note that reliability branching coincides with pseudo-cost
branching if ηrel = 0, with strong branching if ηrel = ∞,
but typically a value 1 ≤ ηrel ≤ 4 is chosen.

Algorithm 1 Reliability Branching Strategy

Input: ηrel, set C of candidate variables for branching.
1: for candidate variables ui,k in C do
2: if #branch(ui,k) ≤ ηrel then
3: Strong branching on ui,k to compute score Si,k.
4: Update pseudo-costs φ−i,k and φ+

i,k.
5: else
6: Si,k = score(ūi,k φ

−
i,k, (1− ūi,k)φ+

i,k).
7: end if
8: end for

Output: Select variable with highest score S∗ = max
i,k

Si,k.

III. PRESOLVE TECHNIQUES FOR
MIXED-INTEGER OPTIMAL CONTROL

As mentioned earlier, presolve techniques are often crucial
in making convex relaxations tighter such that typically fewer
nodes need to be explored, sometimes to such an extent that
seemingly intractable problems become tractable.

A. Domain Propagation for Condensed QP Subproblem

Several strengthening techniques are implemented as part
of “presolve” routines in commercial solvers [12]. One
particular technique that is suitable to mixed-integer optimal
control is based on domain propagation, in which the goal
is to strengthen bound values based on the inequality con-
straints (1d)-(1f) in the problem. However, the results of such
a strategy are rather weak when directly applied to the block-
sparse QP in (1), because the stage-wise coupling of the state
variables (1c) needs to be taken into account. Therefore, we
use instead the equivalent dense QP formulation in which the
state variables are numerically eliminated, such that stronger
bounds can be obtained for the control variables.

Let us concatenate all state variables in a vector X and
all control variables in the vector U , such that Eqs. (1b)-(1c)
can be written more compactly as

ĀX = B̄U + b+ E0x̂0, (4)

where we define the block-sparse matrices

Ā =


I
−A1 I

. . . . . .
−AN−1 I

 , (5a)

B̄ = blkdiag(B0, . . . , BN−1) , E0 = [A>0 , 0, . . . , 0]>. (5b)

The matrix Ā is invertible such that we can write:

X = Ā−1B̄U + Ā−1(b+ E0x̂0). (6)

Now, we can substitute the latter expression for the state
vector in OCP (1) to obtain the condensed form

min
U

1

2
U>HcU + h>c U (7a)

s.t. l̄c ≤ DcU ≤ ūc (7b)
Fiui ∈ {0, 1}, i ∈ {0, . . . , N − 1}, (7c)



where the condensed matrices and vectors read as

Hc = (Ā−1B̄)>QĀ−1B̄ +R, Dc = CĀ−1B̄ +D, (8a)

hc = (Ā−1b̄)>QĀ−1B̄, (8b)

l̄c = lc − CĀ−1b̄, ūc = uc − CĀ−1b̄, (8c)

where b̄ := b + E0x̂0 is defined and given Q =
blkdiag(Q1, . . . , QN−1, P ) , R = blkdiag(R0, . . . , RN−1),
and lc = [lc

>

1 , . . . , lc
>

N ]> and uc = [uc
>

1 , . . . , uc
>

N ]>.
Given the condensed problem formulation, which can be

computed offline and which is parametric in the current
state value x̂0, we can then apply the following bound
strengthening procedure, which is explained next for a single
affine constraint lb ≤

∑
i diui ≤ ub in (7b). This constraint

can be used to try and tighten bound values for all control
variables ui for which di 6= 0, where ui denotes a single
control variable in the vector U . Let ūi, ui be the current
upper/lower bounds for ui such that

diui ≤ ub−
∑
j 6=i

djuj ≤ ub −
∑

j 6=i,dj>0

djuj −
∑

j 6=i,dj<0

dj ūj︸ ︷︷ ︸
=:ūb,i

,

(9)
in which we divide by di in order to obtain

ui ≤
ūb,i
di
, if di > 0 or ui ≥

ūb,i
di
, if di < 0. (10)

This results, respectively, in the updated bound values

ūi = min (ūi,
ūb,i
di

), or ui = max (ui,
ūb,i
di

), (11)

or, in case ui is an integer or binary variable,

ūi = min (ūi,

⌊
ūb,i
di

⌋
), or ui = max (ui,

⌈
ūb,i
di

⌉
).

(12)
where b·c and d·e are the floor and ceiling operations, respec-
tively. Thus, this can result in strengthening of bound values
for both continuous and integer/binary control variables.
The procedure can be executed for each control variable
and each inequality constraint in an iterative manner, see
Algorithm 2, since bound strengthening for one variable can
lead to strengthening for other variables [12]. The process is
typically stopped when the bound values do not sufficiently
change or a certain limit on the computation time is met.

Domain propagation can lead to considerable reductions
in the amount of explored nodes, e.g., because variables are
fixed, when ūi = ui, or because of infeasibility detection,
when ūi < ui, without the need to solve any QP relaxations.
In addition, the updated bound values for all control variables
can be used to strengthen QP relaxations in the future. Lastly,
we can use domain propagation in order to improve and
generalize Hessian-based fixing strategies, such as the one
proposed in [19]. Hessian-based fixing typically can only
be applied to unconstrained problems, since it fixes the
variables solely based on the objective. Here, we propose
to use domain propagation to compute the feasibility impact
of certain variable fixings. More specifically, a particular
variable can be fixed based on optimality, if and only if this
fixing does not induce feasibility-based fixings.

Algorithm 2 Domain Propagation for Bound Strengthening

Input: Inequality constraints (7b), variable bounds ūi, ui.
1: while stopping criterion == False do
2: for every row of Dc do
3: for every ui ∈ U, di 6= 0 do
4: Obtain bound values ūb,i, l̄b,i using Eq. (10).
5: Update variable bounds using (11) or (12).
6: end for
7: end for
8: end while

Output: Updated bounds ūi, ui for all control variables.

Algorithm 3 B&B Method for the MIQP-OCP in (1)

Input: Upper bound UB, tolerance ε.
1: LB=−∞ and initialize L = {P0} with root node.
2: Select current node Pc ← P0.
3: while UB − LB > ε do
4: Apply domain propagation to Pc using Alg. 2.
5: Solve resulting QP relaxation with PRESAS.
6: if QP is feasible and J(X̄, Ū) ≤ UB then
7: if QP solution is not integer-feasible then
8: LB ← minP∈L J(P ).
9: Select branching variable v using Alg. 1.

10: Create subproblems Pu “up” and Pl “down”.
11: Append {Pl, Pu} to L if (1− v̄)φ+

v < v̄φ−v
or append {Pu, Pl} to L, otherwise.

12: else
13: UB ← J(X̄, Ū) and (X∗, U∗)← (X̄, Ū).
14: end if
15: end if
16: Remove current node Pc from to-do list in L.
17: Select next node based on depth-first (last node

in list L) or based on best lower bound.
18: end while
Output: MIQP solution vector (X∗, U∗).

B. Resulting MIQP Algorithm for Optimal Control

Algorithm 3 describes the most important steps in our
proposed B&B method for solving the MIQP in (1). It solves
a block-structured QP relaxation using PRESAS [17] at
every node and utilizes reliability branching (Algorithm 1) to
decide the branching variables. As discussed earlier, the node
selection strategy is based on a depth-first search followed by
a best-first search as soon as an integer-feasible solution has
been found. Note that the upper bound value UB provided
to Alg. 3 can be based on an integer-feasible solution guess
or it can initially be set to +∞.

IV. MIXED-INTEGER MPC ALGORITHM

In embedded applications of mixed-integer MPC, one
needs to solve an MIQP (1) at each sampling instant under
strict timing constraints. We can leverage the fact that we
solve a sequence of similar problems in order to warm start
the B&B optimization algorithm.
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Fig. 2: Illustration of the tree propagation technique from
one time point to the next in the MI-MPC algorithm: index i
denotes the order in which each node Pi is solved.

A. Warm Starting based on Tree Propagation

The warm-starting procedure aims to use knowledge of
one MIQP, i.e., the search tree after solving the problem, in
order to improve the B&B search for the next MIQP. Our
idea is to store the path from the root to the leaf node where
the optimal solution to the MIQP was found, as well as the
branching order of the variables. We can then perform a
shifting of this path in order to obtain a “warm-started tree”
to start our search to solve the MIQP at the next time step.
We illustrate this procedure in Figure 2, where the optimal
path at the current time step is denoted by the sequence of
nodes P1 → P2 → P4 → P6 → P7. Let us consider a
corresponding sequence of variables u2 → u3 → u0 → u1

that we branched on in order to create such optimal path.
After shifting by one time step, all branched variables in
the first control interval can be ignored, e.g., resulting in a
shifted and shorter path of variables u1 → u2 → u0.

At the subsequent time step, after obtaining the new state
estimate, we execute all presolving techniques and we solve
the QP relaxation corresponding to the root node. After re-
moving from the warm-started tree the nodes that correspond
to branched variables which are already integer feasible in
the relaxed solution at the root node, we proceed by solving
all the leaf nodes on the warm-started path. As we solve
both children of a node on this path, we do not have to solve
the parent node itself and therefore reduce computations by
solving less QP relaxations. Hence, we go over the tree in the
order depicted by the index of each node in Fig. 2. After the
warm-started branch has been explored, we resume normal
procedure of the B&B method. Algorithm 4 summarizes the
proposed tree propagation technique.

The sequential nature of the problem also allows to shift
and re-use the pseudo-cost information from one MPC time
step to the next. This idea has the potential of producing
smaller search trees as the MPC progresses, without the
need to perform strong branching at every MPC step. The
propagation of pseudo-costs can be coupled with an update of
the reliability parameters to improve the overall performance.
For example, the reliability number should be reduced for
each variable from one time step to the next, in order to force
strong branching for variables that have not been branched
on in a sufficiently long time. In addition, nodes can be

Algorithm 4 Tree Propagation for Warm-Started B&B

Input: Optimal path P from root to leaf node.
1: Shift index of branched variables by 1 stage along path.
2: Solve root node of shifted path P , including presolve.
3: for (branched variables on stage −1 after shifting)
‖ (variables are integer feasible in root node)
‖ (variables without pseudo-costs) do

4: remove associated node from the path P .
5: end for
6: Re-order sequence of branched variables by scoring

based on warm-started pseudo-cost information.
7: Initialize the B&B tree along the shifted path P , creating

nodes along the path and their respective children.
8: Create the warm-started list L, excluding parent nodes.

Output: Warm-started tree for next MIQP, given by list L.

removed from the warm-started path in case they correspond
to branched variables for which there is no pseudo-cost
information or it is not sufficiently reliable, in an attempt to
avoid bad branching decisions. Finally, these warm-started
pseudo-costs can also be used to re-order the warm-started
tree, in order to result in smaller search tree sizes.

The proposed tree propagation technique, with the ad-
ditional re-use of pseudo-cost information, has been sum-
marized in Algorithm 4. This procedure can improve the
overall performance of the B&B method in multiple ways.
First of all, the optimal path and pseudo-cost information is
re-used to make better branching decisions for the mixed-
integer program at the next time step, because the search
trees are often similar for two subsequent problems. Also,
the computational cost can be reduced by solving less QP
relaxations to explore the warm-started tree. In addition,
the shifted optimal path can be used in an attempt to
efficiently obtain an integer-feasible solution, and therefore
an important upper bound in the B&B algorithm, for the
MPC problem at the next time step.

B. MI-MPC Algorithm Implementation

The proposed MI-MPC algorithm solves a sequence of
MIQPs where the branch-and-bound tree is warm-started
at every time step, as well as the pseudo-cost and QP
condensing information. The B&B strategy and the presolve,
warm-start and heuristic branching techniques have been
implemented in MATLAB, based on a C code implementation
of the PRESAS algorithm [17] to solve each QP relaxation.

V. HYBRID MPC: BENCHMARK EXAMPLE

We consider a hybrid MPC problem from [2], with the
default settings as in bm99sim.m, which is a part of the
Hybrid Toolbox for MATLAB. This demo example has been
used also more recently for numerical comparisons in [9].
The system is modeled using the HYSDEL toolbox [20] to
obtain the mixed logical dynamical (MLD) system formu-
lation. Let us compare our algorithm with the state-of-the-
art GUROBI [15] and MOSEK [16] solvers for mixed-integer
programming. Figure 3 illustrates the average and worst-case
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Fig. 3: Computational results for closed-loop mixed-integer
MPC of the bm99 example: BB-PRESAS versus GUROBI
and MOSEK solvers for varying control horizon length N .

CPU times taken by our algorithm, GUROBI and MOSEK for
a range of control horizon lengths N . All advanced presolve
and heuristic options have been activated for both software
tools, resulting in fair computational comparisons.

Table I presents a detailed comparison for this test ex-
ample, including additional timing results for the MI-NNLS
solver that are taken directly from [9]. The latter computa-
tional results can serve only as a reference since they have
been obtained on a different computer, with respect to the
one used here with a 2.80 GHz Intel Xeon E3-1505M v5
processor and 32 GB of RAM. An important feature of our
method is that its worst-case computation time is often rather
close to the average performance in closed-loop MI-MPC
simulations. This highlights the effectiveness of our tree
propagation warm-starting procedure, such that consecutive
branch-and-bound trees have approximately the same size. In
addition, it can be observed from Table I that our proposed
BB-PRESAS solver is either competitive with, or is a factor 2
or 3 times faster than GUROBI. The computational speedup
is much larger when compared with other state-of-the-art
tools such as MOSEK, our solver can be more than 10 times
faster in this particular MI-MPC test example. It shall be
noted that GUROBI is a heavily optimized and fairly large
software, which is unlikely to be amenable for embedded
microprocessors, due to its code size, memory requirements,
and software library dependencies.

VI. CONCLUSIONS & OUTLOOK

In this paper, we proposed a branch-and-bound algorithm
for mixed-integer MPC that exploits the optimal control
problem structure to strengthen variable bounds, re-use
pseudo-costs and warm-start the search tree at every MPC
time step. More specifically, tailored domain propagation
and tree propagation strategies have been presented. We
showed preliminary results that illustrate the computational
performance of our algorithm for a hybrid MPC case study. A
compact, efficient, but self-contained C code implementation
of the proposed algorithm is under development to enable
real-time embedded applications of hybrid MPC.

TABLE I: Timing results (ms) per sampling step of hybrid
MPC test problem for different horizon lengths N . Compu-
tation times for MI-NNLS solver are taken directly from [9].

N BB-PRESAS GUROBI MOSEK MI-NNLS
(mean/max) (mean/max) (mean/max) (mean/max)

2 0.1/0.2 0.7/1.4 2.1/4.0 2.0/2.6
3 0.2/0.3 1.0/2.3 15.1/24.7 2.5/4.8
4 0.4/0.9 1.7/4.6 21.7/35.5 3.1/6.9
5 0.9/1.7 2.5/4.9 28.7/39.3 3.9/13.0
6 1.5/3.5 3.2/7.5 36.8/58.8 5.1/18.3
7 2.3/4.9 4.0/6.9 51.8/109.3 6.4/30.2
8 3.5/7.6 5.1/10.0 70.4/185.8 8.1/43.4
9 5.1/10.3 6.6/12.5 98.7/347.1 11.1/69.8
10 6.8/14.3 8.4/16.1 126.7/465.3 14.4/103.2
11 8.8/22.1 9.8/17.2 168.2/587.8 20.6/179.1
12 11.3/23.7 11.6/20.5 219.2/765.0 26.9/263.4
13 15.0/31.6 14.3/29.5 276.3/996.0 35.5/384.9
14 17.8/35.1 16.4/44.6 334.1/1241.9 46.3/562.4
15 21.0/41.6 21.9/71.6 450.8/1606.8 61.7/766.9
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