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Abstract
We propose an autoencoder with graph topology learning to learn compact representations
of 3D point clouds in an unsupervised manner. As discrete representations of continuous
surfaces, 3D point clouds are either directly acquired via 3D scanners like Lidar sensors, or
generated from multi-view images or RGB-D data. Different from 1D speech data or 2D
images, which are associated with regular lattices, 3D point clouds are usually sparsely and
irregularly scattered in the 3D space; this makes traditional latticed-based algorithms difficult
to handle 3D point clouds. Most previous works discretize 3D point clouds by transforming
them to either 3D voxels or multi-view images, causing volume redundancies and the quanti-
zation artifacts. As a pioneering work, PointNet is a deep-neural-network based method that
uses pointwise multi-layer perceptron followed by maximum pooling to handle raw 3D points
and achieve remarkable performances in many supervised tasks, including classification, seg-
mentation and semantic segmentation of 3D point clouds.
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We propose an autoencoder with graph topology learning to learn compact representations of 3D
point clouds in an unsupervised manner. As discrete representations of continuous surfaces, 3D point
clouds are either directly acquired via 3D scanners like Lidar sensors [5], or generated from multi-view
images or RGB-D data [4]. Different from 1D speech data or 2D images, which are associated with
regular lattices [3], 3D point clouds are usually sparsely and irregularly scattered in the 3D space; this
makes traditional latticed-based algorithms difficult to handle 3D point clouds. Most previous works
discretize 3D point clouds by transforming them to either 3D voxels or multi-view images, causing
volume redundancies and the quantization artifacts. As a pioneering work, PointNet is a deep-neural-
network based method that uses pointwise multi-layer perceptron followed by maximum pooling to handle
raw 3D points and achieve remarkable performances in many supervised tasks, including classification,
segmentation and semantic segmentation of 3D point clouds [6].

In this work, we consider unsupervised learning of 3D point clouds; that is, learning compact repre-
sentations of 3D point clouds via self-organization. Several recent works have been proposed to pursue
a similar goal, such as LatentGAN [1], 3DGAN [7], and FoldingNet [8]. They adopt an encoder-decoder
framework. The encoder follows similar architectures in PointNet and extracts global features; and the
decoder is used to reconstruct 3D point clouds based on global features produced by the encoder. To
design a decoder, LatentGAN [1] uses fully-connected layers, which does not explore the geometric prop-
erties of 3D point clouds at all; FoldingNet [8] uses point-wise multi-layer perceptrons to fold a 2D lattice
to a 3D surface, which assumes that the underlying surface of all points has genus less than 2. Table 1
shows that FoldingNet can hardly reconstruct torus with high-order genus. Moreover, since features
obtained from the encoder provide global information, previous works are hard to capture detailed local
geometric structures.

Input

FoldingNet
without graph filtering

FoldingNet++
with graph filtering

Table 1: Graph filtering refines the reconstructions of 3D point clouds. The first row shows
the original point clouds sampled from torus generated in MeshLab [2]; the second row shows the coarse
reconstructions obtained by the folding module; and the third row shows the refined reconstructions
obtained after graph filtering. The color associated with each point indicates the correspondence between
a node in the 2D lattice and a 3D point. The smoothness of the color transition reflects the difficulty of
the folding process. Only training the folding module cannot capture the holes and the folding process
is difficult. With the learn graph structures, the networks achieve much finer reconstructions.



To solve this issue, we extend FoldingNet by proposing a novel graph-topology-learning module,
which guides the networks to handle complex shapes and explore local geometric structures. We call the
overall networks FoldingNet++. The encoder in FoldingNet++ still adopts PointNet and the decoder
consists of three modules: the folding module and the graph-topology-learning module and the graph-
filtering module. The folding module folds a regular 2D lattice to a coarse 3D point cloud and has
similar architecture with FoldingNet. The graph-topology-learning module learns a graph shift operator
to explicitly capture the pairwise relationships between 3D points. Intuitively, the graph shift operator
is able to deform a 3D point cloud by cutting or glueing shapes locally. In other words, the folding
module (FoldingNet) only reconstructs 3D positions, while the graph-topology-learning module pushes
the networks to reconstructs both 3D positions and pairwise relationships for all the points. In the graph-
filtering module, we finally design graph filters based on the learnt graph shift operator and filter the
coarse 3D point cloud to obtain a refined 3D point cloud. We validate the effectiveness of FoldingNet++
in two tasks, including 3D point cloud reconstruction and transfer classification. The experimental results
show that FoldingNet++ outperforms LatentGAN, 3DGAN and FoldingNet in all the tasks; see Table 2.

Method Modality # code ModelNet10 ModelNet40
3D-GAN [7] Voxels 7168 83.30% 91.00%

Latent-GAN [1] Points 512 85.70% 95.40%
FoldingNet [8] Points 512 88.40% 94.40%
FoldingNet++ Points 512 89.67% 95.63%

Table 2: FoldingNet++ achieves best classification accurracies in two datasets.

The main contributions of this work are as follows:

• We propose a novel deep-neural-network-based autoencoder, called FoldingNet++, to do unsuper-
vised learning for raw 3D point clouds. FoldingNet++ uses a graph-topology-learning module to
guide the networks to handle complex shapes and explore local geometric structures;

• We validate the proposed FoldingNet++ in the tasks of 3D point cloud reconstruction and transfer
classification. The experimental results show that FoldingNet++ outperforms 3D-GAN, Latent-
GAN and FoldingNet;

• We propose a 3D shape dataset with subcategory labels based on ModelNet40 and illustrate that
the graph-topology-learning module guides FoldingNet++ to refine details.

References

[1] Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and Leonidas Guibas. Representation learning and
adversarial generation of 3d point clouds. arXiv preprint arXiv:1707.02392, 2017.

[2] Paolo Cignoni, Marco Callieri, Massimiliano Corsini, Matteo Dellepiane, Fabio Ganovelli, and Guido
Ranzuglia. Meshlab: an open-source mesh processing tool. In Eurographics Italian chapter conference,
volume 2008, pages 129–136, 2008.
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